

STACEX

RPC-based detector for a multi-messenger observatory in the Southern Hemisphere

Gonzalo Rodríguez-Fernandez from Istituto Nazionale di Fisica Nucleare

STACEX proposal:

STACEX: RPC-based detector for a multi-messenger observatory in the Southern Hemisphere

Di Sciascio Giuseppe*

INFN - Roma Tor Vergata, Via della Ricerca Scientifica 1, Roma, Italy
E-mail: giuseppe.disciascio@roma2.infn.it

Camarri Paolo, Santonico Rinaldo

Dipartimento di Fisica Universitá di Roma Tor Vergata and INFN - Roma Tor Vergata, Italy

Cardillo Martina, Marchese Fabrizio, Piano Giovanni, Tavani Marco

IAPS-INAF, Via del Fosso del Cavaliere 100, 00133, Roma, Italy

Bigongiari Ciro

INAF-OAR, Via Frascati 33, 00078 Monteporzio Catone (RM), Italy

Bulgarelli Andrea, Fioretti Valentina

INAF-OAS Bologna, via Gobetti 101, I-40129 Bologna, Italy.

Casanova Sabrina

Institute of Nuclear Physics ul. Radzikowskiego 152, 31-342 Kraków, Poland

Extensice Air Shower (EAS) arrays are survey instruments able to monitor continuously all the overhead sky. Their wide field of view (about 2 sr) is ideal to complement directional detectors by performing unbiased sky surveys, by monitoring variable or flaring sources, such as AGNs, and to discover transients or explosive events (GRBs). With an energy threshold in the 100 GeV range EAS arrays are transient factories. All EAS arrays presently in operation or under installation are located in the Northern hemisphere. A new survey instrument located in the Southern Hemisphere should be a high priority to monitor the Inner Galaxy and the Galactic Center. STACEX is the proposal of a hybrid detector with ARGO-like RPCs coupled to Water Cherenkov

arXiv:1907.06686

Detectors (WCDs) mainly to lower the energy threshold at 100 GeV level.

STACEX proposal:

- Locate a particle detector at high-altitude ~(4.5-5) km a.s.l
- Combined a hybrib detector:

• RPC carpet 150x150 m², with a 0.5 mm lead layer above

- Dense sampling for a very low energy threshold (~100 GeV);
- Dynamical range from 100 GeV to 10 PeV.
- High granularity of the read-out to have:
 - Good energy resolution (20% or better) above a tens of TeV
 - Good angular resolution ($\sim 0.2^{\circ}$)
- Water Cherenkov detector below the carpet to exploit good background discrimination above tens of TeV.

LHAASO: Gamma-rays up to PeV

Source name	RA (°)	dec. (")	Significance above 100 TeV (×o)	Emax (PeV)	Flux at 100 TeV (CU)
LHAASO J0534+2202	83.55	22.05	17.8	0.88 ± 0.11	1.00(0.14)
LHAASO J1825-1326	276.45	-13.45	16.4	0.42 ± 0.16	3.57(0.52)
LHAASO J1839-0545	279.95	-5.75	7.7	0.21 ± 0.05	0.70(0.18)
LHAASO J1843-0338	280.75	-3.65	8.5	0.26-0.10+0.16	0.73(0.17)
LHAASO J1849-0003	282.35	-0.05	10.4	0.35 ± 0.07	0.74(0.15)
LHAASO J1908+0621	287.05	6.35	17.2	0.44 ± 0.05	1.36(0.18)
LHAASO J1929+1745	292.25	17.75	7.4	0.71-0.07+0.36	0.38(0.09)
LHAASO J1956+2845	299.05	28.75	7.4	0.42±0.03	0.41(0.09)
LHAASO J2018+3651	304.75	36.85	10.4	0.27 ± 0.02	0.50(0.10)
LHAASO J2032+4102	308.05	41.05	10.5	1.42 ± 0.13	0.54(0.10)
LHAASO J2108+5157	317.15	51.95	8.3	0.43 ± 0.05	0.38(0.09)
LHAASO J2226+6057	336.75	60.95	13.6	0.57 ± 0.19	1.05(0.16)

- 12 gamma-ray source that emits up to PeV energies discovered
- High Standard: significance $>7\sigma$
- BG-free: Cosmic Ray background rejection rate

of 10⁻⁵

Geant4 mass model for STACEX

Argo RPCs 0.5 mm of Pb above carpet Array Muon Detector below

water Cherenkov tanks LHAASO-like buried under 2.4m of soil

10x10 detectors 6 x 6 m² Separation=15m

Muon Detector

Array of 10x10 MD detectors:

Each MD is a cilindrical LHAASO-like water Cherenkov detector with area 36 m² and height 1.2 m

With one downward 8" or 20" PMT (Energy thershold 1 GeV)

Corsika simulation sample:

- Primary: Gamma, Proton
- Obs Levels: 5 km
- Zenith: [20] deg.
- Azimuth: [0,360] deg
- Crab Simulations: γ =-2.41
- Proton Background: γ =-2.7
- Energy range: $10 10^6$ GeV
- Number of primaries $(\gamma \& p) = 6x10^8$

- Layout & mass model is simulated using Geant4 framework
- Core sample area 600x600 m²
- We have used ROOT for the reconstruction algorithms

Energy distribution

Angular & Core Resolution

Lead effect: At 100 GeV \rightarrow 5.7° to 2.9° At 1 TeV \rightarrow 0.57° to 0.32°

Arrival direction: resolution of 0.26° @1 TeV Shower core location: resolution of 2 m @10 TeV

Shower Energy Reconstruction

Effective Area at to PeV

Gamma-hadron discrimination

We apply a binary classification using a logistic regression.

$$y = 1/(1 + e^{-x})$$

As a result we obtain a surface that separate g/h as a function of number oh hits

Q-Factor VS Energy

Differential Sensitivity WITH LEAD

Summary and NEXT

- We have simulate a particle detector at high-altitude ~(4.5-5) km a.s.l
- Combined a hybrib detector:
 - RPC carpet 150x150 m², with a 0.5 mm lead layer above.
 - Muon array at 2.4 m below RPCs (under ground)

TO BE DONE:

- Migrate the RPC simulation into SWGO software framework
 What layout?
- Migrate the angular and energy reconstruction algorithms