Study of impacts of an aluminium layer as a shield against magnetic fields

Marco Zanirato

01/07/2024

Effects of the B-fields on the TESs

Transition

01/07/2024

Marco Zanirato

Effects of the B-fields on the TESs

01/07/2024

Marco Zanirato

A new strategy: shielding the TESs themselves

Marco Zanirato

01/07/2024

Al₂O₃ crystal

CRESST A new strategy: shielding the TESs themselves

"Classical" TES design

Al-Phonon Collector Tc~1.2K

Marco Zanirato

01/07/2024

A new strategy: shielding the TESs themselves CRESST

Marco Zanirato

01/07/2024

6

A new strategy: shielding the TESs themselves CRESST

Marco Zanirato

01/07/2024

Detector set up

Two W-TESs on the same crystal: one without additional layers, the other with insulation layer and aluminium shield

8

Transition measurement with variable B-field

Marco Zanirato

01/07/2024

Transition with variable B-field

01/07/2024

Marco Zanirato

Comparison between the performance of the two TESs: Test Pulses

Variation of the magnetic field from 0 μ T to 27.3 μ T

Control TES 0 Field

Marco Zanirato

01/07/2024

Comparison between the performance of the two TESs: Test Pulses

Variation of the magnetic field from 0 μT to 27.3 μT

Shielded TES 0 Field

01/07/2024

Marco Zanirato

ISAPP 2024

Summary and outlook

- Stability of the shielded sensor in the presence of a B-Field improved

Future Steps:

- New sensors: accumulate statistics + does the shield reduce their stability?
- Future design: Alu under the TES with the dual function of shield and phonon collector

BACK UP SLIDES

Marco Zanirato

05/06/2024

Possible solution

Use of the phonon collectors with the dual function of shield and phonon collectors

01/07/2024

Marco Zanirato

B-Fields compensation at the LNGS

Set of magnetometers and coils

B-Field configuration con only be extrapolated 😕

Marco Zanirato

01/07/2024

B-Fields compensation at the LNGS

The TESs have different orientation

Maximum B-field variation $@LNGS = 0.5 \mu T$

Marco Zanirato

01/07/2024

Why do B-Fields change at the LNGS?

Maximum B-field variation $@LNGS = 0.5 \mu T$

Truncated fit

Transition

Marco Zanirato

05/06/2024

IMPRS Workshop

Spectra of the two detectors

- lacksquare
- Due to its instability, the data cleaning greatly reduced the data set for the shielded sensor \bullet

BL Resolution Shield= $(28 \pm 2)eV$

Marco Zanirato

05/06/2024

CRESST

Goal: resolve the ⁵⁵Fe peaks to perform the calibration (two X-rays peaks at 5.89 keV and 6.49 keV)

Spectrum Control TES

IMPRS Workshop

