Large-scale structure

Marko Simonović University of Florence

ISAPP 2024: Particle Candidates for Dark Matter

Lecture 4

Biased tracers and redshift space One-loop galaxy power spectrum Exploring DM with LSS

IR resummed 2-loop power spectrum

1% precision up to $k \approx 0.25 \ h/{
m Mpc}$ Perfect description of the BAO peak

The same principles hold for galaxies

Galaxies as a biased tracer od DM

$$\delta_g(\boldsymbol{x},\tau) = \int_0^\tau d\tau' F[\partial_i \partial_j \Phi(\boldsymbol{x}_{\rm fl}(\tau'),\tau'), \text{ICs}, \Omega_b, H_0, \dots, \text{SFR}(\tau,\tau'), \text{AGN}(\tau,\tau'), \dots]$$

Galaxies as a biased tracer od DM

Galaxies as a biased tracer od DM

Along the fluid element:

$$\mathcal{O}(\boldsymbol{x}_{\mathrm{fl}}(\tau'),\tau') = \mathcal{O}(\boldsymbol{x},\tau) + (\tau'-\tau)\frac{D}{D\tau}\mathcal{O}(\boldsymbol{x},\tau) + \cdots \qquad \qquad \frac{D}{D\tau} \equiv \frac{\partial}{\partial\tau} + v^i \nabla_i$$

This allows us to integrate in time

$$\delta_{g,l}(\boldsymbol{x},\tau) = b_1(\tau)\delta(\tau) + \frac{b_2(\tau)}{2}\delta^2(\tau) + b_l(\tau)(\partial_i\partial_j\Phi(\tau))^2 + \dots + P_{\text{shot}}$$

Bias parameters $b_i(\tau)$ encode all small scale physics of galaxy formation!

On large scales P_{shot} is approximately constant and given by $P_{\text{shot}} \approx \frac{1}{n}$

Redshift space distortions

We can perturbatively expand this formula in velocities to any order we need

1-loop galaxy power spectrum

$$\begin{split} P_{\rm gg,RSD}(z,k,\mu) = & Z_1^2(\mathbf{k}) P_{\rm lin}(z,k) + 2 \int_{\mathbf{q}} Z_2^2(\mathbf{q},\mathbf{k}-\mathbf{q}) P_{\rm lin}(z,|\mathbf{k}-\mathbf{q}|) P_{\rm lin}(z,q) \\ &+ 6 Z_1(\mathbf{k}) P_{\rm lin}(z,k) \int_{\mathbf{q}} Z_3(\mathbf{q},-\mathbf{q},\mathbf{k}) P_{\rm lin}(z,q) \\ &+ P_{\rm ctr,RSD}(z,k,\mu) + P_{\epsilon\epsilon,RSD}(z,k,\mu), \\ &Z_1(\mathbf{k}) = b_1 + f\mu^2, \\ &Z_2(\mathbf{k}_1,\mathbf{k}_2) = \frac{b_2}{2} + b_{G_2} \left(\frac{(\mathbf{k}_1 \cdot \mathbf{k}_2)^2}{k_1^2 k_2^2} - 1 \right) + b_1 \sum_{i=1}^{n} Z_i(\mathbf{k}_i,\mathbf{k}_2) + f\mu^2 G_2(\mathbf{k}_1,\mathbf{k}_2) \\ &+ \frac{f\mu k}{2} \left(\frac{\mu_1}{k_1} (b_1 + f\mu_2^2) + \frac{\mu_2}{k_2} (b_1 + f\mu_1^2) \right), \end{split}$$

Infrared resummation

$$\begin{split} \Sigma^{2}(z) &\equiv \frac{1}{6\pi^{2}} \int_{0}^{k_{S}} dq \, P_{\rm nw}(z,q) \left[1 - j_{0} \left(\frac{q}{k_{osc}} \right) + 2j_{2} \left(\frac{q}{k_{osc}} \right) \right] \qquad \delta\Sigma^{2}(z) \equiv \frac{1}{2\pi^{2}} \int_{0}^{k_{S}} dq \, P_{\rm nw}(z,q) j_{2} \left(\frac{q}{k_{osc}} \right) \\ \Sigma^{2}_{\rm tot}(z,\mu) &= (1 + f(z)\mu^{2}(2 + f(z)))\Sigma^{2}(z) + f^{2}(z)\mu^{2}(\mu^{2} - 1)\delta\Sigma^{2}(z) \\ P_{\rm gg}(z,k,\mu) &= (b_{1}(z) + f(z)\mu^{2})^{2} \left(P_{\rm nw}(z,k) + e^{-k^{2}\Sigma^{2}_{\rm tot}(z,\mu)} P_{\rm w}(z,k)(1 + k^{2}\Sigma^{2}_{\rm tot}(z,\mu)) \right) \\ &+ P_{\rm gg, nw, RSD, 1-loop}(z,k,\mu) + e^{-k^{2}\Sigma^{2}_{\rm tot}(z,\mu)} P_{\rm gg, w, RSD, 1-loop}(z,k,\mu) \,. \end{split}$$

Parameters: $(\omega_{\rm b}, \omega_{\rm cdm}, h, A^{1/2}, n_s, m_{\nu}) \times (b_1 A^{1/2}, b_2 A^{1/2}, b_{\mathscr{G}_2} A^{1/2}, P_{\rm shot}, c_0^2, c_2^2, \tilde{c})$

Some literature

Lecture notes:

Baldauf, Les Houches Lecture Notes 108 (2020)

Senatore, https://indico.ictp.it/event/8317/session/15/contribution/61/material/2/0.pdf

Reviews:

Ivanov: 2212.08488 Desjacques, Jeong, Schmidt: 1611.09787 Cabas, Ivanov, Lewandowski, Mirbabayi, Simonovic: 2203.08232

How well does PT work?

Obuljen, MS, Schneider, Feldmann (2022)

Differences wrt the truth compatible with the shot noise

How well does PT work?

Obuljen, MS, Schneider, Feldmann (2022)

Differences wrt the truth compatible with the shot noise

How well does PT work?

Nishimichi et al. (2020)

Blind analysis, very large volume ~ 600 (Gpc/h)³), realistic galaxies

A new era in cosmology

Chudaykin, Ivanov, Philcox, MS (2019) D'Amico, Senatore, Zhang (2019) Chen, Vlah, Castorina, White (2020) Linde, Moradinezhad Dizgah, Radermacher, Casas, Lesgourgues (2024)

Evolution of the vacuum state from inflation to redshift zero

Application to BOSS data

Application to BOSS data

Ivanov, MS, Zaldarriaga (2019)

d'Amico, Gleyzes, Kokron, Markovic, Senatore, Zhang, Beutler, Gil Marin (2019) Philcox, Ivanov, MS, Zaldarriaga (2020)

What comes next?

Image billions and take spectra of ~100 million of objects up to z<5

Beyond Λ CDM - exotic dark matter

A fraction of DM is exotic: $f_{\rm EDM} = \Omega_{\rm EDM} / \Omega_d$

Imprints a characteristic scale k_* on the matter power spectrum

Beyond Λ CDM - exotic dark matter

A fraction of DM is exotic: $f_{\rm EDM} = \Omega_{\rm EDM} / \Omega_d$

Imprints a characteristic scale k_* on the matter power spectrum

Beyond ΛCDM - neutrinos

Free-streaming neutrinos cause scale-dependent suppression of structure

Beyond ΛCDM - neutrinos

Chudaykin, Ivanov (2019)

Euclid/DESI-like survey

(galaxies only, no Lya and quasars)

Beyond ΛCDM - LiMRs

There can be other dark light but massive relics (LiMRs)

Physics is similar to neutrinos

An example: thermal production of QCD axion in the early universe

Xu, Muñoz, Dvorkin (2022)

 $11 \text{ eV} \rightarrow$

16 eV -

Prior results

5

This work

4

Beyond ΛCDM - ultralight ALP

Fuzzy dark matter

Hu, Barkana, Gruzinov (2000) Hui, Ostriker, Tremaine, Witten (2016)

 $\Delta x \cdot \Delta(m_a v) = \hbar/2$

The whole of DM ULA, $m_a > 10^{-19} \,\mathrm{eV}$

Galaxy clustering probes $10^{-32}-10^{-24}\,eV$ where ULA can be just a fraction of DM

Beyond ΛCDM - ultralight ALP

Fuzzy dark matter

Hu, Barkana, Gruzinov (2000) Hui, Ostriker, Tremaine, Witten (2016)

String-theory "inspired" target:

Laguë, Bond, Hložek, Rogers, Marsh, Grin (2021) Rogers et. al. (2023)

$$\frac{\Omega_a}{\Omega_d} \sim 0.1 \left(\frac{F}{M_{\rm pl}}\right)^2 \left(\frac{m_a}{10^{-28}\,{\rm eV}}\right)^{1/2}$$

Beyond Λ CDM - DM long range force

Bottaro, Castorina, Costa, Redigolo, Salvioni (2023)

 $\widetilde{\Omega}_d$

β

 b_1

Planck18 TT,TE,EE +BAO +BOSS Full Shape +Euclid +PUMA+MegaMapper 0.28 ≥C 0.24 0.20 0.015 $\infty 0.010$ 0.0052.2¹*q*^{2.0} 1.80.22 0.005 0.26 75 0.015 701.82.0

 $H_0 \,(\mathrm{km/s/Mpc})$

Additional long-range force mediated by a massless scalar

Appears as "modified gravity" for DM

Beyond ΛCDM and beyond SM

The Galileo Galilei Institute For Theoretical Physics

Centro Nazionale di Studi Avanzati dell'Istituto Nazionale di Fisica Nucleare

Arcetri, Firenze

Home > Workshops

Workshops at Galileo Galilei Institute

Aug 25, 2025 - Oct 03, 2025

New Physics from Galaxy Clustering at GGI

Training Week (Aug 25, 2025 - Aug 29, 2025) Focus Week (Sep 15, 2025 - Sep 19, 2025) Conference (Sep 29, 2025 - Oct 03, 2025)