

Lecture 2: Signatures, Backgrounds and Overview of Experimental Techniques

ISAPP 2024: Particle Candidates for Dark Matter Scuola Galileiana di Studi Superiori Padova, July 3, 2024

Laura Baudis University of Zurich

Content

WIMP signatures

time dependance of the rate

directional dependance

spectral dependance on the mass of the DM and on the target mass

Backgrounds

background sources

background discrimination

neutrino backgrounds

the neutrino fog

- Experimental techniques : overview
- The direct detection landscape

Expected wanter a block like?

 So far: we have seen that the recoil rate is energy dependent due to HOW WOULD a WIMP signal look like?

 The kinematics of elastic WIMP-nucleus scattering

• in combination with the WIMP velocity distribution

- However: due to the motion of the Earth with respect to the Galactic rest frame, the recoil rate is:
 - time and direction dependent
- · We will now look at the time and directional effects

3

63

Time dependance: introduction

- The Earth's orbit about the Sun leads to a time dependance, specifically an annual modulation, in the differential event rate:
 - the Earth's speed with respect to the Galactic rest frame is largest in summer when the components of the Earth's orbital velocity in the direction of solar motion is largest
 - therefore the number of WIMPs with high (low) speeds in the detector rest frame is largest (smallest) in summer
 - consequently, the differential event rate has an annual modulation, with an expected peak in summer and a minimum in winter

Time dependance of the signal

 Since the Earth's orbital speed is significantly smaller than the Sun's circular speed, the amplitude of the modulation is small (v_E/v_c ~ 0.07) and the differential event rate can be written to a first approximation as:

$$\frac{dR}{dE_R}(E_R,t) \simeq \frac{dR}{dE_R}(E_R) \left[1 + \Delta(E_R) \cos \frac{2\pi \left(t - t_0\right)}{T}\right]$$

• where T = 1 year, and $t_0 = 150$ days

FIG. 7. Modulation of dark-matter signal in the detector due to the motion of the Earth around the Sun. Expected count rate/(averaged count rate) is plotted for different months of the year. This modulation effect can be used to enhance background subtraction.

- The speed distribution, f(v), and the differential signal in a detector depend on the halo model
- Here two cases: the SHM, and the extreme case of a stream (modelled after the Sagittarius stream, and roughly orthogonal to the galactic plane with speed ~ 350 km/s)

DAMA/LIBRA: SciPost Phys. Proc. 12, 025 (2023)

- Observed in DAMA/LIBRA (13.7-sigma; 250 kg Nal, 2.86 tons-year, 22 annual cycles)
- Origin of the modulation is still unclear

0.06 Residuals (cpd/kg/keV) DAMA/LIBRA-phase1 (1.04 ton×yr) DAMA/LIBRA-phase2 (1.53 ton×yr) 0.04 0.02 0 -0.02 -0.04 -0.064000 5000 6000 7000 8000 9000

2-6 keV

Time (day)

Amplitude: ~ (0.0116 ± 0.0013) events/(kg keV d)

 $T = 0.99834 \pm 0.00067$ yr, $t_0 = 142.4 \pm 4.2$ day ($t_0 = 152.5$ day \equiv June 2nd)

DAMA/LIBRA: SciPost Phys. Proc. 12, 025 (2023)

- Observed in DAMA/LIBRA (13.7-sigma; 250 kg Nal, 2.86 tons-year, 22 annual cycles)
- Origin is still unclear

 $\begin{array}{c} \left(\begin{array}{c} 0.05 \\ 0.025 \\ 0 \end{array} \right) \\ \left(\begin{array}{c} 0 0 \end{array}$

modulation amplitude

Amplitude: ~ (0.0116 ± 0.0013) events/(kg keV d)

 $T = 0.99834 \pm 0.00067$ yr, $t_0 = 142.4 \pm 4.2$ day ($t_0 = 152.5$ day \equiv June 2nd)

•

Problem: muon rate also modulates with the season

Amplitude & phase can not explain DAMA/LIBRA however

 2.93 ± 0.04 muons/crystal/day, 12.3 ± 1.7% modulation amplitude

muon modulation at South Pole, R. Maruyama, UCLA DM 2023

Muon rate variation at LNGS: Amplitude: ~ 0.015; T = 1 year, ϕ = July 15±15 days

Annual modulation: an analysis issue?

https://www.nature.com/articles/s41598-023-31688-4

- Problem: a modulation can be induced by the data analysis method (the observed annual modulation can be reproduced by a slowly varying time-dependent background)
- However the obtained modulation phase is almost opposite to that of the DAMA/LIBRA data

A global effort to solve the DAMA/LIBRA mystery

Directional dependance of the signal

- The Earth's motion with respected to the Galactic rest frame produces a direction dependance of the recoil spectrum
- The peak WIMP flux comes from the direction of the solar motion, which points towards the constellation Cygnus
- Assuming a smooth WIMP distribution, the recoil rate is then peaked in the opposite direction
- In the laboratory frame, this direction varies over the course of a sidereal day due to the Earth's rotation
- This effect can provide a robust signature for a Galactic origin of a WIMP signal

Directional dependance of the signal

Fig. 2. (left) The daily rotation of the Earth introduces a modulation in recoil angle, as measured in the laboratory frame. (right) Magnitude of this daily modulation for seven lab-fixed directions, specified as angles with respect to the Earth's equatorial plane. The solid line corresponds to zero degrees, and the dotted, dashed, and dash-dot lines correspond to $\pm 18^{\circ}$, $\pm 54^{\circ}$ and $\pm 90^{\circ}$, with negative angles falling above the zero degree line and positive angles below. The $\pm 90^{\circ}$ directions are co-aligned with the Earth's rotation axis and therefore exhibit no daily modulation. This calculation assumes a WIMP mass of 100 GeV and CS₂ target gas. (from Ref. 13).

Directional dependance of the signal

- The number of nuclear recoils along a particular direction in the laboratory frame will thus change over the course of a day
- For the standard halo model, the direction dependance is given by:

Summary: Signal Characteristics of a WIMP

- A² dependence of rates
- coherence loss (for $q \sim \mu v \sim 1/r_n \sim 200 \text{ MeV}$)
- relative rates, for instance in Ge/Si, Ar/Xe,...
- dependance on WIMP mass
- time & directional dependence

(Standard halo model with ρ = 0.3 GeV/cm³)

Signal and Backgrounds

Quenching Factor and Discrimination

- WIMPs, neutrons, neutrinos: scatter off nuclei
- LDM, background sources (γ, e-), neutrinos: scatter off electrons
- Detectors have a different response to NRs than to ERs
- Quenching factor (QF) = describes the difference in the amount of visible energy (*E_{vis}*) in a detector for these two classes of events
 - keV_{ee} = measured signal from an electron recoil
 - keV_r = measured signal from a nuclear recoil
- For nuclear recoil events:

 $E_{vis}(\text{keV}_{ee}) = QF \times E_R(\text{keV}_r)$

The two energy scales are calibrated with gamma & beta (³H, ⁵⁷Co, ¹³³Ba, ¹³⁷Cs, ⁶⁰Co, ²²⁰Rn, etc) and neutron (AmBe, ²⁵²Cf, n-generators, etc) sources

Quenching Factor and Discrimination

 The quenching factor allows to distinguish between electron and nuclear recoils if two simultaneous detection mechanisms are used

Backgrounds in DM Detectors: Overview

- Muon-induced neutrons: NRs
- Cosmogenic activation of materials/targets (³H, ³²Si, ⁶⁰Co, ³⁹Ar): ERs
- Radioactivity of detector materials (n, γ, α, e⁻): NRs and ERs
- ▶ Target intrinsic isotopes (⁸⁵Kr, ²²²Rn, ¹³⁶Xe, ³⁹Ar, etc): ERs
- Neutrinos (solar, atmospheric, DSNB): NRs and ERs

Backgrounds from cosmic rays

- · Cosmic rays and secondary/tertiary particles: go underground
- Hadronic component (n, p): reduced by few meter water equivalent (m w. e.)

Flux of cosmic ray secondaries and tertiary-produced neutrons in a typical Pb shield vs shielding depth Gerd Heusser, 1995

Backgrounds from cosmic rays

- Most problematic: muons and muon induced neutrons
 - go deep underground, several laboratories, worldwide

Site (multiple levels given in ft)	Relative muon flux	Relative neutron flux T > 10 MeV	
WIPP (2130 ft) (1500 mwe)	× 65	× 45	
Soudan (2070 mwe)	$\times 30$	$\times 25$	
Kamioke	$\times 12$	$\times 11$	
Boulby	$\times 4$	$\times 4$	
Gran Sasso (3700 mwe)			
Frejus (4000 mwe)	× 1	$\times 1$	
Homestake (4860 ft)			
Mont Blanc	$\times 6^{-1}$	$\times 6^{-1}$	
Sudbury	$\times 25^{-1}$	$\times 25^{-1}$	
Homestake (8200 ft)	$\times 50^{-1}$	$\times 50^{-1}$	

compiled by: R. Gaitskell

Backgrounds from cosmic rays

Aldo Ianni, SciPost Phys. Proc. 12, 007 (2023) ·

Overview of underground laboratories

Backgrounds from radioactivity

- Radioactivity of surroundings
- Radioactivity of detector and shield materials

- Remember: activity of a source
- Do you know?

$$A = \frac{dN}{dt} = -\lambda N$$

N = number of radioactive nuclei λ = decay constant, $T_{1/2} = \ln 2/\lambda = \ln 2 \tau$ [A] = Bq = 1 decay/s (1Ci = 3.7 x 10¹⁰ decays/s = A [1g pure ²²⁶Ra])

- 1. how much radioactivity (in Bq) is in your body? where from?
- 1. 4000 Bq from ¹⁴C, 4000 Bq from ⁴⁰K (e^{-} + 400 1.4 MeV γ + 8000 v_{e})
- 2. how many radon atoms escape per 1 m² of ground, per s?
- 2. 7000 atoms/m² s
- 3. how many plutonium atoms you find in 1 kg of soil?
- 3. 10 millions (transmutation of ²³⁸U by fast CR neutrons), soil: 1 3 mg U per kg

Backgrounds from radioactivity

- External, natural radioactivity: ²³⁸U, ²³⁸Th, ⁴⁰K decays in rock and concrete walls of the laboratory \Rightarrow mostly gammas and neutrons from (a,n) and fission reactions
- Radon decays in air:
 - passive shields: Pb against the gammas, polyethylene/water against neutrons
 - active shields: large water Cherenkov detectors or scintillators for gammas and neutrons

• Example for an active shields

Backgrounds from radioactivity

• Internal radioactivity:

- ²³⁸U ²³⁸Th ⁴⁰K ¹³⁷Cs ⁶⁰Co ³⁹Ar ⁸⁵Kr, ... decays in the detector materials, target medium Low-Radioactivity R11410-21 for XENON11, ... decays in the detector materials, target medium and shields
- Ultra-pure Ge spectrometers (as well as other methods) are used to screen the materials before using them in a detector, down to parts-per-billion (ppb) (or lower) levels

Cosmogenic backgrounds

• Activation of detector and other materials during production and transportation at the Earth's surface

LB et al., Eur. Phys. J. C75 2015

T	1/2 2 3 3			
		This work	level A _{sa}	t [µBq/kg]
		Measurement	Calculations	
			Activia	Cosmo
⁴⁶ Sc	83.79	27^{+11}_{-9}	36	17
^{48}V	15.97	39^{+19}_{-15}	34	36
⁵⁴ Mn	312.12	154^{+35}_{-34}	166	156
⁵⁹ Fe	44.50	47^{+16}_{-14}	49	50
⁵⁶ Co	77.24	108^{+14}_{-16}	101	81
⁵⁷ Co	271.74	519^{+100}_{-95}	376	350
⁵⁸ Co	70.86	798^{+62}_{-58}	656	632
⁶⁰ Co	1925.28	340^{+82}_{-68}	304	297

Copper: specific saturation activity at sea

 $T_{1/2}$ [days]

Isotope

Cosmogenic backgrounds

- Activation of detector and other materials during production and transportation at the Earth's surface. A precise calculation requires:
 - cosmic ray spectrum (varies with geomagnetic latitude)
 - cross section for the production of isotopes (only few are directly measured)
- production is dominated by (n,x) reactions (95%) and (p,x) reactions (5%)

	Isotope	Decay	Half life	Energy in Ge [keV]	Activity [µBq/kg]
production in Ge after 30d exposure at the Earth's surface and 1 yr storage below ground	зН	β-	12.33 yr	E _{max(β-)} =18.6	2
	49 V	EC	330 d	E _{K(Ti)} = 5	1.6
	⁵⁴ Mn	EC, β+	312 d	$E_{K(Cr)} = 5.4, E_{Y} = 841$	0.95
	⁵⁵ Fe	EC	2.7 yr	$E_{K(Mn)} = 6$	0.66
	⁵⁷ Co	EC	272 d	E _{K(Fe)} =6.4, E _Y =128	1.3
	⁶⁰ Co	β-	5.3 yr	$E_{max(\beta-)}=318, E_{\gamma}=1173, 1333$	0.2
	⁶³ Ni	β-	100 yr	E _{max(β-)} =67	0.009
	⁶⁵ Zn	EC, β+	244 d	$E^{K(Cu)} = 9, E_{Y} = 1125$	9.2
	⁶⁸ Ge	EC	271 d	E _{K(Ga)} = 10.4	172

Neutron backgrounds

- MeV neutrons can mimic WIMPs by elastically scattering from the target nuclei
- the rates of neutrons from detector materials and rock are calculated taking into account the exact material composition, the α energies and cross sections for (α,n) and fission reactions and the measured U/Th contents

Codes: SOURCES4a, TALYS1.9, Geant4

Neutron backgrounds

Comparison among different codes

Vitaly A. Kudryavtsev, et al., SciPost Phys. Proc. 12, 018 (2023)

Material

Neutrons: how can we distinguish them from WIMPs?

- mean free path of few cm (neutrons) versus 10¹⁰ m (WIMP)
- if n-capture \Rightarrow distinctive signature (can be tagged with dedicated neutron vetoes)
- material dependence of differential recoil spectrum
- time dependence of WIMP signal (if n-background is measured to be constant in time)

Neutrino backgrounds

• Neutrino sources for DM detectors: solar, atmospheric, DSNB

Neutrino backgrounds

· Interactions: neutrino-electron and neutrino-nucleus scatters

Solar neutrinos

⁸B neutrinos: NRs (CEvNS), ERs (elastic scattering)

B. Dutta, E. Strigari, Annu. Rev. Nucl. Part. Sci. 2019

33

Solar neutrinos

Table 1 The characteristic values of the flux scales [50], their relative uncertainties, the maximum neutrino energies, and the MSW-LMA v_e survival probability [51] used in this study

Component	$\Phi(\mathrm{cm}^{-2}\mathrm{s}^{-1})$	σ (%)	Q(keV)	Pee
рр	5.98×10^{10}	0.6	420	0.55
⁷ Be	4.93×10^{9}	6	862, 384	0.52
¹³ N	2.78×10^8	15	1200	0.52
¹⁵ O	2.05×10^8	18	1732	0.50
pep	1.44×10^8	1	1442	0.50

$$\frac{dR}{dT} = N_e \int \frac{d\Phi}{dE_{\nu}} \left(P_{ee} \frac{d\sigma_e}{dT} + (1 - P_{ee}) \frac{d\sigma_{\nu,\tau}}{dT} \right) dE_{\nu}$$

$$\frac{d\Phi}{dE_{\nu}} = \Phi_i (Q_i + m_e - E_{\nu}) [(Q_i + m_e - E_{\nu})^2 - m_e^2]^{\frac{1}{2}} E_{\nu}^2$$
Flux scale

Maximum energy

Solar neutrino electron scattering

- Already starting to dominate the low-energy ER background in liquid xenon detectors
- In LXe: ~ 365 events/(t y) from pp v and 140 events/(t y) from $^{7}Be v$

calibration and

340

360

380

400

420

Radon Removal System:

GXe-only mode

1.8 µBq/kg

60

40

 $1.8 \mu Bq/kg$

100

80

120

Time since 01 July 2021 [d]

XENON collaboration, PRL 129, 2022

Radon Removal System:

GXe+LXe mode

 $0.8 \mu Bq/kg$

 $0.8 \mu Bq/kg$

35

440

XENON Preliminary

Remarks on CEvNS

• Proposed almost 50 years ago (Daniel Z. Freedman PRD 9, March 1974)

- Observed by COHERENT (CsI, LAr & Ge detectors), 43 y later, with v's from πDAR
- Never observed on xenon & never observed using wild neutrinos
- For ⁸B solar neutrinos, the process is fully coherent (even for heavy nuclei)

Remarks on CEvNS

• Sources: solar ⁸B and hep v's; core-collapse SN; DSNB and atmospheric v's

Solar neutrino-nucleus scattering

- ⁸B neutrinos dominate: serious background if the WIMP-nucleon cross section < 10⁻¹⁰ pb
- But: energy of nuclear recoils: <4 keV (heavy targets, Xe, I etc) to <30 keV in light targets (F, C)
- Non-⁸B neutrino backgrounds: impact on WIMP detectors at much lower WIMP-nucleon cross sections

Solar neutrino-nucleus scattering

- In LXe: ~99% of events expected < 4 keV NR energy
- Expect: 10^4 events/(200 t y) for 2-fold S1 and 5 n_e S2*
- Background for light WIMPs

39

Atmospheric neutrino-nucleus scattering

- Backgrounds for medium-heavy WIMPs
- But, exposures > few 100 t y are needed for $5-\sigma$ detection

Newstead, Lang, Strigari, PRD 104, 2021

The neutrino floor \rightarrow fog

Credit Ciaran O'Hare

There is no hard v floor

The effect of astrophysical v backgrounds: gradual, hence the "neutrino fog"

Shown here is the v fog for a Xe target: as a blue contour map

At contour n: obtaining a 10 times lower cross section sensitivity requires an increase in exposure of at least 10ⁿ

The neutrino floor \rightarrow fog

- Here shown for nuclear recoils (v floor as boundary to "v fog")
- Region where experiments leave the Poissonian regime*

Effect of ν fluxes uncertainties

 10^{3}

 10^{4}

* σ where the DM discovery limit scales as $\sim (Mt)^{-1/n}$

The neutrino floor \rightarrow fog

- Here shown for electronics recoils (v floor as boundary to "v fog")
- Region where experiments leave the Poissonian regime*

The "fog" for Si and Xe targets, for 2 mediators

* σ where the DM discovery limit scales as $\sim (Mt)^{-1/n}$

Х

ER

Overcoming the neutrino background

• Directional signature: Sun does not coincide with WIMP direction at any time

Overcoming the neutrino background

 The incoming direction of WIMPs and solar neutrinos differs: this can be exploited to overcome the solar "neutrino fog"

Directional Recoil Detection

Sven E. Vahsen,¹ Ciaran A. J. O'Hare,² and Dinesh Loomba³

¹Department of Physics and Astronomy, University of Hawaii, Honolulu, Hawaii 96822, USA; email: sevahsen@hawaii.edu

²ARC Centre of Excellence for Dark Matter Particle Physics, The University of Sydney, School of Physics, NSW 2006, Australia; email: ciaran.ohare@sydney.edu.au
³Department of Physics and Astronomy, University of New Mexico, NM 87131, USA, email: dloomba@unm.edu Annual Review of Nuclear and Particle Science 2021. 71:1–41

This article's doi: 10.1146/annurev-nucl-020821-035016

Towards the neutrino fog

 General goal: quieter detectors, with ER and NR backgrounds below the rates from astrophysical neutrinos

Direct Detection Techniques: Overview

Direct detection landscape

48

Direct detection landscape

Here scattering off nuclei

Snowmass, Cosmic Frontier Report, arXiv: 2211.0997849

End of Lecture 2