Conveners
Flavor and Intensity Physics
- Luca Vecchi
The strongest current bounds on lepton flavor violation (LFV) come primarily from low energy precision observables. While these experiments are expected to improve substantially in the next decade, there are cases where a muon collider could complement existing searches. In this talk, we utilize a SMEFT approach to explore the complementarity of muon colliders with low energy experiments for...
In the first part of the talk, we will introduce the main model building ideas, namely flavour non-universality and Higgs compositeness, that are central to our model, as well as the theoretical and experimental motivations for exploring these BSM avenues. In the second part of the talk, we present a flavour non-universal extension of the Standard Model combined with the idea of Higgs...
The Belle and Belle II experiment have collected samples of $e^+e^-$
collision data at centre-of-mass energies near the $\Upsilon(nS)$
resonances. These data have constrained kinematics and low
multiplicity, which allow searches for dark sector particles in the mass
range from a few MeV to 10~GeV. Using a 426 fb$^{-1}$ sample collected
by Belle~II, we search for inelastic dark...
Building on the realistic U(2) flavor model proposed a few years ago by Linster and Ziegler, we conduct a comprehensive study of possible neutrino mass textures arising from the seesaw mechanism. We identify a set of viable models that provide an excellent fit to low-energy Standard Model flavor observables including neutrinos. Additionally, within an Effective Field Theory framework, we...
Dark sectors provide beyond Standard Model scenarios which can address unresolved puzzles, such as the observed dark matter abundance or the baryon asymmetry of the Universe. A naturally small portal to the dark sector is obtained if dark-sector interactions stem from a non-Abelian hidden gauge group that couples through kinetic mixing with the hypercharge boson. In this work, we investigate...