Introduction to Cosmology (I)

Massimo Pietroni University of Parma

Outline

- FLRW Universe
- Thermal history of the Big Bang (= relics from the Early Universe)
- Inflation and cosmic perturbations

Some facts about our universe

It is isotropic and (most probably) homogeneous

CMB temperature map from PLANCK ~ 380,000 years after the Bang

$$T \simeq 2.73 \ K$$
 $\frac{\Delta T}{T} \simeq 10^{-5}$

It expands

$$v = H_0 d$$

Hubble parameter: $H_0 = h 100 \,\mathrm{Km/s/Mpc}$,

 $h \simeq 0.7$

It was denser and hotter in the past

COBE (Firas): CMB spectrum is the best black body ever measured! 380000 yrs after the Bang: T~ 3000 K

Primordial nucleosynthesis of light nuclei: the universe was a nuclear furnace!

1 s after the Bang: T~ MeV (~1010 K)

The Standard Universe

- · It is homogeneous and isotropic on large scales;
- It expands;
- · It was hot and close to thermal equilibrium in the past;
- · Light nuclei (D, 3He, 4He, 7Li) formed < few seconds after the Bang;
- Photons decoupled ~ 380000 yrs after the Bang

All this is described by Standard Cosmology + Standard Model of Particle Physics

Some more facts about our universe...

The expansion is accelerating

In GR, it requires ~ 70% of the energy density of the universe to have negative pressure: Dark Energy!

Baryons make up only ~ 4%

t~1-100 sec

light nuclei abundances depend on the primordial baryon density

t~380,000 yrs
amplitude of acoustic oscillations
in the baryon-photon plasma
depends on baryon density

Moreover, there are no anti-baryons!

Most of the matter is dark

In GR, it requires ~ 25% of the energy density of the universe to be pressureless and non-baryonic: Dark Matter!

Puzzles from the Universe

- · The expansion accelerates;
- Normal matter makes up less than 5% of the present energy content;
- Structure formation is driven by ~25% of an unknown pressureless component;
- · Initial conditions on density and velocities is extremely unlikely;
- · Antimatter is missing.

The homogeneous expanding universe

Most general metric: $ds^2 = g_{\mu\nu}(x) \, dx^\mu dx^\nu = g_{00}(x) \, dt^2 + 2g_{0i}(x) \, dt \, dx^i + g_{ij}(x) \, dx^i dx^j$ 10 comps

Synchronous frame: $x^{\mu} \to \tilde{x}^{\mu} = x^{\mu} + \xi^{\mu}(x) \implies ds^2 = dt^2 + g_{ij}(x) dx^i dx^j$ 6 comps

Homogeneity and isotropy: the metric tensor is invariant under translations (3) and rotations (3)

$$ds^2 = dt^2 - a^2(t)f(R)\delta_{ij} dx^i dx^j$$

scale factor 3-dim line element

(cartesian coordinates)
$$R^2 = \delta_{ij} x^i x^j$$

$$f(R) = \frac{1}{\left(1 + \frac{KR^2}{4}\right)^2} \quad \begin{array}{l} \text{K=0, flat (euclidean)} \\ \text{K>0, closed (finite volume)} \\ \text{K<0, open} \end{array} \quad \int_0^\infty \frac{dR}{1 + \frac{KR^2}{4}} = \pi/\sqrt{K}$$

Friedmann-Lemaître-Robertson-Walker Metric

Polar coordinates:
$$r = R\left(1 + \frac{KR^2}{4}\right)^{-1}$$
 $dR\left(1 + \frac{KR^2}{4}\right)^{-1} \rightarrow dr/\sqrt{1 - Kr^2}$ $ds^2 = dt^2 - a^2(t) \left[\frac{dr^2}{(1 - Kr^2)} - r^2\left(d\theta^2 + \sin^2\theta d\phi^2\right)\right] = dt^2 - a(t)^2 d\vec{l}^2$ curvature constant: [K]=[L]-2 K=0, flat (euclidean) K>0, closed (finite volume) K<0, open

 r, θ, ϕ "comoving" coordinates

FLRW space-time completely specified by a(t) and K

Kinematics on FLRW: photons

$$ds^2/a(t)^2=dt^2/a(t)^2-d\vec{l}^2\equiv d au^2-d\vec{l}^2$$
 FLRW is "conformal" to Minkowski

conformal diagrams: photons (ds²=0) travel at 45 degrees

$$\lambda^{\text{ph}}(\tau_2) = a(\tau_2)\lambda(\tau_2) = a(\tau_2)\lambda(\tau_1) = \frac{a(\tau_2)}{a(\tau_1)}\lambda^{\text{ph}}(\tau_1)$$

cosmological redshift

$$1 + z \equiv \frac{\lambda^{\text{ph}}(t_0)}{\lambda^{\text{ph}}(t)} = \frac{1}{a(t)}$$

it is the "clock" of cosmological expansion

Kinematics on FLRW: massive particles

Action for a free particle:
$$S=-m\int ds=-m\int dt\,\sqrt{1-a^2\dot{x}^2}=\int dt\,L$$

Conserved conjugate momentum: $P_i = \frac{dL}{d\dot{x}^i} \simeq ma^2 \,\dot{x}^i$ (non relativistic limit)

Peculiar momentum: $|\vec{P}|^2 = P_i P^i = g^{ij} P_i P_j = a^{-2} \delta_{ij} P_i P_j \sim a^{-2}$

Peculiar motions of free massive particles are damped by the expansion:

$$|\vec{P}| \sim a^{-1}$$
 $E(t) = \sqrt{m^2 + (E_{\text{in}}^2 - m^2) \frac{a_{\text{in}}^2}{a(t)^2}}$

Kinematics on FLRW: particle horizon

Comoving distance travelled by a photon from t=0 to $t=t_0$ (flat space, K=0)

$$a(t) = \left(\frac{t}{t_0}\right)^{\frac{2}{3(w+1)}} \text{ power law scale factor}$$

$$\Delta x = \tau_0 - \tau_1 = \int_{t_1}^{t_0} \frac{dt}{a(t)} = t_0 \frac{3(1+w)}{1+3w} \left(\frac{t}{t_0}\right)^{\frac{1+3w}{3(w+1)}} \bigg|_{t_1}^{t_0}$$

$$w > -1/3 \qquad \qquad w < -1/3$$

$$t_1 \to 0$$

$$\Delta x \to t_0 \frac{3(1+w)}{1+3w} \qquad \Delta x \to \infty$$

finite horizon O(t_o) infinite horizon!

What about the future? Check it!

Kinematics on FLRW: comoving distance

Comoving distance:
$$ds = 0 \rightarrow \int_0^r \frac{dr'}{\sqrt{1 - Kr'^2}} = \Delta \tau = \int_0^t \frac{dt'}{a(t')} = \int_0^z \frac{dz'}{H(z')}$$
 $H \equiv \frac{\dot{a}}{a}$ Hubble parameters

$$H \equiv \frac{a}{a}$$

$$r(z) = \begin{cases} \frac{\sin(\sqrt{K}\Delta\tau(z))}{\sqrt{K}} & K > 0 \text{ closed} \end{cases}$$

$$r(z) = \begin{cases} \Delta\tau(z) & K = 0 \text{ flat} \end{cases}$$

$$\frac{\sinh(\sqrt{|K|}\Delta\tau(z))}{\sqrt{|K|}} & K < 0 \text{ open} \end{cases}$$

Cosmological information in K and in $\Delta \tau(z)$

For small z and K=0,
$$r(z)\simeq \frac{z}{H_0}\left(1-\frac{1}{2}\left(1+q_0\right)z+\cdots\right)$$
 Hubble's law $q_0\equiv -\frac{\ddot{a}_0}{H_0}$ deceleration parameter

Kinematics on FLRW: angular distance

$$d_A(z) \equiv \frac{l(z)}{\theta} = \frac{l(z)}{l_0} r(z) = \frac{r(z)}{1+z}$$

Examples: CMB angular anisotropies, BAO's

Kinematics on FLRW: luminosity distance

$$\mathcal{F}_{
m lux} \equiv rac{\mathcal{L}_{
m int}}{4\pi d_L^2(z)} = rac{\mathcal{L}_{
m int}(1+z)^{-2}}{4\pi r^2(z)}$$

$$d_L(z) = (1+z)r(z) = (1+z)^2 d_A(z)$$

Example: type la supernovae

Energy-Momentum tensor in FLRW

FLRW frame

Energy-momentum tensor:
$$T^{\mu}_{\nu} = -Pg^{\mu}_{\nu} + (\rho + P)u^{\mu}u_{\nu} \to \mathrm{diag}(\rho, -P, -P, -P)$$
 4-velocity of the observer

$$ho(t)$$
 energy density $P(t)$ pressure

$$P(t)$$
 pressure

$$d\left(\rho a^3\right) = -Pda^3$$

1st principle of thermodynamics in an expanding universe

$$w(a) \equiv \frac{P(a)}{\rho(a)}$$
 equation

$$w(a) \equiv \frac{P(a)}{\rho(a)} \quad \text{equation of state} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \\ \rho(a) = \rho_0 e^{-3\int_1^a \frac{da'}{a'}(1+w(a'))} \stackrel{\text{w constant}}{\rightarrow} \rho_0 \, a^{-3(1+w)}$$

Cosmological epochs

ACDM Model:
$$\rho = \rho_{\rm m} + \rho_{\rm rad} + \rho_{\Lambda} = \rho_{\rm m}^0 a^{-3} + \rho_{\rm rad}^0 a^{-4} + \rho_{\Lambda}$$
 different components dominate

at different epochs

Dynamics on FLRW: Friedmann equation

Einstein equations on FRLW:
$$H^2 \equiv \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho - \frac{K}{a^2}$$
 behaves as a component with w=-1/3

Continuity equation: $d(\rho a^3) = -Pda^3$

Solution for constant
$$w=\frac{P}{\rho}$$
: $\rho \sim a^{-3(w+1)}, \quad a \sim t^{2/3(w+1)}$ $a \sim e^{Ht}$ for $w=-1$

$$H^{2} = H_{0}^{2} \left[\Omega_{\rm m} a^{-3} + \Omega_{\rm rad} a^{-4} + \Omega_{\rm K} a^{-2} + \Omega_{\Lambda} a^{-4} \right]$$

$$\Omega_i \equiv \frac{\rho_i^0}{\rho_c^0} \qquad \rho_c^0 \equiv \frac{3H_0^2}{8\pi G}$$

$$\rho_c^0 = 1.88 \, h^2 10^{-29} \, \text{g} \cdot \text{cm}^{-3} \simeq (10^{-3} \, \text{eV})^4 h^2$$
 critical density today

The ACDM Model

Image: DES collaboration

 $d_L(z)$ from SNela

Λ 68,3%

 $\Omega_K = 0.0007 \pm 0.0019$ $d_A(z)$ from CMB and BAO's