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Abstract
Periodic orbit families that exist around the asteroid (101955) Bennu were computed and
analyzed to gain insight into the dynamical environment about the asteroid. A constant-
density polyhedron model was used to generate the families. The planar direct and retrograde
families, and families emanating from equilibria, were computed. Ten distinct families were
identified in this set, and many of the orbit structures were similar (e.g., the vertical families
emanating from the equilibria behaved in similar ways), and several of these structures were
connected to each other. We identified 12 distinct families emanating from bifurcation points
in the initial families. These 12 families could be classified into four types. Even though the
model of Bennu had no exact symmetry, many nearly symmetric structures were identified.
There were also many similarities to structures identified using simplified models like the
homogeneous rotating gravitating triaxial ellipsoid. The behavior of the identified families
also provided insight into the evolution of the dynamical environment around the asteroid.
We expect the qualitative behavior of the families we identified to be similar to the families
that would exist around other asteroids that are nearly spherical.

Keywords Dynamics · Orbits · Asteroids · Bifurcations · Bennu

1 Introduction

Understanding the behavior and characteristics of the dynamical environment about celestial
bodies is essential to the field of celestial mechanics. Analyzing the structure of orbit families
that exist around these bodies is one component to understanding the dynamical environment.
In recent years, there has been an increased scientific interest in developing missions to send
spacecraft to study these bodies, particularly asteroids. One example of such a mission is
the OSIRIS-REx mission. The spacecraft arrived at the asteroid (101955) Bennu in late
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2018 (Lauretta et al. 2019; McMahon et al. 2020). While this study has some implications
for mission design, that is not our primary focus. In this paper, we undertake a mathematical
exploration of the complex periodic orbit bifurcation structure about a “real” asteroid that
has asymmetry. This paper seeks to address how asymmetries can modify the periodic orbit
family structure. The characteristics of an asteroid, such as its size, density, and spin rate,
can affect the dynamical environment, including the structure of orbit families. The density,
strength, and other characteristics and properties of asteroids, including rubble-pile asteroids
such as Bennu, have been studied previously (Scheeres et al. 2015; Benner et al. 2015).

Equilibriumpoints (EPs) that exist in the vicinity of the asteroid are important for analyzing
the dynamical environment. These equilibria are relevant to this work as orbit families are
known to emanate from these points. The equilibria, and their evolution, have been studied
around a number of asteroids (Jiang andBaoyin 2018), includingBennu (Scheeres et al. 2016;
Brown and Scheeres 2023b). Determining the locations and properties of these equilibria can
be accomplished in a number of ways (Tardivel 2014; Brown and Scheeres 2023a), and the
method outlined in Tardivel (2014) has the added benefit of yielding the ridge line as well.

1.1 Previous research

Orbit families have been previously mapped out in simpler models, such as the Circular
Restricted 3-Body Problem (CR3BP) and the homogeneous rotating gravitating triaxial ellip-
soid (HRGTE or TAEM). As the structure of the linearized systems for each of the models
is similar (Tardivel 2014), these orbit families will serve as a reference point for analyzing
the families identified in this work. A look at the qualitative behavior and structure of gen-
erating families in the CR3BP was presented in Hénon (1997). A road map in the form of a
bifurcation diagram of families existing in the CR3BP has also been developed (Doedel et al.
2007). Similar bifurcation diagrams for orbit families about the equilibria of the system have
been developed for the TAEM and the massive rotating straight segment (MRSS) (Romanov
and Doedel 2012, 2014). A far more detailed bifurcation diagram was presented for several
orbit families in the CR3BP to model motion near Europa (Bury 2021). The stability of orbits
in these types of systems can be determined by using the stability parameters and Broucke
stability diagram (Broucke 1969). The effects of non-spherical terms on the structure and
stability of orbit families initially existing in the 2-body problem have also been studied (Hou
et al. 2018).

The particular behavior of the periodic orbits about an asteroid are closely tied to the form
of the potential. Modeling the gravity field with a spherical harmonic expansion was one of
the first approaches used to analyze the dynamical environment about asteroids (MacMillan
1958). There are many ways to represent the gravity field around asteroids, but we will use a
gravity model based on the representation of the asteroid as a constant-density polyhedron.
The exterior gravitation of this model was presented in Werner and Scheeres (1996). The
accuracy of this model is primarily limited by the accuracy in the shape determination of the
body and its discretization (Werner and Scheeres 1996). The error associated with using this
modelwith the assumption that the density of the asteroid is constantwasmeasured to be a few
percent when considering measurements from the OSIRIS-REx mission to Bennu (Scheeres
et al. 2020).

The direct and retrograde orbits around (433) Eros have been studied using a spheri-
cal harmonic expansion to model the gravity field (Scheeres et al. 2000). A few resonant
families using this type of model around Eros have also been studied (Lara and Scheeres
2002). A second degree and order gravity field has also been used to study orbits around
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(4769) Castalia (Hu and Scheeres 2008). Chappaz (2011) used both a model based on spher-
ical harmonics and a model based on a constant-density polyhedron to compute the direct
and retrograde families about Eros, Castalia, and Mars’ moon Phobos. Certain resonant
families identified in bifurcations on the direct and retrograde families were also studied
in that work (Chappaz 2011). The stable and unstable regions for retrograde orbits about
(216) Kleopatra, (243) Ida, Eros, and three other asteroids, have been computed modeling
each asteroid as a polyhedron (Lan et al. 2017). While gravity models based on spherical
harmonics and polyhedrons are often used when studying asteroids, other types of models
can be used. For example, Lan et al. (2017) also computed the unstable regions for retro-
grade orbits using a double-particle-linkage model for Kleopatra and (951) Gaspra, and a
triple-particle-linkagemodel for Ida and Eros. Periodic orbits around a rotating homogeneous
body with a dumbbell shape and transfers between some of these orbits, and have also been
studied (Li et al. 2017).

Beyond the orbits related to the direct and retrograde families, orbit families around the
equilibria in these types of systems have also been studied. Periodic orbits and trajectories on
the stable and unstable manifolds associated with the equilibria around Castalia have been
computed and analyzed (Scheeres et al. 1996). Mathematical descriptions of the orbits and
manifolds about equilibria around asteroids have been developed and applied to compute
both periodic and quasi-periodic orbits around Kleopatra, (1620) Geographos, Castalia, and
(6489) Golevka using a polyhedron gravity model (Jiang et al. 2014). Initial orbits on the
families can be obtained through appropriate analysis of the linearizedmotion about equilibria
of the system. However, while some form of numerical continuation is normally used when
computing orbit families in these systems, there are a multitude of approaches to obtain an
initial set of orbit members. For example, a “hierarchical grid searching method” to compute
periodic orbits was developed and applied to compute orbits about a polyhedron model of
Kleopatra (Yu and Baoyin 2012a). Using this method 29 families were identified, including
six which emanated from equilibria (Yu and Baoyin 2012a, b). The same method has also
been applied to (22) Kalliope and Ida (Jiang and Li 2019; Yu et al. 2015).

Considering the progression and evolution of orbit families in these systems is also of
interest. How the characteristics of orbits change along one family will be referred to as the
“progression” of that family.How the characteristics of the orbits on a family, and the structure
of the family as a whole, change as parameters describing the asteroid’s gravity field vary will
be referred to as the “evolution” of that family. The progression of orbits in families near the
surface of Kalliope, Kleopatra, and Eros have been studied previously using constant-density
polyhedron gravity models (Kang et al. 2020). Variations in the shape of the asteroid have
been considered for Eros using shape continuation when computing orbits (Karydis et al.
2021). How families fit together is also important to consider when analyzing periodic orbits
in these systems. Bifurcation points along an orbit family are important to track as they can
be used to identify additional orbit families in some instances (Broucke 1969; Howard and
MacKay 1987; Campbell 1999).With that inmind, bifurcation diagrams can be used to depict
connections between different orbit families. Bifurcation points on specific orbit families in
the vicinity of the comet 1P/Halley and the asteroid Kleopatra have been computed (Jiang and
Baoyin 2016). In addition to identifying bifurcation points on orbit families around 1P/Halley,
Kleopatra, and Golevka, Jiang et al. (2015b) also presented 34 topological classifications for
the types of periodic orbits identified around irregular-shaped bodies. These classifications,
and possible bifurcation paths on the periodic orbits, were studied further for polyhedron
models representing Kleopatra and Bennu (Jiang et al. 2015a), as well as Eros (Ni et al.
2016). Two high-level bifurcation diagrams for periodic orbit families emanating from the
equilibria of an irregular-shaped body have been constructed previously (Jiang and Baoyin
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2019). However, the diagrams presented in Jiang and Baoyin (2019) are only applicable in
cases where the asteroid of interest has only four external equilibria, like Kleopatra and Eros.

While only the rotation and gravitational attraction of the asteroid will be considered in
this work, it is important to note that in order to use these orbits in higher fidelity models,
additional effects and perturbations will need to be considered. The effect of solar pertur-
bations on several of the families identified in Yu and Baoyin (2012a), and a few families
around Eros, have been studied (Ni et al. 2014). In addition to considering the effect of solar
perturbations, the effect of different gravity models have been analyzed on orbits around
(341843) 2008 EV5 (Llanos et al. 2014). The effect of solar radiation pressure (SRP) and
thermal radiation pressure (TRP) on several periodic orbits in the vicinity of Bennu have also
been studied (Pedros-Faura and McMahon 2022).

1.2 Current work

As this work focuses specifically on Bennu, it is important to highlight the previous research
into orbits around this particular asteroid and the contributions of our current work. Beyond
the orbits presented in Jiang et al. (2015a), the orbit members and bifurcation points on
a vertical family about one of the equilibrium points and a 2:1 resonant family around
Bennu have been computed previously (Liu et al. 2022). However, these computations were
performed using a different shape model of the asteroid than the one used in this work.
It is also important to note that portions of the orbit families presented in this work were
first identified in Scheeres et al. (2022). However, the families presented in that paper were
incomplete and slight modifications have been made to the shape model of Bennu that was
used in that work (Scheeres et al. 2022). While a number of orbit families around Bennu
have been identified previously, this work presents the most comprehensive collection of
orbit families around this asteroid to date. We continue the families beyond the point where a
member intersects the surface of the asteroid, which provides a more complete picture of the
orbit structures that exist. Furthermore, this work uses estimates of Bennu’s characteristics
and shape based on measurements from the OISRIS-REx mission. The specific shape model
we used is the image-based stereophotoclinometry (SPC) v42 model (Barnouin et al. 2019),
which can be found in the JHUAPL Small Body Mapping Tool (SBMT).

In Sect. 2, wewill present the dynamicalmodel and discuss the stability and characteristics
of periodic orbits in these types of systems. In Sect. 3, we will outline the method we use
to compute and analyze different orbit families. We will then present the orbit families
we identified and discuss their properties in Sect. 4. In this section, we will also discuss
the similarities in the families we identified and the orbit families that exist in simplified
dynamical models. Finally, we will comment on whether we expect these results to be similar
to orbit families that exist around other asteroids.

2 Problem statement

2.1 Coordinate frames and scaling

To begin we assume that the asteroid is rotating at a constant angular velocity ω with a
constant magnitude ω and direction ẑ. Let B : {

x̂, ŷ, ẑ
}
be a rotating frame with an origin

at the center of the asteroid and angular velocity ω = ω ẑ. Note that the mass distribution
remains constant in the B-frame (Tardivel 2014). The normalized units defined in Eq.1 are
used for most computations in this work.
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1 DU =
(
3AV

4π

)1/3

(1a)

1 TU = 1

ω
(1b)

Distance is scaled by the radius of the sphere that has the same volume (AV ) as the asteroid.
Time is scaled so the rotation period of the asteroid is 2π TU, which results in an angular
velocity of ω = 1 rad TU−1. The values of AV and ω used in Eq.1 should be dimensional
quantities.

2.2 Defining themodel

Bennu is represented as a uniformly rotating constant-density polyhedron in this work. Please
refer to Tardivel (2014), MacMillan (1958), and Werner and Scheeres (1996) for a more rig-
orous discussion of the potential and broad dynamical features associated with this type
of model. The shape model is based off of data collected during the OSIRIS-REx mis-
sion (McMahon et al. 2020; Barnouin et al. 2019). We used a model with 12,228 faces to
maintain a highly accurate representation of the asteroid, while also ensuring the computa-
tional cost associated with the model was not prohibitively excessive. We also used a model
with 3,072 faces to test the sensitivity of the orbit structures to the discretization of the model.
We assume Bennu has a constant uniform density σ = 1190 kgm−3 and a rotation period
of Trot = 4.296057 hr (Barnouin et al. 2019; Hergenrother et al. 2019; Lauretta et al. 2019).
Note that the spin rate ω corresponding to Trot can be determined by using the following
relationship: ω = 2π/Trot. The gravitational force potentialU for a constant-density polyhe-
dron, and the partial derivatives of U with respect to the position in the body-fixed frame r ,
are provided in Eq.2 (Werner and Scheeres 1996). Besides U , the other expressions in Eq.2
are the gravitational attraction (∇U ), gravity gradient matrix (∇∇U ), and Laplacian (∇2U
or �U ).

U = 1

2
Gσ

ne∑

e=1

re · Ee · re · Le − 1

2
Gσ

nf∑

f=1

r f · Ff · r f · ωf (2a)

∇U = −Gσ

ne∑

e=1

Ee · re · Le + Gσ

nf∑

f=1

Ff · r f · ωf (2b)

∇∇U = Gσ

ne∑

e=1

Ee · Le − Gσ

nf∑

f=1

Ff · ωf (2c)

�U = −Gσ

nf∑

f=1

ωf = tr (∇∇U ) =
{

0 outside the body
−4πGσ inside the body

(2d)

In Eq.2, G is the gravitational constant and σ is the density of the asteroid. ne is the
number of edges and nf is the number of faces of the polyhedron. Additional expressions
needed to evaluate Eq.2 are provided in Eq.3 (Werner and Scheeres 1996).

Ee = n̂ fe,1

(
n̂
fe,1
e

)T + n̂ fe,2

(
n̂
fe,2
e

)T
(3a)

Le = ln
rie + r je + le
rie + r je − le

(3b)
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Ff = n̂f n̂
T
f (3c)

ωf = 2 arctan
r if · r jf × rkf

rif r jf rkf + rif
(
r jf · rkf

) + r jf
(
rkf · r if

) + rkf
(
r if · r jf

) (3d)

P i represents the position of the i th vertex. Assuming the polyhedron consists of triangular
faces, face f is the triangle whose vertices are located at P if , P jf , Pkf . Each face f also has
an outward-pointing face normal vector n̂f and face dyad Ff . Edge e connects two vertices
P ie , P je and separates two of the faces fe,1, fe,2. Each edge e has a constant length le and

has an edge dyad Ee. n̂
f
e is the unit vector perpendicular to both n̂f and l̂e. The expressions

for Ee and Ff are presented in matrix notation. For some point in the body-fixed frame r ,
r i represents the position of the vertex located P i relative to r . r i has a magnitude of ri .

To considermotion in the rotating frame, the rotational effectsmust also be considered. The
amendedpotential (V ), defined inEq.4, includes gravitational and rotational effects (Scheeres
et al. 2016; Tardivel 2014). The force F resulting from V is related to the gradient of V by
F = −∇V (Tardivel 2014). The derivatives of the potential that will be needed to evaluate
the equations of motion and conduct stability analysis are also provided in Eq.4.

V = −U − 1

2
‖ω × r‖2 (4a)

∇V = −∇U + ω × (ω × r) =
⎡

⎣
Vx

Vy

Vz

⎤

⎦ (4b)

∇∇V = −∇∇U + [
ω̃

] [
ω̃

] =
⎡

⎣
Vxx Vxy Vxz

Vyx Vyy Vyz

Vzx Vzy Vzz

⎤

⎦ where
[
s̃
] =

⎡

⎣
0 −s3 s2
s3 0 −s1

−s2 s1 0

⎤

⎦ (4c)

�V = tr (∇∇V ) = −�U + diag
([

ω̃
] [

ω̃
]) = −�U − 2ω2 (4d)

Note that subscripts on the potential represent the partial derivative(s) with respect to the
variable(s) in the subscript. A numerical subscript on a vector indicates the component of a
vector.

2.3 Equations of motion

The state vector of some particle is represented by X = [
rT vT

]T
where r and v are the

position and velocity in the B-frame, respectively. The state transition matrix is represented
by [�(t, t0)] = ∂X

∂X0
and the Jacobian matrix is represented by [A] = ∂ Ẋ

∂X . Let X (t0) = X0

and note [�(t0, t0)] = [
I6×6

]
. Equation5 presents the equations of motion for a particle

whose mass is negligible compared to the mass of the asteroid.

Ẋ = f (X) =
[

v

− 2ω × v − ∇V

]
(5a)

[
�̇(t, t0)

] = [A(t)] [�(t, t0)] (5b)

[A] =
[ [

03×3
] [

I3×3
]

−∇∇V −2
[
ω̃

]
]

(5c)
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Note [A] represents the linearized dynamics about some point and does not explicitly
depend on time because the system is time-invariant. However, [A] will evolve in time when
it is evaluated along some nominal trajectory if the state on the nominal trajectory changes
in time. For a state perturbation (δX) relative to a reference state on the nominal trajectory,
the time rate of change of the perturbation is δ Ẋ = [A] δX . If the initial perturbation at t0 is
δX0, then the perturbation at t is δX = [�(t, t0)] δX0 (Scheeres 2012).

It is important to note that there is a conserved quantity in the rotating frame for this
system referred to as the Jacobi energy (C) (Scheeres et al. 2016). The Jacobi energy is the
same as the Hamiltonian for this time-invariant system, and is also referred to as the Jacobi
constant or the Jacobi integral (Scheeres 2012). An expression for this quantity is presented
in Eq.6.

C = H(X) = 1

2
v2 + V (6)

2.4 Stability of periodic orbits

For a state on a periodic orbit X0 at time t0 = 0, the state transition matrix after one period
[�M ] = [�(T , 0)] is referred to as the monodromymatrix, where T is the period. If X(T ) =
X f , then for a periodic orbit X f = X0. The stability of a periodic orbit can be determined
by analyzing the eigenvalues of its monodromy matrix. As the system is time-invariant,
this matrix should always have at least two unity eigenvalues. As described in Scheeres
(2012), these two unity eigenvalues can be eliminated by reducing the monodromy matrix
to a linearized Poincaré map (

[
�R

M

]
). This process effectively reduces the dimensionality of

the problem from six to four, and the stability of the orbit can be determined by computing
the two parameters A and B related to the Broucke stability diagram (Broucke 1969; Howard
and MacKay 1987).

To perform this reuction, we must specify an appropriate reference state (X0), surface of
section constraint (S(r0) = 0 where ŝT v0 �= 0), and fix the Jacobi energy of permissible
deviated states (H(X0 + δX0)) to be the same as the Jacobi energy of the reference state
(C0). The reduced state is a 4 × 1 vector that will be represented by Y , and every set of Y ,
S, and C can be mapped to a unique X . The full process and underlying assumptions are
presented in Scheeres (2012), but we will provide a short summary of the relevant equations
here. The form of these equations assumes the surface of section is related to the value of one
position coordinate, the equation for the Jacobi constant is of the form shown in Eq.6, and
that integrating the initial state from the initial time t0 to the time t1 corresponds to another
crossing of the surface of section (i.e., S(X1) = 0).

Regarding the surface of section constraint, let lPS represent the position coordinate cor-
responding to a surface of section and vPS represent the value. Let ŝ be a 3× 1 vector whose
elements are zero except for the lPSth element which is one. For example, using this notation,
lPS = 2 and vPS = 0.5 corresponds to a surface of section at y = 0.5 and ŝ = [0 1 0]T .
The equation S can be used to define a surface of section of this form: S(X) = ŝT r − vPS
which has a value of 0 when evaluated at points on the surface of section. Let [D] be the
4× 6 matrix that would be obtained by eliminating the l thPS and (lPS + 3)th rows of the 6× 6
identity matrix.

δX0 = ([P0] + [PH ])δY0 (7a)
[
�R

1,0

] = [P0]
T [PS] [�(t1, t0)] ([P0] + [PH ]) (7b)

[P0] = [D]T (7c)
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[PH ] = − 1

ŝT v0

[
03×1

ŝ

](

[D]
∂H

∂X

∣∣∣∣
X0

)T

(7d)

[PS] = [
I6×6

] − 1

ŝT v1
f (X1)

[
ŝ

03×1

]T

(7e)

We use t1 = T such that [�(t1, t0)] = [�M ] and
[
�R

1,0

]
= [

�R
M

]
in Eq.7b. The eigen-

vectors of
[
�R

M

]
will be 4× 1, but can be represented in the full state space by using Eq.7a.

The stability parameters A and B can be computed using Eq.8 where “Tr ([L])” indicates
the trace of the matrix [L] (Broucke 1969; Howard and MacKay 1987).

A = Tr
([

�R
M

])
(8a)

B = 1

2

(
A2 − Tr

([
�R

M

]2))
(8b)

The periodic orbit is stable if B ≥ 2A − 2, B ≥ −2A − 2, B ≤ 1
4 A

2 + 2, and B ≤
6 (Broucke 1969). These parameters can also be used to identify bifurcation points, which
will be discussed in more detail in Sect. 3.2.2.

2.5 Convention for describing periodic orbits

In this paper “orbit” will refer to a periodic orbit and “family” will refer to a periodic orbit
family. The term “structure”will refer to the general behavior of the orbit families such as their
characteristics, their properties, etc. It can also refer to how orbit families intersect with each
other. “Symmetric” means that the object 	 is invariant under some given symmetry defined
by the transformation
 (Hénon 1997). An orbit or a familywill be called “nearly symmetric”
if it is close to being symmetric, but not exactly. “	′ is symmetrical of 	” means the object
	′ is obtained from 
	 (Hénon 1997). “Evolution” will refer to how the members of an
orbit family (or structure) and their properties change as the spin rate (or other parameters
of the asteroid) changes. “Progression” will refer to how the members of an orbit family (or
structure) and their properties change as you continue between members. “Lyapunov” (with
quotation marks) will be used when describing orbits that are similar to part of a Li family
in the TAEM (Romanov and Doedel 2012). “Vertical” (with quotation marks) will be used
when describing orbits that are similar to part of a V i family in the TAEM (Romanov and
Doedel 2012), or to describe orbits with a significant out-of-plane amplitude.

3 Methodology

In this section, we will discuss the method we used to compute the periodic orbit families
around Bennu. A pseudo-arclength continuation scheme was used when computing all of
the families, so we will begin by outlining this continuation scheme and its termination
conditions. An initial guess is needed to start the continuation scheme when computing a
specific family, so we will then present how we obtain initial guesses for each of the orbit
families presented in this work. These families include the planar direct and retrograde
families, orbit families emanating from the equilibria, and orbit families emanating from
bifurcations in those initial families.
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3.1 Computing orbit families

We expect periodic orbits in this system to exist in one-parameter families. So, if we have
identified one periodic orbit we expect to be able to identify a nearby periodic orbit that lies
on the same family.We use a pseudo-arclength continuation scheme to compute the members
of each orbit family. How to generate the first member of each family will be discussed later
in Sect. 3.2. In this work, each orbit member is computed by correcting an initial guess for
that member using a single shooting method with the free variables (V ), constraints (G = 0
and H = 0), and corrections Jacobian matrices ([DG] and [DH ]) provided in Eq.9.

V =
[
X0

T

]
(9a)

G =
⎡

⎣
X f − X0

V T p̂ − vPS

(V − i−1
∗V )T i−1

∗n̂ − �s

⎤

⎦ (9b)

[DG] = ∂G
∂V

=
⎡

⎣
[�(T , 0)] − [

I6×6
]
Ẋ f

p̂T

i−1
∗n̂T

⎤

⎦ (9c)

H = [
X f − X0

]
(9d)

[DH ] = ∂H
∂V

= [
[�(T , 0)] − [

I6×6
]
Ẋ f

]
(9e)

G and [DG] are used when correcting individual orbit members, while H and [DH ] are
used when continuing from one orbit member to the next. Regarding notation, i jV represents
the V (free variables vector) corresponding to the i th orbit member after the j th iteration of
the correction scheme. A left superscript ∗ represents the final V that satisfies the constraints,
and a left superscript 0 represents the initial guess of V for that orbit member. X l

k represents
the l th element of the 6×1 state vector at some time t = tk . If there is no right superscript, then
that indicates the entire vector is used. k = 0 corresponds to t0 = 0, and (k = f) corresponds
to tf = T . Note that X f corresponds to the state obtained by integrating X0 from t0 = 0
to tf = T using Eq.5. p̂ is a 7 × 1 vector whose elements are zero except p̂lPS = 1. ∗n̂
is a 7 × 1 vector that lies in the nullspace of ∗[DH ]. �s is related to the desired step size
between orbit members. The difference between the free variable vectors corresponding to
the (i − 1)th and i th members (i ∗V − i−1

∗V ) projected onto the expected direction of the
family at the (i − 1)th member (i−1

∗n̂) should be equal to �s. When correcting a particular
member, Eq.10 is used to update the guess for i jV until

∣∣i jG
∣∣ is less than some tolerance.

i
j [DG]�V = 0 − i

jG (10a)

i
j+1V = i

jV + �V (10b)

Once
∣∣i jG

∣∣ is less than some tolerance, i ∗V is set to i
jV , and the initial guess for the next

member in the family is obtained by using Eq.11.

i
∗n̂ = null

(
i
∗[DH ]

)
(11a)

i+1
0V = i

∗V + �si
∗n̂ (11b)
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3.1.1 End of an orbit family

If the corrections scheme fails when computing a member of a family, the position and
velocity elements of the state corresponding to the specified surface of section are examined.
If the orbit member crosses the surface of section with a corresponding velocity component
magnitude (i.e.,

∣∣v · ŝ∣∣) less than some tolerance, the index and/or value of the surface of
section is updated. If the corrections scheme fails to converge but this condition is not met,
the previous orbit member is used to generate a new initial guess with a smaller step size �s,
and the corrections process is attempted again. This process is repeated until the next orbit
member is successfully identified or until �s falls below some tolerance.

The continuation algorithm is stopped if any of the following conditions are met: 1) �s is
smaller than an allowable limit, 2) the surface of section has been changed more times than a
specified limit, 3) |i ∗V − i−1

∗V | is greater than some tolerance, 4) the orbit corresponding
to i

∗V matches an orbit that has been found previously, 5) i exceeds some specified limit, or
6) the corrections scheme fails and none of the adjustments listed previously are successful.
If any of those conditions are met, careful consideration is needed to determine whether
the family can be continued beyond that point by modifying the values of the continuation
parameters. For example, if Condition 4 is met, additional analysis is needed to determine if
this point corresponds to a reflection class accident or if the continuation algorithm failed to
move past this point for some other reason. While every attempt was made to continue each
family to its “true” termination condition, we cannot guarantee that we managed to identify
the true “end point” of every family presented in this work.

Generally, once amember of an orbit family crosses the surface of a body, the computation
of the family is stopped. The equations of motion used in this work (see Eq.5) do not account
for additional terms that influence motion inside the surface of the asteroid (e.g., internal
pressure), so any orbit we obtain that crosses the surface of the asteroid is a non-physical
result. The partial derivatives of the gravitational force potential cannot be evaluated at the
surface of the asteroid in their current form (see Eq.2) as a discontinuous change in the density
of the body occurs at the surface (Tardivel 2014; MacMillan 1958). However, while periodic
orbits that crossed the surface of the asteroid did take significantly longer to integrate and
correct, computing these orbits was still possible even though the results were non-physical.
Furthermore, as we do not have a reliable intuition for how these families behave, we cannot
preclude the possibility that continuing the family further would eventually yield members
that once again lie completely outside the surface of the asteroid. For that reason, we continue
the families even after a member of the family crosses the surface of the asteroid.

3.2 Expected types of orbit families

As can be seen in Eq.11, the computation of an orbit member relies on the previous member
in the family. As a result, an initial orbit member is needed to start the continuation process.
While we do not know all the possible orbit families that could exist, we do know how to
obtain initial members for a few families.

3.2.1 Initial families

Far away from the asteroid, nearly circular orbits that lie close to the xy-plane should exist.
These orbits correspond to the planar direct and retrograde families. An initial guess for
both the planar direct and retrograde families was obtained using Eq.12, where μ if the
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graviational parameter of the asteroid, βP = −1 for the direct family, and βP = 1 for the
retrograde family (Scheeres 2012; Chappaz 2011).

0
0V =

[
aP 0 0 0 −aPθ̇P 0 2π

θ̇P

]T
(12a)

θ̇P = ω + βP

√
μ

a3P
(12b)

aP is the initial guess for the radius of the nearly circular orbit and should be sufficiently
large so the orbit is far from the asteroid. These equations for the initial guess are based
on Section 7.4.2 in Scheeres (2012). When correcting this initial guess, the constraint in G
corresponding to the pseudo-arclength constraint was excluded (i.e., the last constraint in
Eq.9b was not included in the corrections scheme for this initial orbit). The position was
constrained to lie in the xz-plane (i.e., lPS = 2 and vPS = 0). Once 0

∗V was obtained by
correcting the initial guess, the rest of the family was obtained by using the continuation
algorithm.

Orbit families are also expected to exist around the equilibriumpoints. The Jacobianmatrix
was evaluated at each equilibrium point using Eq.5c, and its eigenvalues were computed.
For each pair of purely imaginary eigenvalues, there should be one orbit family emanating
from that equilibrium point. Let the two eigenvalues λ1,2 = ±iλO (where λO > 0) and
two eigenvectors w1,2 = wa ± iwb correspond to one of these oscillatory modes. Let XEP

represent the state of the equilibrium point where the Jacobian matrix was evaluated. First,
the normalized vectors ŵa and ŵb are determined. Second, lPS is set based on the largest
velocity component of ŵa and ŵb (e.g., if the component corresponding to ż is larger in
magnitude than the components corresponding to ẋ and ẏ, then lPS = 3). vPS is then set to
the corresponding position component of the equilibrium point based on lPS. Finally, Eq.13
is used to obtain an initial guess for the first orbit member on the family corresponding to
this oscillatory mode.

0
0V = −1

∗V + �sO −1
∗n̂ (13a)

−1
∗V =

[
XEP
2π
λO

]
(13b)

−1
∗n̂ =

[
δ X̂O

0

]
(13c)

δXO = ŵa +
(

− ŵ
lPS
a

ŵ
lPS
b

)

ŵb (13d)

Note in this equation δ X̂O represents the vector obtained by normalizing δXO. Unlike
initializing the planar families, all eight constraints in G (see Eq.9b) are used to correct the
initial member for these types of families. Note that the orbit corresponding to −1

∗V is not
considered to be part of the orbit family, this notation is used simply to agree with the form
of the terms in Eq.9b. We use a �sO that is two orders of magnitude smaller than the value
of �s that is used for the other members in the family.

The two planar families and the families emanating from the equilibria will be referred to
as “Initial Families” or “IFs.” When initialized far from the asteroid, the planar retrograde
family and planar direct family will be referred to as OF-1-0 and OF-2-0, respectively. Bennu
has eight equilibria on the ridge line, and these equilibria will be numbered one through eight
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Fig. 1 Equilibria that exist
around Bennu. Red dots
correspond to saddles, blue dots
correspond to unstable centers,
and green dots correspond to
stable centers. The gray line
represents the ridge line

in ascending order of θEP = arctan
(
X2
EP/X

1
EP

)
where θEP ∈ [0, 2π) (Brown and Scheeres

2023b). EP 0will refer to the one equilibrium point that lies inside the asteroid. The equilibria
that exist around Bennu at its current spin rate are presented in Fig. 1 (Brown and Scheeres
2023b, a).

The terms used to describe the types of equilibria (“saddle,” “unstable center,” and “stable
center”) are defined to be consistent with Tardivel (2014). All of these equilibria have one 2-
D center manifold corresponding to out-of-plane motion. A stable center has two additional
2-D center manifolds each corresponding to motion near the xy-plane, a saddle has one,
and an unstable center has none (Tardivel 2014; Brown and Scheeres 2023b). One family is
expected to emanate from an unstable center, two families are expected to emanate from a
saddle, and three families are expected to emanate from a stable center. For EP i , OF-i-1 will
refer to the family emanating from EP i with the most significant out-of-plane components
(i.e.,

∣∣δX6
O

∣∣ >
∣∣δX4

O

∣∣ ,
∣∣δX5

O

∣∣). We expect that, of the up to three possible families that can
exist around EP i , OF-i-1 will have the shortest period. The remaining families, if there are
any, will have almost negligible out-of-plane components. If there is only one other family
emanating fromEP i , OF-i-2will refer to this family. If there are two other families emanating
from EP i , OF-i-2 will be the family with the smaller period of the two and OF-i-3 will be
the other. For two different equilibria EP j and EP k, if OF- j-1 and OF-k-1 are actually the
same family, this family will be referred to as OF- j /k-1.

3.2.2 Families identified from bifurcations in other families

In this paper, the phrase “bifurcation points” (or BPs) refers to points where the behavior
or properties of an orbit family qualitatively change (Seydel 2010). Secondary-Hopf (SH),
tangent (TB), and n-period (or nT) bifurcations are a few types of bifurcations we expect
to encounter when continuing the orbit families. If we expect a bifurcation has occurred
between two orbit members, we will use a bisection method to detect the bifurcation point
with the criteria cBP provided in Eq.14 (Broucke 1969; Campbell 1999; Zimovan-Spreen
et al. 2020).

cSH = B − 1

4
A2 − 2 (14a)
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cTB = B − 2A + 2 (14b)

c2T = B + 2A + 2 (14c)

c3T = B + A − 1 (14d)

c4T = B − 2 (14e)

These criteria will have a value of zero when evaluated at a bifurcation point of the
correct type, and are directly from Howard andMacKay (1987) and Campbell (1999). Please
refer to those references for more information on these criteria. A and B are the stability
parameters presented in Eq.8. The bifurcation points will be labeled using the following
notation: Family-i- j where “Family” is the name of the family that the bifurcation point was
detected on. i indicates the type of bifurcation with i = 0 for Secondary-Hopf, i = 1 for
tangent, and i ≥ 2 for nT bifurcations where n = i . j indicates the number of bifurcations of
that type that have occurred on the family up to and including the current bifurcation point.
For example, 5-1-2-4 would refer to the fourth 2T bifurcation point identified on OF-5-1, and
1/2-1-1-2 would refer to the second tangent bifurcation point identified on OF-1/2-1 where
the members of OF-1/2-1 are ordered with the member closest to EP 1 first and the member
closest to EP 2 last.

Some of these points correspond to the intersection of two orbit families. The specific
types of bifurcation points where we tried to compute additional families will be discussed
in Sect. 4.2. The naming convention for these additional families, which will be referred to

as “BFs,” will also be discussed in that section. Let BP∗V = [
BP

∗XT
BP

∗T
]T

be the orbit
member corresponding to the bifurcation point on the “old” family. Equation15, which is
very similar to Eq.13, is used to obtain a guess for an orbit on the “new” family.

0
0V = −1

∗V + �sB −1
∗n̂ (15a)

−1
∗V =

[
BP

∗X
nBBP

∗T

]
(15b)

−1
∗n̂ =

[
δ X̂B

0

]
(15c)

δXB = ŵa +
(

− ŵ
lPS
a

ŵ
lPS
b

)

ŵb (15d)

In Eq.15, ŵa and ŵb are normalized 6× 1 real-valued vectors. These vectors are the full-
state equivalent to the normalized 4×1 real-valued eigenvectors ŷa and ŷb corresponding to
the mode of interest of the linearized Poincaré map

[
�R

M

]
. ŵa and ŵb can be obtained from

ŷa and ŷb by using Eq.7a. The mode of interest is the mode of
[
�R

M

]
whose corresponding

eigenvaluepairλ1,2 = 1 for tangent bifurcations,λ1,2 = −1 for period-doublingbifurcations,
λ1,2 = e±i2π/3 or λ1,2 = e±i4π/3 for 3T bifurcations, and λ1,2 = e±iπ/4 or λ1,2 = e±i3π/4

for 4T bifurcations (Campbell 1999). Also, nB is set to the value of n for a nT bifurcation,
or a value of 1 for all other bifurcation types. All eight constraints in G (see Eq.9b) are used
to correct the initial member on each of these families. Note that the orbit corresponding
to −1

∗V is considered to be part of the new orbit family. lPS and vPS are unchanged from
the values used when computing the old family. Similarly to �sO, we use a �sB that is two
orders of magnitude smaller than the value of �s that is used for the other members.
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Fig. 2 Planar retrograde family (OF-1-0)

4 Numerical simulations

The set of orbits identified using this methodology will now be presented and the significant
results will be discussed. The IFs will be presented first, starting with the IFs around EPs
3, 4, 7, and 8 as they appear to be similar. The direct and retrograde families will then be
presented, followed by the IFs around EPs 1, 2, 5, and 6. The naming convention for these
IFs was described previously in Sect. 3.2.1. Several BPs occur on these IFs that will result
in new orbit families emanating from the IFs. These families will be referred to as “BFs.” A
table of all the BPs on the IFs will be presented. The set of BFs emanating from the IFs can
be classified into four different types. The four BF types will then be presented.

The orbits identified using this model of Bennu will be compared to other simplified
models, like the CR3BP and TAEM, to try to gain additional insight into why these orbit
structures exist and behave in the way we have observed. When considering the comparisons
to theCR3BPandTAEM, recall that in thesemodels aLyapunovorbit is a planar periodic orbit
that emanates from an equilibrium point and a vertical orbit is an out-of-plane periodic orbit
that emanates froman equilibriumpoint. Orbits that have potentially beneficial characteristics
for spacecraft mission design will then be identified and the results will be discussed.

For the plots in this section, the yellow to pink to blue color scale indicates the progression
along a family. The members in a family are indexed in an order where the “first” member is
represented in green and the “last” member is represented in cyan. White lines in the position
space plots and black circles in C vs T plots represent intersections of the family with orbit
members on other families. Note that the intersection may correspond to a nT member on
the other family.

4.1 Initial families

4.1.1 Direct and retrograde

The first members of the planar direct and retrograde families were computed using an initial
guess of aP = 5 DU. The retrograde family is represented in Fig. 2.

The first part of this family is shown in gold, orange, and pink. These members are nearly
circular and very close to the xy-planewhich iswhatwewould expect.However, after this first
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Fig. 3 Planar direct family (OF-2-0)

part, the family continues but shifts toward the first quadrant of the xy-plane, before ending
at EP 2. It should be noted that the final members along this family match the members that
would be obtained from OF-2-1. It should also be noted that orbit members with remarkably
similar characteristics to the first part of this family can also be found inside the asteroid.
These members were identified on the OF-5/0-2 family, but this will be discussed in more
detail in Sects. 4.1.3 and 4.3.3.

The direct family is depicted in Fig. 3. To focus on the members closest to the asteroid,
not all of the computed family members are shown. The first part (shown in gold in Fig. 3) is
similar to what would be expected with nearly circular orbits that are very close to the xy-
plane. The family then shifts out of the xy-plane. A few of the orbits are nearly symmetrical
to other members in the family, and some parts of the family are nearly symmetrical to each
other. There appear to be multiple portions of the family that have similar values of T and
C . As will be covered in more detail in Sect. 4.3.1, these orbits have similar shapes as well,
but are located in different regions of the phase space. This behavior is possibly a result of
the fact that this asteroid does not have any symmetry in the exact sense, but it is nearly
symmetric. OF-2-0 terminates at the orbit associated with the first 2T BP on OF-1-0.

4.1.2 IFs of EPs resulting from genesis events

As the spin rate of an asteroid changes, pairs of equilibria can come into existence together
during “genesis events,” such as EPs 3 and 4 as well as EPs 7 and 8 (Brown and Scheeres
2023b). Both EP 7 and EP 8 have an eigenpair that should yield a “vertical” family. These
families are OF-7-1 and OF-8-1. However, those families are connected to one another and
contain the same members. Therefore, all the members in both of these families constitute
one family, and this family will be referred to as OF-7/8-1. The same can also be said of
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Fig. 4 OF-7/8-1 (left) and OF-3/4-1 (right) represented in configuration space

Fig. 5 OF-7/8-1 (left) and OF-3/4-1 (right) C vs T

EP 3 and EP 4. The “vertical” families emanating from those two EPs (OF-3-1 and OF-4-
1) are actually one family that will be referred to as OF-3/4-1. OF-3/4-1 and OF-7/8-1 are
represented in position space in Fig. 4, and their members’ C and T values are presented in
Fig. 5.

As can be seen in Figs. 4 and 5, the “vertical” families OF-3/4-1 and OF-7/8-1 are very
similar. Near the EPs, the members of both families closely resemble the shapes of “vertical”
orbits we have seen in the CR3BP (Doedel et al. 2007) and the TAEM (Romanov and Doedel
2012). However, farther away from the EPs, the orbit members in the “middle” of the family
start to dip down toward the xy-plane. This feature is present in both OF-3/4-1 and OF-7/8-1,
but it is far more pronounced in OF-3/4-1 than it is in OF-7/8-1. It should also be noted that
no members of OF-7/8-1 penetrate the surface of the asteroid, while several members in the
“middle” section of the OF-3/4-1 family do cross the asteroid’s surface.
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While we will not provide a general proof guaranteeing that the “vertical” families from
two EPs originating from a genesis event are connected, we will present one possible expla-
nation for this behavior. It should be noted that EPs 7 and 8 came into existence from a single
degenerate equilibrium point at a lower spin rate than the current spin rate of the asteroid. At
this singular point, the two eigenpairs with nonzero eigenvalues are those associated with the
“vertical” and “Lyapunov” orbit families identified in this work (Brown and Scheeres 2023b).
Let us say the spin rate is increased very slightly so that now two distinct EPs exist and the
separation between them is very small. Under a few reasonable assumptions, as the spin rate
is increased these eigenvalues and eigenvectors should evolve “smoothly.” So, both EPs (at
the slightly increased spin rate) should have an eigenpair that is nearly identical to one of the
two nonzero eigenpairs of the degenerate EP (at the spin rate corresponding to the genesis
event) (Brown and Scheeres 2023b). A “vertical” family can be computed about each of these
EPs because there is an eigenpair corresponding to an oscillatory mode whose eigenvectors
are primarily in the z and/or ż directions. Both of these eigenpairs evolved from the same
“vertical” eigenpair of the degenerate EP at the spin rate corresponding to the genesis event.
With that in mind, it makes sense that these two families are connected to each other and, as a
result, constitute one family. As the spin rate is increased further, the EPs move farther away
from each other and the family continues to evolve. If no perturbations or other influencing
factors have a significant enough effect to sever the connection, then this “vertical” family
will continue to remain as one connected structure.

There were two other IFs identified from these two EP pairs, one from EP 3 (OF-3-2) and
one from EP 7 (OF-7-2). These families can be seen in Figs. 6 and 7. No other orbit families
can be obtained from the linearization about these EPs, so there are no other IFs emanating
from these EPs.

In addition to the similarities between OF-3/4-1 and OF-7/8-1, we also see similarities
betweenOF-3-2 andOF-7-2. BothOF-3-2 andOF-7-2 start from the second oscillatorymode
associated with the saddle EP in each EP pair (EP 3 and EP 7). Before crossing the surface,
the members of these two families (the gold portions in Figs. 6 and 7) look very much like
“Lyapunov” orbits in the CR3BP (Doedel et al. 2007) and the TAEM (Romanov and Doedel
2012). After the surface is crossed, the behavior of the members changes slightly. In the gold
tomagenta portions, the vertical amplitudes of members on both families start to grow, before
decreasing to almost negligible values. This feature is far more pronounced in OF-3-2, but it
still is detected in OF-7-2. In the portion of both families that follows (the magenta to purple
portions of OF-7-2 and the purple portions of OF-3-2), there is a minimal change in the shape
and Jacobi energy of the orbit members, but there is a significant increase in their periods.
It is at this point where the qualitative difference to the previous portions of the families
becomes significant. The final portions of both OF-3-2 and OF-7-2 have members with
significant vertical amplitudes. The families then terminate at the orbit associated with the
2T BP closest to the center EP along that EP pair’s “vertical” family (i.e., OF-3-2 terminates
at 4-1-2-1 and OF-7-2 terminates at 8-1-2-1). To reiterate, the last portions of OF-3-2 and
OF-7-2 (the blue portions) consist entirely of orbits that would be obtained by computing the
first parts of OF-4-1-2-1 and OF-8-1-2-1.

Focusing on OF-3-2, we expect that for a set of spin rates slightly larger than the spin rate
corresponding to the genesis event for EP 3 and 4, a “Lyapunov” family would exist for EP 4
(OF-4-2) and for EP 3 (OF-3-2). Based on the discussion related to the “vertical” families,
it might be expected that OF-3-2 and OF-4-2 would actually be one family OF-3/4-2. But
unlike OF-3/4-1, which did not encounter changes that had a significant effect on its structure,
the same cannot be said for OF-3/4-2. As identified in Brown and Scheeres (2023b), EP 4
transitions from a stable center to an unstable center, and loses the families corresponding
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Fig. 6 OF-7-2 (top) and OF-3-2 (bottom) represented in configuration space

Fig. 7 OF-7-2 (left) and OF-3-2 (right) C vs T

to the second and third oscillatory modes it once had (OF-4-2 and OF-4-3). The eigenpair
associated with OF-4-1 is not directly affected by this process as it involves a collision of
the eigenpairs corresponding to OF-4-2 and OF-4-3. The structure of OF-3/4-2 that existed
before this loss of stability cannot be directly reached from the linearization around EP 4
after this loss of stability. With this in mind, it is of interest to explore the manner in which
the connection between EP 4 and OF-3/4-2 is broken. This process is shown in Fig. 8.
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Fig. 8 IFs near EP 4’s stability transition. In this caption, “before” will refer to the spin rate slightly slower than
the stability transition spin rate and “after” will refer to the spin rate slightly faster than the stability transition
spin rate. OF-3/4-1 (before is in red, after is in magenta), OF-3/4-2 (before is in blue), OF-4-3 (before is in
green), OF-3-2 (after is in cyan). The squares and diamonds represent BPs on the IFs

At a spin rate just below the stability transition of EP 4, OF-4-3 starts at EP 4. Progressing
along the family, the orbit members move away from EP 4, their periods increase, and their
values of C decrease. A local minimum in C is then reached, and the family ends at a BP on
OF-4-1. The members of OF-4-3 match the members that would be obtained by computing
OF-4-1-2-1. At this same lower spin rate, if the computation of OF-3/4-2 is started at EP 3,
as you progress along the family, the orbit members get closer to EP 4, their periods increase,
and their values of C decrease. At a spin rate slightly higher than the spin rate corresponding
to the stability transition of EP 4, the structures of OF-3/4-2 and OF-4-3 join together.
However, instead of meeting at EP 4, they meet at some orbit that is farther away from EP 4.
So, the connection to 4-1-2-2 was originally a part of the structure of OF-4-3, but after the
stability transition of EP 4, the OF-3-2 structure “absorbs” that OF-4-3 structure. After this
stability transition, while the structure of OF-3-2 remains similar in the vicinity of EP 3,
it is qualitatively different in the vicinity of EP 4 as it now connects to 4-1-2-2. The same
statements apply to the evolution of OF-7-2.

In summary, four distinct orbit families were determined from the linearization around
the EPs that originated from a genesis event. One “vertical” family connecting EPs 7 and 8
(OF-7/8-1), one “Lyapunov” family originating from EP 7 (OF-7-2), one “vertical” family
connecting EP 3 and 4 (OF-3/4-1), and one “Lyapunov” family originating from EP 3 (OF-3-
2) were identified. Overall, the orbit structures of the IFs emanating from EPs 3 and 4 and the
IFs emanating from EP 7 and 8 are very similar at the current spin rate. Furthermore, it seems
that these structures evolve in similar ways and that the orbit structure around EPs 3 and 4
is more “evolved” than the orbit structure around EPs 7 and 8. In other words, we expect
that the fundamental orbit structure that would exist around EPs 7 and 8 at a faster spin rate
would more closely resemble the fundamental orbit structure that currently exists around
EPs 3 and 4 at the current spin rate. We would expect this orbit structure to exist around all
other EPs coming from genesis events (such as EPs 9 and 10 and EPs 11 and 12 identified
in Brown and Scheeres (2023b), which exist at faster spin rates). While there could still be
significant differences in the structures of the IFs as a result of local variations in the gravity
field, we expect these structures to evolve in a similar manner.
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Fig. 9 OF-1/6-1 (top) and OF-1-2 (bottom) represented in configuration space

4.1.3 IFs of the original EPs

The remaining IFs all were generated from linearizations around EPs 1, 2, 5, and 6. These
EPs will be referred to as the “original” EPs as they existed at the slowest spin rates studied in
Brown and Scheeres (2023b). These four EPs are related to the four EPs detected outside the
surface of the TAEM seen in Romanov and Doedel (2012) in terms of location and type. It is
important to note that the evolution of these “original” EPs is fundamentally different from the
EPs coming from genesis events. That being said, the IFs computed from the linearizations
around EPs 1 and 6 are qualitatively similar to the families emanating from the EPs coming
from genesis events. For that reason, the IFs around EPs 1 and 6 will be discussed first. We
identified two IFs emanating from EPs 1 and 6: OF-1/6-1 and OF-1-2. These two IFs are
presented in Figs. 9 and 10.

The “vertical” families starting at EPs 1 and 6 (OF-1-1 andOF-6-1) are actually one family
that will be referred to as OF-1/6-1. The “middle” portion of the family lies almost entirely in
the xy-plane. While the family around EP 1 includes more turning points, overall this family
seems to have a structure that is consistentwith the structure ofOF-7/8-1 andOF-3/4-1.While
the explanation for why the families from two different EPs were connected for OF-7/8-1
and OF-3/4-1 was based on how both EPs in the pair came from the same degenerate EP,
this explanation obviously does not apply to EPs 1 and 6. So, it seems that there could be an
underlying global effect that explains this type of connection between OF-1-1 and OF-6-1.

The “Lyapunov” family starting at EP 1 (OF-1-2) is also similar to OF-3-2 and OF-7-
2. The most significant difference between OF-1-2 and those other two IFs is the vertical
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Fig. 10 OF-1/6-1 (left) and OF-1-2 (right) C vs T

amplitudes of members on OF-1-2 grow much larger after crossing the surface than the
members on OF-3-2 and OF-7-2. In fact, this part of the family (the orange to light purple
portions) develops to the point that the family members almost reach the xy-plane in a near
circular shape about the asteroid. Except for that difference, the families are very similar
qualitatively. Before crossing the surface (the gold portion), the members of OF-1-2 look
like traditional “Lyapunov” family orbits seen in the CR3BP (Doedel et al. 2007) and the
TAEM (Romanov and Doedel 2012). After the vertical amplitude of the orbits grows and
returns to near zero (the orange to light purple portions), there is a portion of the family (the
purple to dark blue portions) whose members have very similar shapes and Jacobi energies,
but have a wide range of periods. The family then terminates at the orbit associated with the
2T BP closest to EP 6 on the “vertical” family OF-1/6-1 (i.e., OF-1-2 terminates at 6-1-2-1).
Overall, it seems that the structure of the IFs around EPs 1 and 6 (OF-1/6-1 and OF-1-2)
is consistent with the structure of the IFs around EPs 3 and 4 and EPs 7 and 8. It would
seem that this structure of the IFs around EPs 1 and 6 is the most “evolved,” followed by the
structure of the IFs around EPs 3 and 4, followed by the structure of the IFs around EPs 7
and 8 which is the least “evolved.”

The IFs emanating from the two remaining EPs (EPs 2 and 5) are depicted in
Figs. 11 and 12. Based on the structure of the IFs associated with the other six EPs, one
might expect the structure to be similar for these two EPs. However, there are significant
qualitative differences in the structure of these IFs. For example, OF-2-1 and OF-5-1 are not
connected. OF-2-1 initially develops in a similar way to OF-3/4-1, OF-1/6-1, and OF-7/8-1.
However, once OF-2-1 returns to being very close to the xy-plane, it follows a different path
than those three IFs, and the final portion of OF-2-1 (the blue portion) matches the members
obtained on OF-1-0 (the retrograde family).

It is also interesting that the final portion of OF-5-2 (the blue portion) contains orbit
members that very closely resemble the retrograde family ifOF-1-0 continued into the interior
of the asteroid instead of shifting towardEP2.OnlyEPs on the ridge line have been considered
up to this point in our analysis. However, there is one interior EP (EP 0) that exists very close
to the origin at the current spin rate. It should be noted that the members in the final portion
of OF-5-2 match the first members that would be obtained by computing OF-0-2. For this
reason OF-5-2 and OF-0-2 will be referred to as OF-5/0-2.

Before the first surface crossing OF-5-1 is similar to OF-1/6-1, OF-3/4-1, and OF-7/8-1.
Even immediately after the first surface crossing, the structure of OF-5-1 is similar to the
structure of OF-1/6-1. However, at some point, it seems that OF-5-1 and OF-5/0-2 switch
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Fig. 11 OF-2-1 (left), OF-5-1 (middle), and OF-5/0-2 (right) represented in configuration space

Fig. 12 OF-2-1 (left), OF-5-1 (middle), and OF-5/0-2 (right) C vs T

the path we would expect them to be on. For example, the “middle” part of OF-5-1 remains
far outside the xy-plane unlike the “middle” parts of OF-1/6-1, OF-3/4-1, and OF-7/8-1, but
more closely resembling the “middle” parts of OF-1-2, OF-3-2, and OF-7-2. In addition,
the “middle” part of OF-5/0-2 returns to being almost entirely in the xy-plane unlike the
“middle” parts of OF-1-2, OF-3-2, and OF-7-2, but closely resembling the “middle” parts of
OF-1/6-1, OF-3/4-1, and OF-7/8-1. Furthermore, OF-5-1 terminates at the orbit associated
with the 2T BP closest to EP 2 on the “vertical” family OF-2-1, which is very similar to the
terminations of OF-1-2, OF-3-2, and OF-7-2.We do not know if this feature persists for these
families at all spin rates. It is possible that these features are observed in these particular IFs
even at the slowest spin rates. However, it is also possible that at a lower spin rate: 1) OF-2-1
and OF-5-1 would be connected and that family (OF-2/5-1) would more closely resemble
OF-1/6-1, and 2) OF-5-2 would more closely resemble OF-1-2. Additional study is needed
to determine the behavior of these families at slower spin rates.

It is also notable that analysis was performed in Brown and Scheeres (2023a) that con-
cluded if the spin rate of Bennu was increased far beyond the current spin rate, EP 1 would
annihilate with EP 0, EP 5 would annihilate with EP 6, and EP 2 would persist. While iden-
tifying EP pairs originating from genesis events provided insight into what IFs would be
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Table 1 BPs on IFs used to generate BFs

IF SH BPs 2T BPs 3T BPs 4T BPs

1/6-1 6-1-0-1 (297) 6-1-2-1 (297)
6-1-2-2 (692)
6-1-2-3 (1027)

6-1-3-1 (350) 6-1-4-1 (462)

1-2 – – – –

2-1 2-1-0-1 (508) 2-1-2-1 (661)
2-1-2-2 (699)
2-1-2-3 (1247)

2-1-3-1 (522) 2-1-4-1 (628)

3/4-1 4-1-0-1 (447) 4-1-2-1 (447)
4-1-2-2 (664)
4-1-2-3 (1189)

4-1-3-1 (490) 4-1-4-1 (589)

3-2 – – – 3-2-4-1 (457)

5-1 – – – –

5-2 – – 5-2-3-1 (534) 5-2-4-1 (145)

7/8-1 8-1-0-1 (437) 8-1-2-1 (468)
8-1-2-2 (530)

8-1-3-1 (447) 8-1-3-2 (711) 8-1-4-1 (513) 8-1-4-2 (829)

7-2 – – – –

Note that only the BPs that occurred before the first surface crossing are included in this table. Also note that
BPs corresponding to tangent bifurcations are not included. The number in parentheses indicates the index of
the orbit member on the IF that is closest to the BP. For OF-1/6-1, OF-3/4-1, and OF-7/8-1, the first number
in the BP indicates which EP served as the reference for the index in parentheses (e.g., OF-6-1-2-3 is the third
2T BP detected on OF-1/6-1 when starting that IF at EP 6). Bold entries indicate a BF could not be generated
at that BP due to numerical issues

connected, knowing which of these original EPs annihilate with each other did not. Overall,
there appears to be a similar orbit structure in the IFs that connect pairs of EPs. As the spin
rate changes, this structure involving each EP pair “evolves.” At the current spin rate, each
of these structures exhibit some unique behavior. However, there are enough similarities to
assert that these orbit structures “evolve” in a similar manner.

4.2 Families identified from bifurcations in the initial families

The next group of orbit families were computed from BPs along each IF. To limit the number
of computed families, BFs were only computed at the BPs along each IF that occurred before
the IF crossed the surface for the first time. In the cases where a family starts and ends at
two different EPs (OF-1/6-1, OF-3/4-1, and OF-7/8-1), the BPs that occurred before the first
crossing when starting the IF from both EPs were included. It should be noted that a few BPs
corresponding to tangent bifurcations were detected along these portions of the IFs, but no
BFs could be continued from these BPs using our algorithm. A list of all BPs that were used
to compute the BFs is provided in Table 1. Note that the naming convention for these BPs
was described previously in Sect. 3.2.2.

The BPs corresponding to Secondary-Hopf bifurcations are included in Table 1 but gen-
erally could not be used to generate other families (Campbell 1999). However, it should be
noted that the BPs 4-1-0-1 and 6-1-0-1 appear to correspond to Krein collisions that occur
very close to the strong resonance of λ2 = 1 (where λ is an eigenvalue of the IF orbit’s
monodromy matrix). Similarities in the way bifurcations occur along the IFs alludes to the
similarities in the overall structure of the IFs. Almost no BPs were detected along the portions
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Table 2 BPs in each BF

BFs BPs

A EP 2 2-1-2-2 2-1-3-1 5-1-2-2

A EP 4 4-1-2-2 4-1-3-2 4-1-4-1 4-1-5-?

A EP 6 6-1-2-2 6-1-3-2 6-1-4-1 6-1-5-? (6-1-2-2)-2-4

A EP 8 8-1-2-2 8-1-3-1 7-2-2-4

B EP 8 7-2-2-1 8-1-3-2 7-2-3-1 8-1-4-2 (8-1-2-2)-2-6

C EP 2 2-1-4-1

C EP 4 4-1-3-1

C EP 6 6-1-3-1

C EP 8 8-1-4-1 7-2-3-2 (8-1-2-2)-2-1

D EP 2 2-1-2-3 2-1-2-4

D EP 4 4-1-2-3 4-1-2-4

D EP 6 6-1-2-3 6-1-2-6

The name of each BF is the first BP listed in each row in this table. It should be noted that some of these BFs
passed through bifurcation points that were associated with other BFs, not IFs. In these cases, the other BF that
the BP was detected on replaces the IF information when presenting the BP information (e.g., (8-1-2-2)-2-1
indicates the first 2T BP identified on OF-8-1-2-2 when starting that BF at the member closest to 8-1-2-2).
Note that the order of the 5T BPs on OF-4-1 and OF-6-1 were not computed

of the IFs closest to the saddle EPs. Even the BPs that were detected close to these saddle
EPs could not be used to generate a BF due to numerical computation issues.

The algorithm used to compute the BFs was continued until a termination condition was
reached. When continuing the BFs away from the orbit corresponding to the original BP,
some of the BFs actually contain members corresponding to other BPs on the IFs. Patching
these branches that connect different BPs together can create a continuous orbit structure.
Table 2 shows the BPs that were connected to form the complete BFs.

For the remainder of this paper, “BFs” will refer to these “complete” orbit structures. Four
types of BFs were detected and they will be referred to as Types A, B, C, and D. Overall, 12
distinct BFs were identified from the 21 BPs in Table 1. Many of the BPs occur along the IFs
close to the center EPs. For this reason the type of the BF and the center EP which the BF is
closest to in phase space is provided in Table 2. Every attempt was made to ensure that the
BFs could not be continued beyond the start and end points specified in Table 2. However, we
cannot guarantee that all of these BFs cannot be continued beyond the endpoints specified in
this table.

If the BF is “open” (if the continuation algorithm terminates at a different BP than the
BP where it started) and the two BPs where the BF starts and ends are of the same type and
belong to the same IF (e.g., a BF that starts at 4-1-2-3 and ends at the 4-1-2-4), the BF will
be given the same name as whichever of the two BPs was identified first on that IF (e.g., in
the previous example that BF would be named OF-4-1-2-3). If the BF is “open,” and the BPs
where the BF starts and ends are not of the same type and/or do not belong to the same IF,
the BF will be given the same name as whichever of the two BPs has the smallest period.
For example, say a BF is comprised of a set of branches that when connected together starts
at 8-1-2-2, passes through 8-1-3-1, and ends at 7-2-2-4. If the BF has a smaller period near
8-1-2-2 than it does near 7-2-2-4, this BF will be referred to as OF-8-1-2-2. If the BF is
“closed” (if the continuation algorithm terminates at the same BP as the BP where it started)
and the BF contains a BP on a “vertical” IF, the BF will be given the same name as that BP.
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Fig. 13 BFTypeA (OF-2-1-2-2,OF-4-1-2-2,OF-6-1-2-2, andOF-8-1-2-2) represented in configuration space.
In this caption, “planar members” are orbits with z amplitudes less than a specified value (∼0.1 DU). Each
family has two plots. From left to right then top down: OF-2-1-2-2 all members then planar members, OF-4-1-
2-2 all members then planar members, OF-6-1-2-2 all members then planar members, OF-8-1-2-2 all members
then planar members

Fig. 14 BF Type A (from left to right: OF-2-1-2-2, OF-4-1-2-2, OF-6-1-2-2, and OF-8-1-2-2) C vs T

This procedure for naming the BFs is not generally applicable to all BFs that could possibly
be identified, but it is sufficient for all the BFs identified in this work. Note the terms “open”
and “closed” are used slightly differently in this section than how they are used in Hénon
(1997). Using this naming convention, the first BP listed in each row of Table 2 is the name
of each complete BF.

4.2.1 BF Type A

The first type of BF identified in the results is Type A. One BF of this type was detected
in the vicinity of each of the four center EPs (OF-2-1-2-2, OF-4-1-2-2, OF-6-1-2-2, and
OF-8-1-2-2). These BFs are depicted in Figs. 13 and 14.

All four of these BFs start at the second 2T BP along each “vertical” family starting at the
center EP. The first parts of these BFs are expected to connect to the remnants of OF-2-3,
OF-4-3, OF-6-3, and OF-8-3 that existed when those four EPs were stable centers. While all
four of those EPs are now unstable centers, the remnants of those families still exist at the
current spin rate. These BFs then continue and connect to other BPs of different types. The
“cleanest” example of this structure can be seen in OF-8-1-2-2. Of these four BFs, OF-8-
1-2-2 is the only one that does not cross the surface. Also, the second flat part in the C vs
T plot for 8-1-2-2 in Fig. 14 (purple to dark blue portion) seems to be a continuation of the
first flat part in the same plot (orange to pink portion). This finding will be discussed more in
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Fig. 15 BF Type B (OF-7-2-2-1)

Sect. 4.3.2. Some of these BFs contain parts that are not seen in all Type A BFs. For example,
parts resembling the orange portions of OF-4-1-2-2 and OF-6-1-2-2 just after T = 15 TU
in Fig. 14 are not seen in OF-6-1-2-2 or OF-8-1-2-2. However, the overall structure of these
BFs is similar. Based on the similarities between some parts of these BFs and the structure
of the other types of BFs, we expect that as these families “evolve,” parts of these families
may be “absorbed” by other BFs and/or some of these families may “absorb” other types of
BFs.

The most similar BFs of this type are OF-4-1-2-2 and OF-6-1-2-2. The most significant
difference between these two is that while OF-6-1-2-2 could be continued on the other side
of the identified 5T BP on OF-6-1, OF-4-1-2-2 could not be continued on the other side
of the identified 5T BP on OF-4-1. It is interesting to note that the endpoint for OF-6-1-
2-2 was determined to be a 2T BP on itself. The endpoint for OF-8-1-2-2 was determined
to be a 2T BP on OF-7-2 (7-2-2-4). However, the latter part of OF-7-2 includes members
that have significant z amplitudes as OF-7-2 ends at 8-1-2-2. As can be seen in Fig. 13, the
member of OF-7-2 corresponding to 7-2-2-4 is very close in phase space to some members
of OF-8-1. Also, the period corresponding to 7-2-2-4 is very similar to three times the period
corresponding to the orbits on OF-8-1 that are close to this BP. So, OF-4-1-2-2 and OF-8-1-2-
2 both start and end at BPs that are either on or very near to the “vertical” family starting at the
corresponding center EPs. OF-2-1-2-2 and OF-6-1-2-2 end at BPs where the corresponding
orbits have almost no vertical component. It is important to note that all the BPs contained in
these BFs, except for the BPs corresponding to the endpoints of OF-2-1-2-2 and OF-6-1-2-2,
have a significant vertical component.

4.2.2 BF Type B

The next type of BF identified will be referred to as Type B. Only one BF of this type was
detected (OF-7-2-2-1), and it is depicted in Fig. 15.

With regard to the similarities between Type A and Type B BFs, the “middle” portion
of OF-7-2-2-1 bears a remarkable resemblance to the “middle” portions of OF-4-1-2-2 and
OF-6-1-2-2. For example, the orange portions of OF-4-1-2-2 and OF-6-1-2-2 just after T =
15 TU in Fig. 14 are very similar to the pink portion of OF-7-2-2-1 in Fig. 15. The most
significant difference between these two types is that both endpoints and one of the BPs
in the middle of OF-7-2-2-1 are BPs whose corresponding orbits have virtually no vertical
amplitude. It is this difference that led us to classify OF-7-2-2-1 as a different type of BF
than OF-2-1-2-2, OF-4-1-2-2, OF-6-1-2-2, and OF-8-1-2-2, even though OF-7-2-2-1 is very
similar to those Type A BFs. It is also interesting to note that the branches of this family
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Fig. 16 BF Type C (from left to right then top down: OF-2-1-4-1, OF-4-1-3-1, OF-6-1-3-1, and OF-8-1-4-1)
represented in configuration space

connecting 7-2-2-1 to 7-2-3-1 (gold through magenta portions) is very similar to the part of
this family starting at 7-2-3-1 up until the family turns around at about T = 28.05 TU and
C = −2.394 DU2/TU2 in the C vs T plot (magenta through dark blue portions) in Fig. 15.
This feature will be discussed later in Sect. 4.3.1.

4.2.3 BF Type C

The third type of BF identified was Type C. These BFs are represented in Figs. 16 and 17.
The four BFs that are classified as this type are OF-2-1-4-1, OF-4-1-3-1, OF-6-1-3-1, and

OF-8-1-4-1. Unlike Types A and B, Type C does not have parts where there are very little
changes in C but large changes in T along the family. Of the four families of this type that
were identified in the results, three begin and end at the same point. The fourth (OF-8-1-4-1)
ends at the first 2T BP on OF-8-1-2-2. However, the orbit corresponding to this BP is very
“close” to the orbit corresponding to the starting point in terms of T , C , shape, and other
characteristics. It is also interesting that there is a BP on OF-8-1-4-1 that corresponds to
a 3T BP on OF-7-2. The orbit on OF-8-1-4-1 corresponding to that BP can be viewed as
a “midpoint” of this BF. Except for the start and end points of this family, the members
on one side of the midpoint and the members on the other side of the midpoint are nearly
symmetrical.
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Fig. 17 BF Type C (from left to right then top down: OF-2-1-4-1, OF-4-1-3-1, OF-6-1-3-1, and OF-8-1-4-1)
C vs T

While OF-2-1-4-1, OF-4-1-3-1, and OF-6-1-3-1 have members that are very similar to the
members of the corresponding “Lyapunov” families, there is not a direct connection via a BP
along the families.We expect that theremay be a direct connection between these Type CBFs
and the “Lyapunov” families at different spin rates, but these three families have “evolved”
and that connection has been broken. While for these three families there is not a BP that can
be viewed as a “midpoint” of the family, the first part and second part of these families are
nearly symmetrical, although it is less distinctive than it was for OF-8-1-4-1. BFs of this type
may be absorbed by Type A or Type B BFs as the spin rate changes. In addition, a structure
that resembles a Type C BF, but is part of a Type A or Type B BF at a particular spin rate,
may detach from the Type A or Type B BF and become its own distinct Type C BF as the spin
rate varies. Particularly in the orange portions of OF-4-1-2-2 and OF-6-1-2-2 (Fig. 14) and
in the magenta portion of OF-7-2-2-1 (Fig. 15), we see structures resembling Type C BFs.

4.2.4 BF Type D

The fourth and final type of BF identified in the results was Type D. The three BFs that
were classified as Type D BFs (OF-2-1-2-3, OF-4-1-2-3, and OF-6-1-2-3) are represented in
Fig. 18.

All three of these BFs start on a 2T BP on a “vertical” IF and end at another 2T BP on the
same IF. The progression of C vs T along these three BFs is very similar to the progression
of C vs T along the parts of the “vertical” IFs that are close to those BPs. We expect that
BPs corresponding to the start and end of these BFs initially start as a single BP on their
respective IF. It should be noted that the starting points of these BFs correspond to orbits

123



Analyzing the structure of periodic... Page 29 of 38    52 

Fig. 18 BF Type D (OF-2-1-2-3 (left), OF-4-1-2-3 (middle), and OF-6-1-2-3 (right))

that are very close to the surface of the asteroid at some points, but remain entirely outside
the surface. The orbits corresponding to the endpoints of these BFs are very similar, but they
have portions that lie just inside the surface. As all members of OF-8-1 lie entirely outside the
surface of the asteroid, this feature could be one reason why no BF of this type was identified
in the vicinity of EP 8. If the spin rate increases beyond the point where some members of
OF-8-1 cross the surface of the asteroid, we expect a Type D BF to develop in the vicinity of
EP 8.

4.3 Other findings and similarities to other models

4.3.1 Nearly symmetric and symmetrical structures

While there is no perfect symmetry in the gravity field, there still appears to be some aspects of
near symmetry in the orbit families around this asteroid. One example of this near symmetry
is seen in the orbits computed starting at 8-1-2-1 (which are actually members of OF-7-2)
and 8-1-2-2, and is presented in Fig. 19.

The members of these two groups of orbits seem to be both nearly symmetric about the
xy-plane and nearly symmetrical to each other. However, they are not perfectly symmetric.
Furthermore, the initial and final orbits of these groups are not the same. The orbits in these
groups that lie near the xy-plane also appear to be nearly symmetric about the hz-plane (where
the ĥ direction is evaluated at the center EP of interest and corresponds to the direction of
rEP projected into the xy-plane). This property of being nearly symmetric was also seen in
1) the orbits computed starting at 2-1-2-1 (members of OF-5-1) and 2-1-2-2, 2) the orbits
computed starting at 4-1-2-1 (members of OF-3-2) and 4-1-2-2, and 3) the orbits computed
starting at 6-1-2-1 (members of OF-1-2) and 6-1-2-2. However, in these groups of orbits,

123



   52 Page 30 of 38 G. M. Brown, D. J. Scheeres

Fig. 19 Symmetries identified in orbits computed from 8-1-2-1 (members of OF-7-2) and 8-1-2-2. Orbits
computed from the relevant BP on OF-8-1 up to the first local minimum in C are shown for both groups of
orbits. In the C vs T plot, the dashed gray line represents part of OF-8-1 with its members’ periods multiplied
by two. The dark red solid line is the part of OF-7-2 near 8-1-2-1 and the dark blue solid line represents the
orbits on BF-8-1-2-2 that are closest to 8-1-2-2

Fig. 20 Symmetries identified in OF-7-2-2-1. The order of the colors in the C vs T plot correspond to the
parts shown in the top two rows. Dark red to teal corresponds to Parts A1-A5. Blue to red-violet corresponds
to Parts B1-B5. In the top two rows, the ridge line is depicted by the gray line

the symmetry is not as obvious as it is for the orbits computed starting at 8-1-2-2 and the
members of OF-7-2 near 8-1-2-1. There were also symmetries identified in members of the
same family. For example, OF-7-2-2-1 consists of two main parts and is depicted in Fig. 20.

The first part (Part A) is represented by the dark red to teal portions in the C vs T plot
which correspond to Parts A1-A5. Part A is very similar to the second part (Part B), which is
represented by the blue to red-violet portions in the C vs T plot (Parts B1-B5). The primary
difference between these two parts is that each orbit in Part B appears to have an extra loop
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Fig. 21 Symmetries identified in OF-1-0-3-1. The order of the colors in the C vs T plot correspond to the
individual parts shown in the top two rows. Red, green, and blue correspond to Parts A, B, and C, respectively

in the vicinity of EP 7, while the rest of the orbit appears relatively unchanged from its most
similar counterpart orbit in Part A (e.g., the orbits in Parts A5 and B5). Similarly to the orbit
groups in Fig. 19, Parts A2 and A3 and Parts B2 and B3 are nearly symmetric. Also, splitting
this family into Part A and Part B is not the only way this family can be discretized into parts
that appear to progress in the same way. By breaking down this family into more than two
parts, it is possible to see more similarities to the structures present in the Type A BFs shown
in Figs. 13 and 14.

There were also some members of OF-1-0-3-1 that were nearly symmetric. While the
orbit families bifurcating off the retrograde and direct families were computed, most will not
be presented in this paper. However, this particular BF will be briefly discussed here as it is
relevant to the discussion of near symmetries. The relevant parts of this family are shown in
Fig. 21.

Based on their shape in the configuration space, Parts A and C appear to be both nearly
symmetric and nearly symmetrical to each other. That being said, the states on the orbits in
these two parts appear to be far away from each other in the state space, even though they have
very similar periods and Jacobi energies.BothPartsAandCcomprise ofmembers exclusively
fromOF-1-0-3-1. These two parts are connected to each other by the orbit members in Part B
which also comprises of members from OF-1-0-3-1. It is possible that this Part B structure
exists in this model simply to serve as a connection between two groups of orbits which are
nearly symmetric in the same way. In other words, we are unsure if an orbit structure like
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Fig. 22 Near connections between similar parts of OF-7-2 and OF-8-1-2-2. The orbit members shown in the
plots have a z-amplitude Az ≤ 0.05 DU. The red to yellow portions represent orbits on OF-7-2. The green to
blue portions represent orbits on the part of OF-8-1-2-2 in between the orbits corresponding to 8-1-2-2 and
8-1-3-1. The cyan to magenta portions represent orbits on OF-8-1-2-2 in between the orbits corresponding to
8-1-3-1 and 7-2-2-4. The gray portions represent orbits on OF-7-2 and OF-8-1-2-2 that have a z-amplitude
Az > 0.05 DU

Part B exists in simpler models. It should be noted that similar behavior was observed in the
direct family, as can be seen in Fig. 3.

Another result that should be mentioned relates to the ridge line. As can be seen in the
configuration space plots in several of the previous figures (e.g., Fig. 20), there appears to be
many perpendicular crossings of the ridge line when looking at the orbits in the configuration
space from the xy-view. This appears to indicate that viewing the state space in cylindrical
coordinates (i.e., the hlz-frame used in Brown and Scheeres (2023a)) can providemore useful
insight than just viewing the state space in the xyz-frame. This insight could be particularly
useful when analyzing the eigenvectors of themonodromymatrix. This framewas also useful
when analyzing the eigenvectors of the Jacobian matrix (Brown and Scheeres 2023b, a).

4.3.2 Persistence of underlying local structures

Parts of some families that lie in a more localized region of the space appear to be exhibit
similar progressions. We will study the members of OF-7-2 and OF-8-1-2-2 as an example.
The “vertical” members of these orbits were discussed previously in Sect. 4.3.1 (see Fig. 19),
but we will now discuss the “planar” members of these families. The orbits on these two
families with vertical amplitudes Az ≤ 0.05 DU were isolated and plotted in Fig. 22.

It appears the “planar” members progress in a nearly continuous manner. The disconti-
nuities in this progression are encountered as the families head toward BPs corresponding
to orbits with large vertical amplitudes, but these discontinuities are small when viewing the
“planar” members from the xy-view. It is important to remember that OF-7-2 “absorbed”
the first part of OF-7/8-3 after EP 8 transitioned from a stable center to an unstable center
(see Fig. 8). This could help explain the near connection between OF-7-2 and OF-8-1-2-2.
The connection between the green to blue portion and cyan to magenta portion of OF-8-1-
2-2 appears to indicate the persistence of OF-7/8-3. Even though OF-7/8-3 could only be
directly computed from a linearization about EP 8 for a limited range of slower spin rates
when EP 8 was a stable center, this orbit structure (or at least an orbit structure very similar to
it) appears to exist at the current spin rate, even though it cannot be directly accessed through
a linearization about EP 8.

This behavior was seen in many of the other families identified in this work. While the
similarities seen in Fig. 21 appear to be related to global symmetries, the similarities in Fig. 22
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Fig. 23 Reconstructed TAEM families consisting of orbits computed using the polyhedron model. The recon-
structed families are TAEM L1 (left), TAEM R0 (middle), TAEM L0 (right). Reconstructed TAEM L1: The
members in the gold to orange portions are from OF-1-2, the members in the orange to purple portions are
from OF-1-1, and the members in the purple to blue portions are from OF-2-1. Reconstructed TAEM R0: The
members in the gold to orange portions are from OF-5/0-2, the members in the orange to purple portions are
from OF-2-1, and the members in the purple to blue portions are from OF-1-1. Reconstructed TAEM L0: The
members in the gold to magenta portions are from OF-5/0-2 and the members in the magenta to blue portions
are from OF-2-1 (i.e., members from OF-1-0). The inner (outer) dashed green line represents the last (first)
member of OF-5/0-2 (OF-2-1) family shown in this plot

appear to be related to local structures. It should be mentioned that this pattern of connections
between parts of orbit families that have large changes in T but very small changes in C is
similar in structure to the BFs connecting the long-period planar IF (e.g., OF-7/8-3, OF-3/4-3,
etc.) to the other two IFs related to that particular EP pair when that center EP was stable.

4.3.3 Persistence of underlying global structures

The model of Bennu is similar to the shape of a triaxial ellipsoid if the right parameters are
used. With that in mind, we would expect some of the orbits computed using the current
polyhedron model to have similar characteristics to some of the orbits obtained by using a
triaxial ellipsoid model.Wewill focus on three specific examples of the similarities, although
there are manymore. The perturbations present in this model seem to rip apart the underlying
structure and piece it back together in different groupings. While the characteristics of the
triaxial ellipsoid model used in Romanov and Doedel (2012) (which will be abbreviated as
the TAEM for the remainder of this paper) are not based on Bennu, the overall progression
of those families will be considered in this discussion. Orbits identified using the constant-
density polyhedron model appear similar to the L1, R0, and L0 families identified in the
TAEM. These TAEM families can be “reconstructed” using orbits from the constant-density
polyhedron model, and the results are shown in Fig. 23.

For example, the L1 family in the TAEM (depicted in Figure 3(c) in Romanov and Doedel
(2012)) can be viewed as starting at EP 1 and progressing continuously until the TAEM L0
family is reached. Along theway aBP corresponding to the TAEMA11 andTAEMA12 fami-
lies and aBP corresponding to theTAEMR0 family are reached (Romanov andDoedel 2012).
In the polyhedron model, OF-1-2 starts with a very similar progression (see Figs. 9 and 10).
After a certain point, however, OF-1-2 appears to progress with members resembling those
of the TAEM A11/A12 family. If we only collect the members of OF-1-2 before this point is
reached, that group of orbits is very similar to part of the TAEM L1 family. We also see some
orbits in OF-1-1 and OF-2-1 that are similar to the TAEM L1 family. By stitching together
these three groups of orbits, we can construct a new group of orbits that is similar to the
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Fig. 24 Similarities between selected orbit families in the polyhedron model with 12,288 faces (PH12288)
and the polyhedron model with 3,072 faces (PH3072). The first family is OF-1-1 which is shown from its first
member up until the point where a member on the family crosses the surface for the first time. This family
is depicted in the first and second columns of plots. The second family is OF-8-1-2-2 which is shown from
its first member up until the member corresponding to 8-1-3-2. This family is depicted in the third and fourth
columns of plots

TAEM L1 family. The discontinuities in this group of orbits are significant, but the overall
progression of the members in this group appears to be similar.

Another example is the TAEMR0 family (depicted in Figure 4(d) in Romanov andDoedel
2012). Groups of orbits from OF-5/0-2, OF-2-1, and OF-1-1 were stitched together to obtain
the reconstructed TAEM R0 family. The third and final example of these reconstructed
families presented in this work is the TAEM L0 family (depicted in Figures 3(a) and 3(b)
in Romanov and Doedel 2012). Groups of orbits from OF-5/0-2 and OF-2-1 were stitched
together to obtain the reconstructed TAEML0 family. It should be reiterated that themembers
of OF-2-1 are the same as members of OF-1-0. It is also important to note that the orbits from
the polyhedronmodel used to reconstruct the TAEM families may not be the exact dynamical
equivalent to the actual members of the TAEM families. However, for many structures in
the TAEM, groups of orbits that were computed using the polyhedron model exhibit similar
characteristics and progressions when stitched together as the original orbit structures in the
TAEM.

We also computed all of the families presented in this work using a reduced polyhedron
model of Bennu with only 3072 faces. The families identified using the current polyhedron
model were virtually identical to the families identified using the reduced polyhedron model.
This is additional evidence that, at least for nearly spherical asteroids like Bennu, many orbit
structures identified in simplified models of the asteroid should be present when using more
detailed models. OF-1-1 and OF-8-1-2-2 were selected to show the similarities between the
families from the two models, and these families are shown in Fig. 24.

4.4 Preliminary discussion of mission applicability

While a large number of factors are considered when selecting orbits to use for spacecraft
missions (such as specific scientific objectives, and communications requirements), we will
narrow our analysis to focus on a limited set of orbits based on two characteristics. For the
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Fig. 25 Stable orbits that lie entirely outside the asteroid. The purple/pink lines are orbits that were computed
near EP 2, the blue lines are orbits that were computed near EP 4, the green lines are orbits that were computed
near EP 6, and the red/orange lines are orbits that were computed near EP 8. The magenta lines are orbits that
are from OF-1-0 and the cyan lines are orbits that are from OF-2-0. Note the axes are cropped to focus on
asteroids near the surface

majority of spacecraft missions, orbits that do not intersect the surface of the asteroid are
required. Stable orbits are also desirable. For this reason our preliminary set of useful orbits,
shown in Fig. 25, are those that are both stable and lie entirely outside the surface of the
asteroid.

The cyan orbits in Fig. 25 that have significant vertical amplitudes are orbits that were
obtained in the continuation scheme after previous members of the family had crossed the
surface of the asteroid. These specific orbitswere obtained because each familywas continued
beyond the point when a member crossed the surface. By continuing the families after an
orbit crossed the surface, a more complete picture of the orbit family structure is obtained, as
are more orbits with characteristics that are potentially useful for applications to spacecraft
missions.

5 Conclusion

A large number of orbits in the vicinity of the asteroid Bennu were computed and analyzed
using a constant-density polyhedron model based on measurements from the OSIRIS-REx
mission. The planar retrograde and direct families, orbit families emanating from equilibria,
and families emanating frombifurcation points in other familieswere identified and analyzed.
Overall, there were many similarities to the structures identified using this model and the
structures identified using simplified models like the homogeneous rotating gravitating tri-
axial ellipsoid. While the asteroid does not have any perfect symmetry, a number of the orbit
structures identified were nearly symmetric. Furthermore, many of the structures identified
in this analysis were very similar to each other, and we expect a number of these structures
evolve in similar ways. Four distinct types of orbit families were identified emanating from
bifurcation points on the set of initial families which emanated from equilibria. Continuing
the computation of the orbit families beyond the point when a member intersected the surface
of the asteroid yielded far more insight into how many of these structures fit together.
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