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Lecture 3

One loop-matter power spectrum

Infrared resummation

Problems with SPT and EFTofLSS



Nonlinear solutions

δ(2)(k, τ) = ∫q1
∫q2

(2π)3δD(k − q1 − q2) F2(q1, q2) δ(1)(q1, τ)δ(1)(q2, τ)

F2(q1, q2) =
5
7

+
1
2

q1 ⋅ q2

q1q2 ( q1

q2
+

q2

q1 ) +
2
7

(q1 ⋅ q2)2

q2
1q2

2

q1q2

k

δ(2)(k, τ)



Bispectrum

Wick contractions

⟨δnl(k1, τ)δnl(k2, τ)δnl(k3, τ)⟩ ≡ (2π)3δ(k1 + k2 + k3)Bnl(k1, k2, k3, τ)

Btree(k1, k2, k3, τ) = 2F2(k1, k2)Plin(k1, τ)Plin(k2, τ) + 2 perms .

Bnl(k1, k2, k3, τ) = Btree(k1, k2, k3, τ) + B1−loop(k1, k2, k3, τ) + ⋯
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Bispectrum



One-loop power spectrum

⟨δnl(k, τ)δnl(k′￼, τ)⟩ ≡ (2π)3δ(k + k′￼)Pnl(k, τ)

Pnl(k, τ) = Plin(k, τ) + P1−loop(k, τ) + ⋯

P1−loop(k, τ) = P22(k, τ) + 2P13(k, τ)

δ(2)(k′￼, τ)δ(2)(k, τ) δ(3)(k′￼, τ)δ(1)(k1, τ)



One-loop power spectrum
At redshift zero,  for Δ2(k) ≈ 1 k ≈ 0.3 h /Mpc
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Problems of SPT

The broadband is wrong on all scales, PT does not converge…



Problems of SPT

The BAO peak is completely wrong…



Problems of SPT

Why is this happening?

Loops contain UV modes, but the theory is wrong there…

We have no free parameters to absorb this UV dependence!

Our equations of motion must be incomplete/inconsistent

Are we sure that  is the only expansion parameter? What else?Δ2(k)

Resolving these problems led to a lot of progress in the last ~15 years



Problems of SPT

Let us take a closer look at the equations of motion

δ′￼+ ∇i((1 + δ)vi) = 0

v′￼i + ℋvi + vj ∇jvi = − ∇iΦ

∇2Φ =
3
2

ℋ2Ωm(τ) δ

Assuming ideal fluid, these equations are correct for f = f̄ + δf

However, we want the EOM for the long-wavelength fields!



Problems of SPT

We want to split  and average over f = fl + fs fs

fl(x) = ∫ d3r WR( |x − r | ) f(r)

The average of product of fields is not the product of average fields

( fg)l = flgl + R2 ∇i fl ∇igl + ( fsgs)l + ⋯

new terms with new free parameters!

WR(x) ∼ e− x2
2R2



Effective Field Theory of LSS
Just DM particles in an expanding universe

UV description: collisionless Boltzmann eq. d/dt f(x, p, t) = 0

gravity ∇2Φ ∝ ∫ d3p f(x, p, t)

Mean free path effectively set by the age of the universe
Most of the motion are coherent bulk flows
Gravity helps by “gluing” DM particles which form DM halos



This allows to truncate Boltzmann hierarchy

new nonlinear 

terms with free

coefficients

Expansion parameters: , δ ∂/kNL kNL ≈ 1/R

Small-scale DM physics encoded in c2
s

Carrasco, Hertzberg, Senatore (2012)
Baumann, Nicolis, Senatore, Zaldarriaga (2010)

Effective Field Theory of LSS

The same equations for any UV model (DM, fluid, axions…)

δ′￼l + ∇i((1 + δ)vi)l = 0

v′￼i,l + ℋvi,l + vi,l ∇jvi,l = − ∇iΦl − c2
s (τ)∇iδl + ⋯

∇2Φl =
3
2

ℋ2Ωm(τ) δl
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Figure 18: Function B` as defined in Eq. (B.3) as a function of k for the monopole and
quadrupole. We note an enhancement on small scales when reducing the velocity dispersion
(e.g. by suppressing the matter power spectrum).

indicates possible anisotropic effects of the structure suppression of axions and constitutes a
completely new signature beyond the well-known structure suppression. To investigate this,
we make use of a very simple redshift space model for the galaxy power spectrum where we
approximate the galaxy power spectrum as

Pg(k, µ) ⇡ e
�(kµf�v)2

�
1 + fµ

2
�2

b
2
gPlin(k), (B.1)

where bg is the galaxy bias and where �v is the galaxy velocity dispersion. This model is
based on the Kaiser approximation [99] with a Gaussian kernel for the finger-of-God effects.
The velocity dispersion can be roughly approximated at linear order with (see Ref. [100] and
references therein)

�
2
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1
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Z
dqPlin(q). (B.2)

Using Eq. (3.2), we have that the multipoles of the power spectrum are
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. (B.3)

From this simple model, we find that the increase in the quadrupole moment is at-
tributable to a decrease in the velocity divergence which arises when the linear matter power
spectrum is suppressed and the value of the integral in Eq. (B.2) decreases. This decrease in
�v leads to a higher value of the B`, especially for the ` = 2 as shown in Fig. 18.

C Axion Transfer Function Interpolation

The axion transfer function defined in Eq. 3.3 captures the deviation from ⇤CDM due to
axions in the matter power spectrum. It is most often obtained through semi-analytic approx-
imations [27] or numerically with adapted Boltzmann codes. In the present study however,

– 32 –

Correlation functions in perturbation theory

Carrasco, Hertzberg, Senatore (2012)

Effective Field Theory of LSS

time integral of  and Green’s functionsc2
s



Effective Field Theory of LSS

Large distance dof: δg
EoM are fluid-like, including gravity
Symmetries, Equivalence Principle
Expansion parameters: , δg ∂/kNL
All “UV” dependence is in a handful of free parameters

On scales larger than  this is the universal description of galaxy clustering1/kNL

Carrasco, Hertzberg, Senatore (2012)
Baumann, Nicolis, Senatore, Zaldarriaga (2010)

Senatore, Zaldarriaga (2014)
Senatore (2014)

Mirbabayi, Schmidt, Zaldarriaga (2014)
Baldauf, Mirbabay, MS, Zaldarriaga (2015)



Effective Field Theory of LSS



Infrared resummation

Addition of counterterms does not solve the issue with the BAO peak

What do we do about it?



Infrared resummation

δ′￼+ ∇ivi = 0

ψi = ∫
τ

0
dτ′￼vi = −

∇i

∇2
δ

On large scales: 

How far DM particles move under the influence of gravity?

Typical displacements are large! 

⟨ψ2
i ⟩ =

1
2π2 ∫ dkPlin(k, τ) very different from !Δ2(k)

dominated by the “infrared” modes with k ∼ keq.



⃗g

⃗g

δ(k)

Infrared resummation

What is the effect of these modes on smaller scales?

Just a universal displacement as dictated by the Equivalence Principle

One can re-sum all displacement contributions in PT



Infrared resummation

What is being resummed?
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Infrared resummation

2⇡/`BAO < q ⌧ 2⇡/�

4

has been kept in (??). For each q mode, this scales as
Plin(q)(`BAO/�)2 for q ⌧ `�1

BAO
, and Plin(q)/(q�)2 for

q > `BAO. The corrections are suppressed by one or
more powers of �/`BAO and q�, respectively. Hence, due
to the bulk motions, ⇠̃g has a broader peak with ⌃2

⇤
given

by

⌃2

⇤
⇡

1

6⇡2

Z
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0

dqPlin(q)[1�j0(q`BAO)+2j2(q`BAO)], (15)

where jn is the nth order spherical Bessel function.
It is easy to perturbatively confirm the above result

when ⇠g is taken to be the dark matter correlation: The
leading contribution of the long wavelength modes to the
one-loop power spectrum of the peak reads5

Pw
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(k > ⇤) =
1

2

Z
⇤ d3q
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q4
Plin(q)

[Pw
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For q ⌧ k the expression in the square brackets simplifies
to �4Pw

lin
(k) sin2(q · k̂`BAO/2), giving

Pw
1�loop

(k > ⇤) = ⌃2

⇤
k2Pw

lin
(k), (18)

and taking the Fourier transform with respect to k re-
produces (??).

Note that for any k, our approximation is valid for all
q ⌧ k while the above expressions are based on a rigid
separation of scales above and below ⇤. Of course, in
reality Pw

g (k) has support in a large range of momenta,

roughly (0.05�1) hMpc�1. Even if a q-mode falls in this
range, it is still true that its leading e↵ect on higher k
modes is the mere bulk motion. Therefore, it contributes
to the peak power through ⇠g,L, and at the same time,
broadens it by dispersing the shorter modes. A better
estimate of the width can be obtained by including for
each k the broadening e↵ect of all smaller q modes, i.e.
by taking ⇤ to increase with k. Below, we will implement
this idea by taking ⇤ = ✏k, with ✏ ⌧ 1.

Taking ✏ = 1/2, the above expression (??) predicts an
e↵ective broadening of ⌃✏k⇤ ⇡ 5.5h�1Mpc, where k⇤ is
defined by ⌃✏k⇤k⇤ = 1. This turns out to be a sizable
fraction of the actual width of the observed matter cor-
relation function. We compare the theoretical prediction

5 The full one-loop power spectrum is given by
Z

d3q

(2⇡)3
[6F3(q,�q,k)Plin(k)+2F 2

2 (q,k�q)Plin(|k�q|)]Plin(q) .
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For q ⌧ k it reduces to (??). Incidentally, this coincides with

1
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as expected from the remark after (??).
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FIG. 3. The acoustic peak in the matter correlation function
in linear theory (solid), 1-loop perturbation theory (dashed),
and simulation.

with the result of an N -body simulation6 in fig. ??. It is
seen that the perturbative treatment has completely de-
formed the shape of the peak. A more accurate descrip-
tion should, therefore, treat the relative motions non-
perturbatively.

Infra-red resummation.— We can obtain a formula
which is valid to all orders in the relative displacement
�q/q, by rewriting (??) as (see e.g. [? ])

D
�g(

x

2
, t)�g(�
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2
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E

�L
'

Z
d3k

(2⇡)3
eik·x

exp
h
2i�q(t) sin

⇣q · x

2

⌘q · k

q2

i
h�g(k, t)�g(�k, t)i .

(19)

As before, this is only relevant in the presence of a fea-
ture. Taking the expectation value over the realizations
of the q modes, approximating them, as we did so far, as
being Gaussian, and using hexp(i')i = exp(�

⌦
'2

↵
/2)

for Gaussian variables, we obtain our final expression
for the dressed two-point correlation function around

6 We are measuring power spectra and correlation functions in a
suite of 16 dark matter only simulations, each of which captures
the evolution of 10243 particles in a box of 15003 h�3Mpc3. The
matter density parameter is ⌦m = 0.272, the tilt ns = 0.967 and
the normalization �8 = 0.81. The leading cosmic variance has
been divided out, such that the error bars reflect the sub-leading
cosmic variance.

Displacements are observable only in the presence of features! 

new parameter

Displacements do not affect the smooth part of correlation functions 



Infrared resummation

Baldauf, Mirbabayi, MS, Zaldarriaga (2015)
Senatore, Zaldarriaga (2014)

Vlah, Seljak, Chu, Feng (2015)
Blas, Garny, Ivanov, Sibiryakov (2016)

Senatore, Trevisan (2017)

The IR resummed 1-loop power spectrum:

5

r ⇡ `BAO

⇠̃g(x) '

Z
d3k

(2⇡)3
eik·xe�⌃

2

✏kk
2

h�g(k, t)�g(�k, t)i✏ . (20)

To write the exponent in the above form, we have used
the fact that r2

⇡ @2
r [and therefore k2 ⇡ (x̂ · k)2] up to

corrections of order �/`BAO. In principle, the exponen-
tial factor should only multiply the peak power Pw

g (k),
though in practice the smooth background at r ⇡ `BAO is
insensitive to the presence of this factor since ⌃ ⌧ `BAO.
The subscript ✏ on the momentum space expectation
value on the r.h.s. indicates that it should be evalu-
ated in the absence of modes with momentum q smaller
than ✏k, though it contains all short scale nonlinearities.
Within a perturbative framework, it is possible to include
dynamical e↵ects of the long modes, as well as their non-
Gaussianity by writing more complicated expressions (see
below).

To get an idea of how well (20) performs, we set
�g = � and approximate the exclusive expectation value
in the integral first by the linear matter power spectrum,
and then by the 1-loop perturbation theory result. The
first approximation underestimates the broadening by ne-
glecting short scale nonlinearities and therefore predicts
a slightly sharper peak.

Let us discuss the 1-loop approximation in more de-
tails to see how (20) can be used to improve perturbative
results. Two points have to be kept in mind: (i) The
broadening is only relevant for the acoustic peak, hence
the exponential broadening in (20) multiplies Pw

✏ (k). (ii)
Replacing Pw

✏ (k) with the 1-loop power spectrum double-
counts the e↵ect of the long modes since the 1-loop re-
sult already contains ⌃2

✏kk
2Pw

lin
(k) [c.f. (18)]. Hence in

this context the infra-red resummed version of the 1-loop
power spectrum presented in [7] can be simplified and
written as:

P̃ (k) = Pnw
lin

(k) + Pnw
1�loop

(k)

+e�⌃
2

✏kk
2

(1 + ⌃2

✏kk
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lin
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2

✏kk
2

Pw
1�loop

(k),

(21)

where the first line contains just the smooth part of the
power spectrum.7 When considering loop integrals with
large internal momenta, one should allow for the possi-
bility of higher derivative corrections to the dark matter
equations of motion in an E↵ective Field Theory (EFT)
framework [9]. These corrections compensate for the er-
ror made in treating the short-scale modes as a perfect
fluid. Therefore, the EFT 1-loop power spectrum di↵ers
from (16) by one such correction:

P1�loop(k) = P13(k) + P22(k)� 2R2k2Plin(k), (22)

where R (also known as speed of sound) is chosen to be
1.8 h�2Mpc2 in order to obtain 1% agreement with the

7 In practice, Pnw
1�loop

can be obtained by substituting Plin(k) with

its no-wiggle part in the loop integrals (16) since Pw
lin

/Pnw
lin

⌧ 1.
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FIG. 4. The ratio of various theoretical approximations to the
power spectrum to the simulation result. Solid: IR-resummed
(21), short-dashed: 1-parameter 1-loop EFT (22), dot-dashed:
0-parameter 1-loop EFT (22) with R = 0, and long-dashed:
linear. The gray shaded region on the IR-resummed EFT
curve gives the statistical error.

simulation results up to kmax = 0.3hMpc�1 (see fig. 4).
This choice is a rough estimate of R, made in order to
illustrate how the resummation improves matching the
BAO oscillations for k > 0.1hMpc�1. The exact value of
R is irrelevant for the shape of the acoustic peak.
The above resummation formula (21) can be straight-

forwardly extended to any order in perturbation theory
and to higher order statistics such as the bispectrum or
trispectrum. Note that in this approximation the lead-
ing dynamical e↵ect of the long modes on short modes is
also taken into account. The comparison between the IR-
improved power spectrum (21), and the original 1-loop
result (22) can be seen in fig. 4. The IR-resummation
clearly reduces the residual wiggles in the EFT predic-
tion and can thus increase the range over which the the-
ory agrees with simulations, as was pointed out in [7].
For the correlation function, the broadened acoustic

peak resulting from the IR-resummed linear and 1-loop
power spectra is shown together with the initial peak in
fig. 5. Although the first approximation does not fully
capture the smoothing of the peak seen in the data, it
shows that indeed most of the spread is caused by the
bulk motions.
Without resummation the 1-loop EFT (or SPT) power

spectra result in a spurious double-peaked feature at the
BAO scale similar to the one shown in fig. 3. This is
because they only include ⌃2

✏k⇠
00(r) while higher deriva-

tive terms 1/n!⌃2n
✏k ⇠

(2n)(r) that partially cancel this fea-
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the fact that r2
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r [and therefore k2 ⇡ (x̂ · k)2] up to

corrections of order �/`BAO. In principle, the exponen-
tial factor should only multiply the peak power Pw
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though in practice the smooth background at r ⇡ `BAO is
insensitive to the presence of this factor since ⌃ ⌧ `BAO.
The subscript ✏ on the momentum space expectation
value on the r.h.s. indicates that it should be evalu-
ated in the absence of modes with momentum q smaller
than ✏k, though it contains all short scale nonlinearities.
Within a perturbative framework, it is possible to include
dynamical e↵ects of the long modes, as well as their non-
Gaussianity by writing more complicated expressions (see
below).

To get an idea of how well (20) performs, we set
�g = � and approximate the exclusive expectation value
in the integral first by the linear matter power spectrum,
and then by the 1-loop perturbation theory result. The
first approximation underestimates the broadening by ne-
glecting short scale nonlinearities and therefore predicts
a slightly sharper peak.

Let us discuss the 1-loop approximation in more de-
tails to see how (20) can be used to improve perturbative
results. Two points have to be kept in mind: (i) The
broadening is only relevant for the acoustic peak, hence
the exponential broadening in (20) multiplies Pw
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where the first line contains just the smooth part of the
power spectrum.7 When considering loop integrals with
large internal momenta, one should allow for the possi-
bility of higher derivative corrections to the dark matter
equations of motion in an E↵ective Field Theory (EFT)
framework [9]. These corrections compensate for the er-
ror made in treating the short-scale modes as a perfect
fluid. Therefore, the EFT 1-loop power spectrum di↵ers
from (16) by one such correction:
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where R (also known as speed of sound) is chosen to be
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FIG. 4. The ratio of various theoretical approximations to the
power spectrum to the simulation result. Solid: IR-resummed
(21), short-dashed: 1-parameter 1-loop EFT (22), dot-dashed:
0-parameter 1-loop EFT (22) with R = 0, and long-dashed:
linear. The gray shaded region on the IR-resummed EFT
curve gives the statistical error.

simulation results up to kmax = 0.3hMpc�1 (see fig. 4).
This choice is a rough estimate of R, made in order to
illustrate how the resummation improves matching the
BAO oscillations for k > 0.1hMpc�1. The exact value of
R is irrelevant for the shape of the acoustic peak.
The above resummation formula (21) can be straight-

forwardly extended to any order in perturbation theory
and to higher order statistics such as the bispectrum or
trispectrum. Note that in this approximation the lead-
ing dynamical e↵ect of the long modes on short modes is
also taken into account. The comparison between the IR-
improved power spectrum (21), and the original 1-loop
result (22) can be seen in fig. 4. The IR-resummation
clearly reduces the residual wiggles in the EFT predic-
tion and can thus increase the range over which the the-
ory agrees with simulations, as was pointed out in [7].
For the correlation function, the broadened acoustic

peak resulting from the IR-resummed linear and 1-loop
power spectra is shown together with the initial peak in
fig. 5. Although the first approximation does not fully
capture the smoothing of the peak seen in the data, it
shows that indeed most of the spread is caused by the
bulk motions.
Without resummation the 1-loop EFT (or SPT) power

spectra result in a spurious double-peaked feature at the
BAO scale similar to the one shown in fig. 3. This is
because they only include ⌃2

✏k⇠
00(r) while higher deriva-

tive terms 1/n!⌃2n
✏k ⇠

(2n)(r) that partially cancel this fea-

PT in tidal fields, nonperturbative in displacements



Infrared resummation



IR resummed 2-loop power spectrum

1% precision up to k ≈ 0.25 h/Mpc
Perfect description of the BAO peak

The same principles hold for galaxies


