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Lecture 4

Biased tracers and redshift space

Exploring DM with LSS

One-loop galaxy power spectrum



IR resummed 2-loop power spectrum

1% precision up to k ≈ 0.25 h/Mpc
Perfect description of the BAO peak

The same principles hold for galaxies



Galaxies as a biased tracer od DM

δg(x, τ) = ∫
τ

0
dτ′￼F[∂i∂jΦ(xfl(τ′￼), τ′￼), ICs, Ωb, H0, …, SFR(τ, τ′￼), AGN(τ, τ′￼), …]
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dτ′￼F[∂i∂jΦ(xfl(τ′￼), τ′￼), ICs, Ωb, H0, …, SFR(τ, τ′￼), AGN(τ, τ′￼), …]

local in space!

δg,l(x, τ) = ∑
n

∫
τ

0
dτ′￼cn(τ, τ′￼)𝒪n[∂i∂jΦ(xfl(τ′￼), τ′￼)] + ϵ(τ)

We can perturbatively solve for  ∂i∂jΦ(xfl(τ′￼), τ′￼)

The noise contribution  has to be modelled ϵ(τ)



Galaxies as a biased tracer od DM

δg,l(x, τ) = b1(τ)δ(τ) +
b2(τ)

2
δ2(τ) + bt(τ)(∂i∂jΦ(τ))2 + ⋯ + Pshot

On large scales  is approximately constant and given by Pshot Pshot ≈
1
n

Bias parameters  encode all small scale physics of galaxy formation! bi(τ)

𝒪(xfl(τ′￼), τ′￼) = 𝒪(x, τ) + (τ′￼− τ)
D
Dτ

𝒪(x, τ) + ⋯

Along the fluid element:

D
Dτ

≡
∂
∂τ

+ vi ∇i

This allows us to integrate in time



si = xi +
n̂ ⋅ v
ℋ

̂ni

n̂

vn̂ ⋅ v

Redshift space distortions

ρg(s)d3s = ρg(x)d3x

(1 + δg(s))d3s = (1 + δg(x))d3x

δg,s(k) = ∫ d3x(1 + δg(x))e−ik⋅s − ∫ d3x
∂s
∂x

e−ik⋅s

We can perturbatively expand this formula in velocities to any order we need



counterterm is combined with the higher derivative bias since they are perfectly
degenerate for the galaxy power spectrum. Third, the contributions from operators
�
3
, �G2, G3 disappeared after renormalization. This is the reason why b3, b�G2 , bG3 are

absent in Eq. (2.10).

Using the same bias model we can also calculate the galaxy-matter cross-spectrum
which is of relevance, for instance, for lensing surveys. It has the following form [54]:

Pgm(z, k) = b1(z)(Plin(z, k) + P1-loop, SPT(z, k)) +
1

2
b2(z)I�2(z, k)

+

✓
bG2(z) +

2

5
b�3(z)

◆
FG2(z, k)

+ bG2(z)IG2(z, k)�
�
R

2

⇤(z) + 2c2s(z)b1(z)
�
k
2
Plin(z, k) .

(2.12)

Note that the matter counterterm and the higher-derivative bias enter the cross-
spectrum and the the auto-spectrum in different combinations. In principle, This
allows one to break the degeneracy between them using the galaxy-lensing observa-
tions.

2.4 Power Spectrum of Biased Tracers in Redshift Space

The radial positions of galaxies in a survey are assigned using their redshifts, which
are contaminated by the peculiar velocity field. This gives rise to the so-called
redshift-space distortions RSD, which allow one to probe the velocity field along the
line-of-sight direction ẑ. We will work within the flat-sky plane-parallel approxima-
tion, where the redshift-space mapping can be fully characterized by the cosine of
the angle between the line-of-sight ẑ and the wavevector of a given Fourier mode k,
µ ⌘ (ẑ · k)/k. In this setup, the expression for the one-loop redshift-space power
spectrum reads (see Refs. [59, 60]):

Pgg,RSD(z, k, µ) =Z
2

1
(k)Plin(z, k) + 2

Z

q

Z
2

2
(q,k� q)Plin(z, |k� q|)Plin(z, q)

+ 6Z1(k)Plin(z, k)

Z

q

Z3(q,�q,k)Plin(z, q)

+ Pctr,RSD(z, k, µ) + P✏✏,RSD(z, k, µ) ,

(2.13)
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where the redshift-space kernels are given by

Z1(k) = b1 + fµ
2
, (2.14a)

Z2(k1,k2) =
b2

2
+ bG2

✓
(k1 · k2)2

k
2

1
k
2

2

� 1

◆
+ b1F2(k1,k2) + fµ

2
G2(k1,k2)

+
fµk

2

✓
µ1

k1
(b1 + fµ

2

2
) +

µ2

k2
(b1 + fµ

2

1
)

◆
, (2.14b)

Z3(k1,k2,k3) = 2b�3


(k1 · (k2 + k3))2

k
2

1
(k2 + k3)2

� 1

� ⇥
F2(k2,k3)�G2(k2,k3)

⇤

+ b1F3(k1,k2,k3) + fµ
2
G3(k1,k2,k3) +

(fµk)2

2
(b1 + fµ

2

1
)
µ2

k2

µ3

k3

+ fµk
µ3

k3

⇥
b1F2(k1,k2) + fµ

2

12
G2(k1,k2)

⇤
+ fµk(b1 + fµ

2

1
)
µ23

k23
G2(k2,k3)

+ b2F2(k1,k2) + 2bG2


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k
2

1
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� 1

�
F2(k2,k3) +

b2fµk

2

µ1

k1

+ bG2fµk
µ1

k1


(k2 · k3)2

k
2

2
k
2

3

� 1

�
, (2.14c)

where k = k1 + k2 + k3 and Gn are the velocity divergence kernels [30]. Note that
Z3(k1,k2,k3) contains only bias parameters that give nontrivial contributions to the
redshift-space one-loop power spectrum and that it must be symmetrized over its
momentum arguments when used in Eq. (2.13). Furthermore, we have omitted the
time dependence of f ⌘ d logD/d log a and biases for clarity.

Let us discuss the structure of the last two terms in Eq. (2.13) in some detail.
The leading counterterm contributions in redshift space can be seen as a simple
generalization of the dark matter sound speed [59, 72],

Pctr,RSD,r2�(z, k, µ) =� 2c̃0(z)k
2
Plin(z, k)

� 2c̃2(z)f(z)µ
2
k
2
Plin(z, k)� 2c̃4(z)f

2(z)µ4
k
2
Plin(z, k) ,

(2.15)

where c̃0(z), c̃2(z) and c̃4(z) are quantities that are generically expected to have sim-
ilar value to the real-space dark matter sound speed in units of [Mpc/h]2. However,
due the presence of fingers-of-God [73] these counterterms can be more significant
for some tracers than naïvely expected. Since the fingers-of-God are induced by
the higher-derivative terms in the non-linear RSD mapping, one may include an ad-
ditional counterterm proportional to k

4
µ
4
Plin(z, k) as a proxy of the higher-order

contributions,

Pctr,RSD,r4
z�(z, k, µ) = �c̃(z)f 4(z)µ4

k
4(b1(z) + f(z)µ2)2Plin(z, k) , (2.16)

where we have inserted the linear Kaiser factor (b1(z)+f(z)µ2)2 [74] for convenience.
Whilst, we leave the systematic derivation of all corrections of this order for future
work, we stress that addition of this term can be important in order to fit the data
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contain galaxy

formation physics

1-loop galaxy power spectrum

Infrared resummation

space cases. Since the large bulk flows affect only the BAO wiggles, the common
starting point is to split the linear power spectrum into the smooth Pnw and wiggly
component Pw;

Plin(k) = Pnw(k) + Pw(k) . (2.24)

The details of the algorithm used to perform this splitting is given in Section 4.
In real space we follow the approach presented in Refs. [49], which was developed

in the context of time-sliced Perturbation Theory (TSPT) [48]. Following the wiggly-
smooth decomposition one computes the damping factor9

⌃2(z) ⌘
1

6⇡2

Z kS

0

dq Pnw(z, q)


1� j0

✓
q

kosc

◆
+ 2j2

✓
q

kosc

◆�
, (2.25)

where kosc is the wavenumber corresponding to the BAO wavelength `BAO ⇠ 110h/Mpc,
jn(x) are spherical Bessel functions of order n, and kS is the scale separating the long
and short modes. We use the value kS = 0.2 h/Mpc as advocated in Ref. [49], even
though any other choice in the physically relevant range (0.05�0.1) h/Mpc produces
a very similar result. When we perform the one-loop calculation, the residual depen-
dence of the final result on kS is comparable to the two-loop wiggly contribution and
hence should be treated as a small theoretical error. Once the damping factor ⌃2(z)

is obtained, one computes the tree-level IR-resummed dark matter power spectrum
as

Pmm,LO(z, k) = Pnw(z, k) + e�k2⌃2
(z)
Pw(z, k) . (2.26)

The various one-loop IR-resummed power spectra for matter (XY=mm), galaxy
(XY=gg), and the matter-galaxy cross spectrum (XY=gm) can be obtained from
the usual one-loop integrals evaluated using Pmm,LO(z, k) as an input instead of the
linear power spectrum. Schematically, we can write

PXY = Ptree,XY[Pmm,LO] + P1�loop,XY[Pmm,LO] , (2.27)

where the various spectra Ptree,XY are given by

Ptree,mm = Pnw(z, k) + e�k2⌃2
(z)
Pw(z, k)(1 + k

2⌃2(z)) ,

Ptree, gm = b1Ptree,mm , Ptree, gg = b
2

1
Ptree,mm .

(2.28)

Note that the additional term k
2⌃2(z)e�k2⌃2

(z)
Pw(z, k) prevents double-counting of

the bulk flow contributions that are contained in the one-loop expression.
Let us now focus on the redshift-space power spectrum of galaxies. IR resumma-

tion becomes more complicated in this case, since the tree-level IR resummed matter

9Note the additional factors of 2⇡ compared to Refs. [49, 51]; these are a result of using a
different Fourier transform convention.
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power spectrum picks up non-trivial angular dependence from the anisotropic damp-
ing factor [51],

Pmm, LO(z, k, µ) ⌘ (b1(z) + f(z)µ2)2
⇣
Pnw(z, k) + e�k2⌃2

tot(z,µ)Pw(z, k)
⌘
, (2.29)

where we have introduced the new damping function, which depends on the loga-
rithmic growth factor, f(z);

⌃2

tot
(z, µ) = (1 + f(z)µ2(2 + f(z)))⌃2(z) + f

2(z)µ2(µ2
� 1)�⌃2(z) . (2.30)

This is a function of the real-space damping (2.25) and on a new contribution,

�⌃2(z) ⌘
1

2⇡2

Z kS

0

dq Pnw(z, q)j2

✓
q

kosc

◆
. (2.31)

Due to the anisotropy of the BAO damping, the one-loop calculation strictly requires
computation of anisotropic loop integrals, which in contrast to the real space case,
cannot be reduced to one-dimension. However, these can be simplified by splitting
the one-loop contribution itself into a smooth and wiggly part. More precisely, one
first computes the usual redshift-space one-loop integrals with a smooth part only.
Second, one evaluates the same integrals with one insertion of the unsuppressed
wiggly power spectrum and applies the direction-dependent damping factor (2.30)
to the output, giving [46]

Pgg(z, k, µ) = (b1(z) + f(z)µ2)2
⇣
Pnw(z, k) + e�k2⌃2

tot(z,µ)Pw(z, k)(1 + k
2⌃2

tot
(z, µ))

⌘

+ Pgg, nw, RSD, 1-loop(z, k, µ) + e�k2⌃2
tot(z,µ)Pgg, w, RSD, 1-loop(z, k, µ) .

(2.32)

Here P...1-loop[Plin] are treated as functionals of the input linear power spectrum;

Pgg, nw, RSD, 1-loop(z, k, µ) ⌘ Pgg, RSD, 1-loop[Pnw] ,

Pgg, w, RSD, 1-loop(z, k, µ) ⌘ Pgg, RSD, 1-loop[Pnw + Pw]� Pgg, RSD, 1-loop[Pnw] .
(2.33)

For simplicity we have neglected the one-loop contributions obtained from two in-
sertions of the wiggly power spectrum (since these scale as P

2

w
). Once the two

contributions Pgg,w and Pgg,nw are summed, the eventual IR-resummed anisotropic
power spectrum can be used to compute the multipoles in Eq. (2.20).

It is important to stress that our implementation of IR resummation at one loop
order contains four potential sources of error:

• Imperfectness of the wiggly-non-wiggly decomposition;

• Dependence of the damping factor on the separation cutoff;

• Inaccuracy of the factorization prescription;
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Parameters: (ωb, ωcdm, h, A1/2, ns, mν) × (b1A1/2, b2A1/2, b𝒢2
A1/2, Pshot, c2

0 , c2
2 , c̃)



Some literature

Lecture notes:
Baldauf, Les Houches Lecture Notes 108 (2020)
Senatore, https://indico.ictp.it/event/8317/session/15/contribution/61/material/2/0.pdf

Reviews:
Ivanov: 2212.08488
Desjacques, Jeong, Schmidt: 1611.09787
Cabas, Ivanov, Lewandowski, Mirbabayi, Simonovic: 2203.08232
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Obuljen, MS, Schneider, Feldmann (2022)
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How well does PT work?
Nishimichi et al. (2020)

Blind analysis, very large volume ~ 600 (Gpc/h)3), realistic galaxies
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Figure 5: Comparison of the data for the monopole and the quadrupole (the error bars are

there, barely visible) with the best-fit model.

Figure 6: The residuals for the monopole and the quadrupole, for the best-fit model. The fit

is good, with �2/dof = 12/(24� 9).
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FIG. 13. Posterior distributions from the post-unblinding analyses where one or two additional bias parameters are floated.

1. Residual shot noise

It is known that dark matter halos or associated galax-
ies are not a Poisson sample of the underlying hypothet-
ical continuous distribution [e.g., 114, 115]. As explained
in Sec. III C, the standard shot noise contribution is al-
ready subtracted in the power spectra data files provided
by the Japan Team. The subtracted shot noise contribu-
tion is, strictly speaking, not really an estimate of the ad-
ditional fluctuations associated with the connection be-

tween the underlying smooth field and the discrete point
distribution, but simply the “zero-lag” correlator inher-
ent in a point process. Therefore, the assumption of the
zero shot-noise like term adopted in the blinded analyses
presented in the main text is not guaranteed to be valid.
We study here the impact of adding a nuisance parame-
ter to model the residual shot term, which is relevant for
the monopole moment.

The green contours in Fig. 13 show the result at four
di↵erent kmax as indicated in the figure legend. They



(n̂, z)

A new era in cosmology

linear
nonlinear

CLASS-PT

PyBird


velocileptors

CLASS-OneLoop


CMBFAST

CAMB

CLASS


D’Amico, Senatore, Zhang (2019)
Chudaykin, Ivanov, Philcox, MS (2019)

Chen, Vlah, Castorina, White (2020)

Evolution of the vacuum state from inflation to redshift zero

Linde, Moradinezhad Dizgah, Radermacher, Casas, Lesgourgues (2024)



Application to BOSS data

Galaxy map

Full-shape analysis
Similar to CMB, directly measures “shape” parameters

all cosmological parameters

no CMB input needed

BOSS data

~ few x 106 galaxies


~ 6 (Gpc/h)^3



Application to BOSS data

Figure 5. CMB-independent cosmological constraints obtained from this work for the baseline
⌫⇤CDM model, as tabulated in Tab. 2. The ‘FS+BAO’ dataset refers to the combination of full-shape
(FS) modelling of unreconstructed power spectra via a one-loop full-shape model and BAO-modelling
of reconstructed power spectra to compute Alcock-Paczynski parameters, incorporating the theoretical
error methodology of Ref. [66], with a joint sample covariance used to unite the two approaches. The
‘FS’ dataset (equivalent to the full-shape analysis of Sec. 2.3) was presented in Ref. [52] and ‘Planck
2018’ refers to Ref. [1]. This plot shows the cosmological constraints obtained from combination of
four BOSS DR12 data chunks, which are displayed separately in Fig. 6. H0 is quoted in km s�1Mpc�1

units.

a result of the paucity of modes in the large-scale regime, which are particularly sensitive to
ns.

In Fig. 6 we show the constraints obtained from analyzing each of the four data chunks
separately, with corresponding parameters given in Tab. 5 of Appendix B. Note that, even in
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Ivanov, MS, Zaldarriaga (2019)
d’Amico, Gleyzes, Kokron, Markovic, Senatore, Zhang, Beutler, Gil Marin (2019)

Philcox, Ivanov, MS, Zaldarriaga (2020)

Using BBN prior on ωb

H0 = 68.6 ± 1.1 km/s/Mpc

H0 = 67.8 ± 0.7 km/s/Mpc (fixing the tilt)

Naive rescaling to DESI Y1

ΔH0 ≈ 0.6(0.4) km/s/Mpc



What comes next?

(n̂, z)

Image billions and take spectra of ~100 million of objects up to z<5

Spectroscopic Photometric 

DESI

DES

Rubin (LSST)

Euclid Euclid

SPHEREX

2015

2020

2025

2030
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Beyond CDM - exotic dark matterΛ
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Beyond CDM - neutrinosΛ

Free-streaming neutrinos cause scale-dependent 

suppression of structure



Chudaykin, Ivanov (2019)

Euclid/DESI-like survey

Beyond CDM - neutrinosΛ

(galaxies only, no Lya 
and quasars)



Beyond CDM - LiMRsΛ

There can be other dark light but massive relics (LiMRs)

Physics is similar to neutrinos

An example: thermal production of QCD axion in the early universe

Xu, Muñoz, Dvorkin (2022)



Beyond CDM - ultralight ALPΛ

Galaxy clustering probes  

where ULA can be just a fraction of DM

10−32 − 10−24 eV

Fuzzy dark matter

Hui, Ostriker, Tremaine, Witten (2016)
Hu, Barkana, Gruzinov (2000)

The whole of DM ULA, ma > 10−19 eV

Δx ⋅ Δ(mav) = ℏ/2

∼
ℏ

mav
k* ∼ mav



Beyond CDM - ultralight ALPΛ

Laguë, Bond, Hložek, Rogers, Marsh, Grin (2021)
Rogers et. al. (2023)

Fuzzy dark matter

LSS constraints will improve ~ 5x

Hui, Ostriker, Tremaine, Witten (2016)

Ωa

Ωd
∼ 0.1 ( F

Mpl )
2

( ma

10−28 eV )
1/2

Hu, Barkana, Gruzinov (2000)

String-theory “inspired” target:



Beyond CDM - DM long range forceΛ

Additional long-range force 
mediated by a massless scalar

Appears as “modified gravity” 
for DM

Bottaro, Castorina, Costa, Redigolo, Salvioni (2023)



Beyond CDM and beyond SMΛ


