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ABSTRACT

The hotspot emission of accreting millisecond pulsars (AMPs) undergoes scattering in the accretion flow between the disk inner radius
and the neutron star surface. The scattering optical depth of the flow depends on the photon emission angle, which is a function of
the pulse phase, and reaches its maximum when the hotspot is closest to the observer. At sufficiently large optical depths the observed
pulse profile should develop a secondary minimum, the depth of which depends on the accretion rate and the emission geometry.
Such a dip evolving with the accretion rate might explain the phase shift and pulse profile evolution observed in AMPs during
outbursts. Accounting for scattering is important for accurate modeling of the AMP pulse profiles in order to improve the accuracy
of determination of the neutron star parameters, such as their masses and radii. In this paper we present a simplified analytical model
for the Thomson optical depth of the accretion funnel, and apply it to simulating the pulse profiles. We show that scattering in the
accretion funnel has a significant effect on the pulse profiles at accretion rates of Ṁ ≳ 10−10 M⊙ yr−1. Our model predicts a gradual
evolution of the pulse profile with the accretion rate that appears to be consistent with the observations.
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1. Introduction

Accreting millisecond pulsars (AMPs) belong to a class of neu-
tron stars (NSs) in X-ray binaries rotating at millisecond periods
and with a relatively low magnetic field of 108 − 109 G. They
produce coherent pulsations from the hotspots that are created
by magnetic funneling of the accretion flow (Romanova et al.
2003; Kulkarni & Romanova 2005). AMP X-ray pulse profiles
tend to be nearly sinusoidal with some rapid variations that are
not well understood (see Patruno & Watts 2021, for a review).
Specifically, during outbursts the pulse phase of some AMPs are
known to shift by large amounts (∼ 0.2 of the pulse periods)
and the profile can deviate from a sine wave or even develop a
double-peaked structure. Previous works have proposed that the
phase shifts might be caused by movements of the hotspot (Hart-
man et al. 2008; Lamb et al. 2009) or the expansion of the inner
disk radius making a secondary hotspot visible (Poutanen et al.
2009; Ibragimov & Poutanen 2009). Neither model can fully
explain the pulse shape variations, and other phenomena must
therefore be considered. Changes in the disk–magnetosphere in-
teraction (Kajava et al. 2011) or magnetic octupoles becoming
dominant (Long et al. 2012) have been shown to replicate some
of the observed behavior. It has also been suggested that scatter-
ing of the hotspot emission in the accretion funnel might play
a role as it can have a significant optical depth during periods
of enhanced accretion (Poutanen & Gierliński 2003). The opti-
cal depth through the funnel should vary with rotational phase
depending on the geometry of the accretion flow.

The mostly sinusoidal shape of AMP pulse profiles is consis-
tent with a dipole magnetic field with a small misalignment from
the rotational axis. The magnetic field disrupts the accretion disk
relatively close to the NS and channels the gas into the accretion

funnels (e.g., Ghosh & Lamb 1978; Romanova et al. 2004). The
funnel scatters some of the hotspot emission depending on how
much plasma the light passes through. The largest scattering op-
tical depth occurs when the hotspot normal is aligned with the
direction to the observer and is consequently occluded by the ac-
cretion funnel. The optical depth variation thus leads to periodic
dimming of the flux, and might result in a secondary minimum
at zero pulse phase (i.e., when the hotspot is closest to the ob-
server). The strength of this variation is flux dependent because
the accretion funnel is denser at high accretion rates, and there-
fore the effect is most apparent during the peak of outbursts. Its
influence on the pulse evolution should be gradual unless a rapid
change occurs in the accretion geometry.

To provide a specific example, this accretion funnel occlu-
sion may have been observed during certain outbursts of AMP
SAX J1808.4−3658 (hereafter J1808). Its pulse profile changes
significantly at certain outburst stages and sometimes exhibits a
secondary minimum near the outburst peak (Hartman et al. 2008;
Ibragimov & Poutanen 2009). This minimum was observed dur-
ing the 2002 outburst of J1808 in the 10–24 keV band by Ibragi-
mov & Poutanen 2009, who noted that it was unlikely to be a re-
sult of a secondary hotspot as the accretion rate was high and the
2–3.7 keV profiles remained sinusoidal. The absence of the sec-
ondary minimum in the soft X-ray band suggests that the funnel
may not occlude the entirety of the hotspot, for example because
the softer radiation is emitted by a larger area at the NS surface
(Gierliński & Poutanen 2005). The nonsinusoidal pulse profile
during the early stages of the 2008 outburst of J1808 also casts
doubt on a secondary hotspot being responsible as it did not re-
main nonsinusoidal at lower fluxes (Hartman et al. 2009a). Vari-
ations in the disk–magnetosphere interaction have been shown
to be a likely factor in the rapid pulse amplitude shift during this
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outburst (Kajava et al. 2011). While previous works have consid-
ered funnel scattering as a likely factor, the lack of a quantitative
model means that its impact is unknown.

A model for the effects of scattering would have applications
for obtaining AMP parameter constraints via pulse profile mod-
eling. Importantly, measuring the masses and radii of NSs can be
used to constrain the equation of state (EoS) of cold dense mat-
ter (Poutanen & Gierliński 2003; Leahy et al. 2008, 2011; Watts
et al. 2016, 2019). Being able to model pulse profiles of AMPs
showing thermonuclear X-ray bursts would be especially valu-
able as X-ray bursts can be used to measure the mass and radius
using a different method based on the spectral evolution during
the cooling tail (Suleimanov et al. 2011, 2017, 2020; Nättilä et al.
2017). Combining the methods could potentially increase the ac-
curacy of mass–radius measurement and lead to more stringent
constraints on the EoS.

In this paper we present a simplified model for calculating
the scattering optical depth of AMP accretion funnels. We apply
it to simulated pulse profiles and study how scattering affects
the AMP pulse shape at different accretion rates. We show that
the scattering may explain some of the observed features of the
AMP pulse profile evolution.

2. Scattering in the accretion flow

2.1. Optical depth

The optical depth τ of the accretion funnel depends on the light
trajectory, the funnel geometry, and the properties of the accreted
gas. It is defined as

dτ = κρ ds, (1)

where κ is the opacity, ρ is the density, and ds is the path element.
Because the gas is moving at relativistic velocities, it is important
to transform the opacity from the gas comoving frame to the
laboratory frame. This can be done with

κ = (1 − µβ)κ′, (2)
β = vff/c, (3)

vff(r) =

√
2GM

r
, (4)

where κ′ is the opacity in the comoving frame, vff the plasma
free-fall velocity, r the radial coordinate from the star center, and
µ the cosine angle between the light trajectory and the gas veloc-
ity. We note that in AMPs a typical area of the hotspot is about
two orders of magnitude larger (Ibragimov & Poutanen 2009;
Lamb et al. 2009; Kulkarni & Romanova 2013) than in classi-
cal strong magnetic field pulsars, resulting in a negligible effect
of radiation pressure on the gas dynamics (Lyubarskii & Syun-
yaev 1982; Mushtukov et al. 2015). This justifies our assumption
of the free-fall velocity. Close to the NS surface, at sufficiently
high luminosities, the flow should attain the Compton tempera-
ture that is defined by the balance of Compton heating and cool-
ing. Under these conditions, the accretion flow is fully ionized
and the opacity is dominated by electron scattering. For the pur-
poses of this paper, we use the Thomson scattering opacity for a
pure hydrogen atmosphere κ′ = κe = 0.4 cm2 g−1 as the choice
does not change the qualitative behavior of our model.

Under these simplifications the only factors that need further
consideration are the density of the gas and the light trajectory.
The density in the laboratory frame can be approximated using

the continuity equation. Assuming two identical funnels above
two hotspots, it is

ρ(r) =
Ṁ

2A(r)vff(r)
, (5)

where A(r) is the area of one of the accretion funnels as a func-
tion of radius from the center of the star, the factor of 2 repre-
senting the total area of the two funnels.

The light travel time through the funnel is small enough com-
pared to the rotation of the hotspot that we approximate it as in-
stantaneous. In the Schwarzschild metric in the equatorial plane
and at constant time, the path element is ds2 = dr2(1−RS/r)−1 +
r2dψ2, where RS = 2GM/c2 is the Schwarzschild radius. Using
the azimuth coordinate ψ as a parameter, the optical depth inte-
gral can be written as

τ = κe

∫ ψmax

ψmin

ρ(1 − µβ) dψ

( dr
dψ

)2

(1 − RS/r)−1 + r2

1/2

, (6)

where ψmax and ψmin are the range of the trajectory. The deriva-
tive of the radius term is known analytically (Pechenick et al.
1983; Misner et al. 1973, p. 674)

dr
dψ
=

r2

b

[
1 − b2(1 − RS /r)/r2

]1/2
, (7)

where b is the impact parameter. Thus, the optical depth is

τ = κe

∫ ψmax

ψmin

ρ(1 − µβ)
r2 dψ

b
√

1 − RS/r
. (8)

We calculate the intensity of light using a simplified equation for
the radiative transfer I = I0e−τ, where I0 is the intensity of the
initial emission and I the intensity of light that passes through
unscattered. This approximation does not account for the light
scattered into the direction of the observer from other directions
and should be interpreted as an estimate for the dimming of the
light rather than an accurate model for electron scattering.

2.2. Light trajectory

Calculating the integral limits in Eq. 8 requires some parameter-
ization of the light trajectory in order to solve the point where
it exits the funnel. This can be achieved using a vector model.
We define unit vectors for the direction of a distant observer,
k̂, and for the surface normal of the emitting point, n̂. The an-
gle between the normal and the emitted photon at infinity is
cosψ∞ = k̂ · n̂, which in this case is the limit ψmin. We let r̂ be a
vector pointing to some point along the trajectory with a known
angle cosψ = k̂ · r̂. In the Schwarzschild metric the light trajec-
tory lies on the plane defined by k̂ and n̂, so r̂ can be calculated
as a linear combination of the two vectors:

r̂ =
n̂ sinψ + k̂ sin(ψ∞ − ψ)

sinψ∞
. (9)

To calculate these vectors we use a coordinate system where the
center of the hotspot is aligned with the z-axis. The geometry in
the spot center coordinates is shown in Fig. 1. The normal vec-
tor can now be written as n̂ = (sinΘ cosΦ, sinΘ sinΦ, cosΘ),
where Θ and Φ are the colatitude and azimuth of the emitting
element. To define k̂, we use ψ∞ and φ as the inclination and
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Fig. 1. Geometry of the hotspot and the light trajectory in spherical
coordinates aligned with the spot center. The plane of emission and the
trajectory are drawn in magenta, and the circular hotspot is in orange.

azimuth of the observer relative to n̂. This vector can be found
using the following rotation matrix

k̂ = R(Φ,Θ) ·

sinψ∞ cosφ
sinψ∞ sinφ

cosψ∞

 , (10)

R(Φ,Θ) =

cosΘ cosΦ − sinΦ sinΘ cosΦ
cosΘ sinΦ cosΦ sinΘ sinΦ
− sinΘ 0 cosΘ

 . (11)

These radial vectors are accurate in the Schwarzschild metric
as spherically symmetric spacetimes are isomorphic to 3D rota-
tions. Assuming a circular hotspot, the geometry will be sym-
metric around Φ so only Φ = 0 has to be considered. Thus, we
can write

k̂ =

cosψ∞ sinΘ + cosφ sinψ∞ cosΘ
sinφ sinψ∞

cosψ∞ cosΘ − cosφ sinψ∞ sinΘ

 . (12)

It follows that

r̂ =

cos(ψ∞ − ψ) sinΘ + sin(ψ∞ − ψ) cosΘ cosφ
sin(ψ∞ − ψ) sinφ

cos(ψ∞ − ψ) cosΘ − sin(ψ∞ − ψ) sinΘ cosφ

 . (13)

The angle between r̂ and the hotspot center cos θ = r̂ · (0, 0, 1)
can now be expressed as a function of ψ:

cos θ = A cosψ + B sinψ, (14)
A = cosψ∞ cosΘ − sinψ∞ sinΘ cosφ, (15)
B = sinψ∞ cosΘ + cosψ∞ sinΘ cosφ. (16)

Reversing this equation yields ψ as a function of θ, which is help-
ful in finding the exit point ψmax of the trajectory:

tan
ψ

2
=

B ±
√

cos2 Θ + sin2 Θ cos2 φ − cos2 θ

A + cos θ
. (17)

The radial coordinate of the trajectory as a function of ψ in a flat
space time can be solved with basic trigonometry,

r(ψ) =
R sinα
sinψ

, (18)

where α is the angle between n̂ and the initial direction of
emission k̂0, which in this case is the same as ψ∞. In the

Schwarzschild metric, one approximation for the trajectory in-
cluding light bending is (Beloborodov 2002)

r(ψ) =
R2

S(1 − cosψ)2

4(1 + cosψ)2 +
b2

sin2 ψ

1/2

−
RS(1 − cosψ)
2(1 + cosψ)

, (19)

where the impact parameter is

b =
R

√
1 − RS/R

sinα, (20)

1 − cosα = x = (1 − cosψ)(1 − RS/r) ≡ y(1 − u), (21)

where u = RS/r and y = 1−cosψ. This formula is fairly accurate
for low α angles as long as r > 2RS. The light bending formula
described in Poutanen (2020) is more accurate:

x = (1 − u)y
(
1 +

u2y2

112
−

e
100

uy
[
ln

(
1 −

y

2

)
+
y

2

])
. (22)

Here e is Euler’s number. The increased mathematical complex-
ity makes it impossible to solve r(ψ) analytically, and we there-
fore use Eq. (19) to evaluate the integrand in Eq. (8). This inte-
gral must be done numerically, but it is smooth and contains no
singularities within integral limits. The impact parameter can be
calculated from Eq. (20), and the angle α can be obtained from
either Eq. (22) or Eq. (21).

2.3. Accretion funnel and hotspot geometry

Three-dimensional numerical simulations of the accretion flow
show different hotspot shapes depending on the magnetic obliq-
uity θ0 (Romanova et al. 2003, 2004). For the obliquity of
θ0 ≈ 30◦, the shape of the hotspot is a hollow semicircle centered
around the magnetic pole. At lower obliquities, the hotspot be-
comes a hollow circle, and at very high angles it starts to become
bar-shaped. The angle between the magnetic pole and the center
of the hotspot for a dipole field is θs = arcsin

(
cos θ0

√
R/RM

)
,

where RM is the magnetospheric radius. The actual magnetic
field lines deviate from a perfect dipole as they are compressed
by the disk–magnetosphere interaction. In simulations the width
of the spot is about 7◦ − 8◦ and is only weakly dependent on
other parameters (Kulkarni & Romanova 2013). This geometry
would add several free parameters to our model to account for
the hotspot shape, and so we do not consider it here.

A difficulty with modeling the shape of the accretion funnel’s
edge is its motion relative to the observer and the emitting spot.
If the geometry is defined in a frame comoving with the hotspot
center, solving it in the lab frame requires a Lorentz transform.
As the true shape of the funnel is unknown, we define all ge-
ometry here in the lab frame. While this ignores the effects of
rotation, it does not impose a greater error than the simplified
geometry already does.

Approximating the accretion funnel edge by magnetic field
lines also has its challenges. In a classical perfect dipole the field
lines follow r = RM sin2 θ. This leads to a funnel area of A(r) =
2πr2(1−

√
1 − r/RM). However, the classical dipole does not take

the curvature of the metric into account, and the cosine angle
between the light trajectory and the gas velocity µ is difficult
to solve. The light trajectory can cross the curved funnel border
several times, and the exit points are not analytically solvable.
Field lines originating from a circular hot spot cannot set a clear
upper boundary for the funnel, and so a maximum radius must
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Fig. 2. Optical depth of a conical accretion funnel as a function of emission angle α at azimuth angles φ = 0◦ (left; photon is emitted away from
the spot center) and 180◦ (right; photon is emitted toward the spot center) and several angular separations Θ (different colors) for spot sizes of
ω = 15◦ (top) and 30◦ (bottom) at Ṁ10 = 1.

be chosen. It should be smaller than the magnetospheric radius,
which is on the order of a few R for AMPs.

To simplify further, we model the funnel as a circular cone
with a half-opening angle of ω and an area of A = 2πr2(1 −
cosω). The exit point of the trajectory is easily solvable with
Eq. (17) by setting θ = ω. We model the gas velocity to be in
the radial direction, and thus the angle between the light trajec-
tory and the velocity is µ = − cos(α(ψ, r)), which has several
analytical approximations. We use the more accurate formula
(22) to calculate this angle, but the radius has to be solved us-
ing Eq. (19). The error coming from the approximate radius is
negligible compared to the error of calculating the angle using
the less accurate formula. Setting the upper radius of the cone
affects the maximum optical depth, but it tends to converge at
around rmax = 5R. We consider a limiting radius of rmax = 3R
for the purposes of this paper as it better represents AMP inner
disk radii. In the dipole model A ∝ r3, whereas in the conical
model A ∝ r2, which makes it a higher limit for the optical depth
compared to the dipole model. As the actual field lines are less
curved close to the pole than in a dipole, the accurate area of the
funnel near the surface is somewhere between the perfect dipole
and the cone.

2.4. Pulse profile model

To generate pulse profiles that incorporate our scattering optical
depth model, we adapted the methodology described in Salmi
et al. (2021). The energy dependent observed flux of the hotspot
from an emitting area dS ′ is (Poutanen & Beloborodov 2006)

dFE = (1 − u)1/2δ4I′E′ (α
′) cosα

d cosα
d cosψ∞

dS ′

D2 , (23)

where u = RS/R, D is the distance of the observer, and I′E′ (α
′) the

emitted intensity as a function of emission angle in the corotating
frame. The Doppler factor δ is defined as

δ =
1

γ(1 − βs cos ξ)
, (24)

where βs = v/c is the surface velocity, ξ is the angle between the
direction of emission and the velocity, and γ = (1 − β2

s )−1/2 is
the Lorentz factor. Pulse profiles are commonly modeled using
the oblate Schwarzschild approximation, that is, calculating the
light bending and the corresponding time delays accurately for
a Schwarzschild metric and correcting for the star’s oblateness
(see Loktev et al. 2020 and AlGendy & Morsink 2014). We fol-
low a similar method, but we neglect oblateness to be consistent
with the spherical geometry assumed in our simplified scattering
model.

We modeled the hotspot emission as a slab of hot (50 keV)
electrons of Thomson optical depth 1, lying above a blackbody
surface of temperature of 1 keV as determined from the ob-
served X-ray spectra (e.g., Gierliński & Poutanen 2005; Ibrag-
imov & Poutanen 2009). The resulting spectrum is a combina-
tion of unscattered blackbody photons and a Comptonized com-
ponent at high energies. We determined the energy and angular
dependence of radiation using an approximate Thomson scatter-
ing model, and prescribing the energy increase in each Compton
scattering according to a standard formula (Viironen & Poutanen
2004; Salmi et al. 2021). We interpolate the results presented in
the tables of Salmi et al. (2021). The dependence of the seed pho-
ton intensity on the emission angle α′ in the comoving frame was
modeled using an approximation for the semi-infinite electron
scattering dominated atmosphere: I′(α′) ∝ 0.421 + 0.868 cosα′
(Chandrasekhar & Breen 1947). Choosing this over an isotropic
distribution has a minor effect on the pulse profile, but it should
not matter for the purposes of this paper.
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Fig. 3. Simulated pulse profiles for different geometrical parameters and accretion rates using one hotspot with an angular radius of ω = 25◦ at an
energy of 10 keV (top) and 3 keV (bottom). The solid, dashed, dotted, and dash-dotted lines (black, red, green, and blue, respectively) correspond
to accretion rates of Ṁ10 = 0, 3, 5, and 10, respectively.

We calculated the optical depth integral individually for each
emitting element of the hotspot at each phase point. In order
to find the range of the trajectory, the vectors n̂ and k̂ must
be calculated in the hotspot center coordinates. The pulse pro-
file model defines them in coordinates where the observer k̂∗ =
(sin i, 0, cos i) is fixed at an inclination of i and the normal vector
n̂∗ rotates with the star. The observer direction can be obtained
with the rotation

k̂ = R(ϕ, θ0)T · k̂∗, (25)

where θ0 is the magnetic obliquity of the spot center and ϕ is the
phase angle. Using Eq. (9) and defining n̂ as before, we find

cos θ = A cosψ + B sinψ, (26)
A = sin i sin θ0 cos ϕ + cos i cos θ0, (27)

B =
cosΘ − cosψ∞A

sinψ∞
. (28)

Similarly to Eq. (17), reversing this leads to

tan
ψ

2
=

B ±
√

A2 + B2 − cos2 θ

A + cos θ
. (29)

Thus, we can find the integral range with i, ϕ, and θ0 instead of
φ. Finally, we scaled the emitted intensities by a factor of e−τ, as
explained in Sect. 2.1, taking time delays into account.

3. Applications

3.1. Dependence of optical depth on model parameters

We tested the angular dependence of the scattering optical
depth with different hotspot sizes. We fixed the accretion rate

at Ṁ = 10−10 M⊙ yr−1; it can be easily changed by scaling
the optical depth with a factor of Ṁ10 (accretion rate in units
of 10−10 M⊙ yr−1). The mass and radius of the NS were set at
M = 1.4 M⊙ and R = 12 km. The plots for the optical depth as
a function of α at fixed φ at spot radii ω of 30◦ and 15◦ are pre-
sented in Fig. 2. The respective range of optical depths for the
two spot sizes are about 0.02–0.1 and 0.05–0.4. The maximum
optical depth can be approximated as

τmax ≈ 0.22
(

20◦

ω

)2

Ṁ10, (30)

where the factor of 0.22 is related to the vertical optical depth
from the spot center to the funnel upper boundary, and the pa-
rameter dependence is estimated from the gas density. Therefore,
if the accretion rate Ṁ10 is significantly lower than 1, the optical
depth will be negligible according to our model. If the accretion
rate is much higher than 10, the funnel will no longer be opti-
cally thin at low emission angles for moderately sized spots. The
simplified scattering model is no longer valid when τ > 1, and
thus it is not physically accurate past Ṁ10 ∼ 10.

The optical depth increases at lower α as a result of the light
passing through more of the funnel, reaching a plateau as it starts
exiting through the upper edge. The width of this plateau de-
pends on the range of angles when the upper edge is reached,
which is determined by ω, rmax, Θ, and φ. The plateau is not en-
tirely flat since the distance the light travels through the gas is
shorter at low emission angles. The dependence of the optical
depth on φ increases toward the edges of the spot since it has a
stronger influence on the light travel distance. The effect that the
spot size has on pulse profiles has previously been argued to be
weak for spot radii of ω ≲ 45◦ (Lamb et al. 2009), and yet in
this case it has a major impact on the optical depth. For small
spots the density of the funnel is related to the spot size by ap-
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Fig. 4. Amplitudes a1 (red) and a2 (blue) as a function of accretion rate
for i = 60◦ (top) and i = 35◦ (bottom) for a single hotspot with an
angular radius of ω = 25◦ and magnetic obliquity of θ0 = 10◦. The
dashed, solid, and dash-dotted lines correspond to energies of 20, 10,
and 3 keV, respectively.

proximately ρ ∝ ω−2, and leads to overall larger optical depths
despite shorter travel distances. As accretion rate and spot size
have a similar effect on the optical depth it may be difficult to
separate the parameters in model fits.

3.2. Pulse profiles

We generated various pulse profiles with the optical depth cor-
rection using different parameters. We fixed the spin rate of the
NS at 401 Hz (corresponding to J1808) and the mass and radius
at 1.4 M⊙ and 12 km, respectively. Figure 3 shows example pulse
profiles with different parameters at photon energies of 10 keV
and 3 keV. As predicted, the scattering in the accretion funnel
indeed causes a periodic decrease in flux at zero phase (here-
after called a dip) if the accretion rate is high. The center of the
dip remains at the same phase, while the pulse maximum ar-
rives earlier at higher energies, causing the dip to appear after
the peak. The overall strength of the dip also depends on the am-
plitude of the pulse and may even dominate the rest of the profile
if the amplitude is comparably low. Interestingly, the dip seems
to push the pulse maximum to earlier phases at higher accretion
rates. We investigate the effect the accretion rate has on the phase
shifts and the energy dependence of the profile in Sect. 3.3.

Large differences in i and θ0 lead to broad dips that do not
cause clear secondary minima. Conversely, when the angles are
close to one another the dip becomes more prominent. The dip
has an especially sharp shape when |i − θ0| < ω, as some of
the light exits through the upper edge of the funnel. Because the
optical depth at the upper edge is smaller at low α, the minimum

Fig. 5. Same as Fig. 4, but for the phase shifts ϕ1 (red) and ϕ2 (blue).

of the dip occurs slightly before or after zero phase if the light
passes the edge. This behavior is a result of the simplified funnel
and hotspot geometry used by our model and is not indicative of
the actual physical scenario. It still shows that clear secondary
minima will most likely occur when the observer inclination is
close to the magnetic obliquity.

The scattering optical depth has little effect on the pulse pro-
file shapes of secondary hot spots as they are observed at shallow
angles. They may exhibit secondary minima if both the observer
and the hotspot are nearly perpendicular to the axis of rotation,
which is an unlikely scenario for AMPs. Even though their scat-
tering optical depth is only weakly phase dependent, it should
not be neglected as it influences the amplitude of the pulse.

3.3. Pulse amplitude and phase dependence on accretion
rate

To test pulse phase characteristics as a function of accretion rate
we fitted a cosine profile to the simulated pulse profiles

F(ϕ) = ⟨F⟩{1 + a1 cos[2π(ϕ − ϕ1)] + a2 cos[4π(ϕ − ϕ2)]}, (31)

where a1 and a2 are the amplitudes of the fundamental and the
first harmonic, ϕ1 and ϕ2 their phase shifts, and ⟨F⟩ the average
flux. Figures 4 and 5 show the amplitudes and phases over a wide
range of accretion rates in different energy bands. The amplitude
of the fundamental first decreases, then eventually increases as
the dip begins dominating the pulse characteristics. The phases
follow a similar pattern, decreasing smoothly down to a constant
value at high accretion rates. At accretion rates of Ṁ10 = 0 − 5
and at an inclination of 60◦ the phase of the fundamental barely
changes in the low energy band and shifts by ∼ 0.1 in the higher
bands. This is linked with the amplitude of the fundamental be-
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Fig. 6. Plot of the slope of the phase shift of the fundamental (top) and
harmonic (bottom) in the range 3–10 keV as a function of the accretion
rate with geometrical parameters of θ0 = 10◦ and ω = 25◦, and at two
different inclinations i = 35◦ (solid) and 60◦ (dashed).

ginning its increase at much higher accretion rates at low ener-
gies. The amplitude of the harmonic is only weakly dependent
on energy and increases slightly with accretion rate. Its phase
flattens out earlier than that of the fundamental and shifts more
steeply in the low energy band.

Interestingly, the phase lag between different energy bins
changes with the accretion rate. To investigate this behavior, we
made a linear fit to the lags relative to the soft 3 keV band be-
tween energies of 3 and 10 keV. The slope of the phase lags
as a function of accretion rate is shown in Fig. 6. The slope of
the fundamental exhibits a minimum at some accretion rate and
is strongly dependent on the geometrical parameters. This be-
havior is a consequence of the scattering dip having a different
energy dependence than the rest of the pulse profile. The slope
initially decreases because the depth of the dip depends on the
energy dependent pulse amplitude, and begins to rise as the en-
ergy independent dip starts dominating the pulse profile.

4. Discussion and conclusions

Our simplified model for scattering in the accretion funnel has
a significant effect on the pulse profile at accretion rates of
≳ 10−10 M⊙ yr−1. Accounting for this scattering in pulse pro-
file fits could therefore lead to more accurate parameter esti-
mates of AMPs at high accretion rates. Performing model fits
is beyond the scope of this paper, and should be a priority of fu-
ture work. The optical depth integral can feasibly be performed
quickly enough to be practical for Bayesian model fits, although
it could be replaced with interpolation from a precalculated ta-
ble. The tables should be computed over a grid of Θ/ω and α

rather than Θ and ψ∞ to keep the parameters independent. The
highly energy dependent nature of the dip may make it difficult
to fit over large energy bins, because averaging pulse profiles
over energy can smear the effect of the scattering.

Basing the model solely on the optical depth of scattering
greatly simplifies the radiative transfer through the accretion fun-
nel by not accounting for the scattered portion of the emission.
It correctly estimates the fraction of unscattered radiation and
allows for simpler computations, but disregards the light that is
scattered toward the observer. The inclusion of light bending in
the model would make solving the radiative transfer equation a
much more formidable although not impossible problem. While
we account for the effect that the relativistic gas has on the opac-
ity, in reality the influence it has on the angular distribution of
radiation is more complex (Beloborodov 1998). The simplified
model also cannot show what effects the scattering has on the
polarization of the hot spot emission. A more comprehensive ra-
diative transfer model would be an important topic for future
work, especially as phase-resolved polarization measurements
are expected to improve the constraints on AMP geometrical pa-
rameters (Salmi et al. 2021; Bobrikova et al. 2023).

Modeling the accretion funnel as a finite cone allows analyt-
ical computations of the light trajectory to be performed, yet the
true accretion geometry is more complex. The real accretion flow
curves toward the accretion disk following magnetic field lines,
while a cone simply extends away from the hotspot. The sharp
maximum of the optical depth at low emission angles would not
be present in a real funnel as it has no flat upper edge. However,
the largest scattering contribution happens near the NS surface
so the geometry of the funnel near the inner disk radius matters
less. Thus, we can use the conical model to test the qualitative
effects of the scattering optical depth, although we cannot be
certain whether this accurately represents its dependence on the
observer inclination and magnetic obliquity. What consequence
a different hotspot shape would have is also unclear under this
approximation, and testing it would require a significantly more
complex model. The effect that the assumed hotspot and funnel
geometry has on model fits should be investigated.

The observed soft time lags and pulse phases of AMPs show
some dependence on the flux and, assuming that the flux is cor-
related with the accretion rate, we can compare this behavior
with our model. The observed timing noise of some AMPs also
seems to be correlated with the X-ray flux during outbursts (Pa-
truno et al. 2010), although testing this behavior with our model
would be difficult. A more easily testable example is the slope
of the soft time lags of J1808, which decreases with flux up to a
turnover point where the trend reverses. This has been previously
explained with the pulsar transitioning into the propeller regime,
with the turnover caused by changes either in the accretion disk
or the accretion funnel (Hartman et al. 2009b). Our model shows
similar behavior when the accretion rate varies even with a static
geometry (see Fig. 6). The qualitative dependence of the slope
on accretion rate would remain the same under a different accre-
tion geometry, but it might act differently if the scattering was
modeled as energy dependent. The slope remains dependent on
flux as long as the energy dependence of scattered light is differ-
ent from the energy dependence of the incident light.

Our model does not predict any rapid phase shifts, and so
they must be caused by other processes or by major changes in
the geometry. Some of the observed rapid shifts, such as that ob-
served during the 2002 outburst of J1808, go in the opposite di-
rection compared to the trend of the scattering model (Ibragimov
& Poutanen 2009). We therefore conclude that whatever causes
the rapid shifts often dominates the scattering. The changes
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caused by scattering, although weaker than other factors, should
be relevant throughout the entire outburst of an AMP.

In conclusion, even our simplified approach to scattering in
the accretion funnel demonstrates that it is an important factor
in AMP pulse profiles. A more accurate model for the polarized
scattering would be of interest in anticipation of future observa-
tions. It is also fascinating to see what changes it would have on
NS parameter estimates.
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