

Alexander von HUMBOLDT STIFTUNG

Slow Stable Hybrid Stars

Ishfaq Ahmad Rather

Institute for Theoretical Physics, Goethe University, 60438 Frankfurt am Main, Germany

In Collaboration with:

Kauan D. Marquez (Coimbra), Betânia C. Backes (York, UK), **Grigoris Panotopoulos (Chile), Ilidio Lopes (Lisbon)** *Phys.Rev.D* 107 12, 123022 (2023) JCAP 05, 130 (2024)

ISAPP (2024)

University of Padova

01.07.2024

Introduction Hybrid Stars Equation of State SSHS

Introduction to Neutron Star

- Formed in: Type II, Ib or Ic SN (remnant of $M \approx 8 - 30 M_{\odot}$)
- Mass: $M \approx 2M_{\odot}$ (or even more)
- Radius: $R \approx 10 12km$
- **Density:** $\rho \approx 10^{14} 10^{15} g/cm^3$
- Magnetic Field: $B \approx 10^{15} 10^{18}G$
 - NS has 5 major regions:
 - The Atmosphere & The Envelope: shaping the emergent photon spectrum
 - The Crust: extending about 1-2 km, primarily contains nuclei.
 - The Inner & Outer Core: contains 99% of stars mass, radius = 12 kms, density = 10 ρ_0 and exotic phases.

Twin Stars:

Strange Stars: Stars made up of pure Quark matter. **APJ** 310:261-272,1986 **Hybrid Stars:** Stars with Hadronic layers followed by a mixed Hadron-Quark phase. **Compact stars.** N. K. Glendenning Special Hybrid stars Kämpfer <u>1981</u>

Quark Models

MIT Bag Model NJL Model DDQM...

> Rosenhauer et al., 1992; Aziz <u>et al., 2019</u>), <u>Orsaria et al.</u>, <u>2013</u>

Hadronic Models

Relativistic Mean-Field (RMF) **Density-Dependent Relativistic** Mean-Field (DDRMF) Chiral Mean-Field (CMF)...

> J. Boguta and A. R. Bodmer, Nucl. Phys. A 292, 413 (1977)., R. Brockmann and H. Toki, Phys. Rev. Lett. 68, 3408 (1992).

~ 2n₀

Hybrid Stars

- The region between them is a Hadron-Quark mixed Phase.

Stars with external layers made of hadronic matter and a core of pure Quark matter.

Ishfaq Rather et.al, *J.Phys.G* 48 (2021)

Equation of State

$$+\sum_{\lambda} \bar{\psi}_{\lambda} \left(i \gamma^{\mu} \partial_{\mu} - m_{\lambda} \right) \psi_{\lambda} - \frac{1}{2} m_{\sigma}^2 \sigma_0^2 + \frac{1}{2} m_{\omega}^2 \omega_0^2 + \frac{1}{2} m_{\phi}^2 \phi_0^2 + \frac{1}{2} m_{\rho}^2 \rho_{03}^2$$

DD couplings

$$g_{ib}(n_B) = g_{ib}(n_0) \frac{a_i + b_i(\eta + d_i)^2}{a_i + c_i(\eta + d_i)^2}$$

$$g_{\rho b}(n_B) = g_{ib}(n_0) \exp\left[-a_{\rho}(\eta - 1)\right]$$

Hadronic Model

 $\left[m_b - g_{\sigma b}\sigma_0\right]\psi_b$

 $-\left(m_{b}-g_{\sigma b}\sigma_{0}\right)\varsigma^{\mu\lambda}\psi_{b\nu}$

Spin-1/2 baryon octet

Spin-3/2 baryon decuplet

Rarita-Schwinger-type int. Lag.

M. G. de Paoli, et al., J. Phys. G 40, 055007 (2013).

Lepton admix + pure mesonic terms

$$n_{b} = \frac{\lambda_{b}}{2\pi^{2}} \int_{0}^{k_{F_{b}}} dk \, k^{2} = \frac{\lambda_{b}}{6\pi^{2}} k_{F_{b}}^{3}$$

Baryon density

$$n_{b}^{s} = \frac{\lambda_{b}}{2\pi^{2}} \int_{0}^{k_{F_{b}}} dk \frac{k^{2} m_{b}^{*}}{\sqrt{k^{2} + m_{b}^{*2}}}$$

Scalar density

Equation of State

$$\varepsilon_{B} = \sum_{b} \frac{\gamma_{b}}{2\pi^{2}} \int_{0}^{k_{F_{b}}} dkk^{2} \sqrt{k^{2} + m_{b}^{*2}} + \sum_{\lambda} \frac{1}{\pi^{2}} \int_{0}^{k_{F_{\lambda}}} dkk^{2} \sqrt{k^{2}} dkk^{2$$

$$P = \sum_{i} \mu_{i} n_{i} - \epsilon + n_{B} \Sigma^{r}$$

$$\Sigma^{r} = \sum_{b} \left[\frac{\partial g_{\omega b}}{\partial n_{b}} \omega_{0} n_{b} + \frac{\partial g_{\rho b}}{\partial n_{b}} \rho_{03} I_{3b} n_{b} + \frac{\partial g_{\phi b}}{\partial n_{b}} \phi_{0} n_{b} - \frac{\partial g_{\sigma b}}{\partial n_{b}} \phi_{0} n_{b} \right]$$

Rearrangement term

$$\mu_b^* = \mu_b - g_{\omega b} \omega_0 - g_{\rho b} I_{3b} \rho_{03} - g_{\phi b} \phi_0 - \Sigma^r$$

Effective Chemical Potential

$\frac{1}{2} + m_{\lambda}^2$ -	$+\frac{w}{2}$	$\frac{m_{\sigma}^2}{2}\sigma_0^2 + \frac{m_{\omega}^2}{2}\omega$	$p_0^2 + \frac{m_\phi^2}{2}\phi$	$p_0^2 + \frac{m_\rho^2}{2}\rho$	203		
			DD-ME2 p	arameter			
				G.A.	Lalazissis, et al	., Phys. Rev. C 7	'1,0
	i	$m_i({ m MeV})$	a_i	b_i	c_i	d_{i}	g
1	σ	550.1238	1.3881	1.0943	1.7057	0.4421	1
$-\sigma_0 n_L^S$	ω	783	1.3892	0.9240	1.4620	0.4775	1
	ρ	763	0.5647				-

_			
	Quantity	Constraints [44, 49]	This m
-	$n_0 \ (fm^{-3})$	0.148 - 0.170	0.15
	-B/A (MeV)	15.8 - 16.5	16.4
	$K_0 (MeV)$	220 - 260	252
	S_0 (MeV)	31.2 - 35.0	32.3
	L_0 (MeV)	38-67	51

M. Dutra, Physical Review C 90, 055203 (2014), M. Oertel, Rev. Mod. Phys. 89, 015007 (2017)

024312 (2005). $\gamma_{iN}(n_0)$ 10.539613.01897.3672

lodel

- 9

Density-Dependent Quark mass Model

* noninteracting gas of quasiparticles with density-dependent masses.
* Overcomes the consistency between zero pressure and energy minimum
* To include quark interactions in a simple way.

- G. N. Fowler, S. Raha, and R. M. Weiner, Z. Phys. C 9, 271 (1981),
- S. Chakrabarty et al., Phys. Lett. B 229, 112 (1989),
- S. Chakrabarty, Phys. Rev. D 43, 627 (1991)
- O. G. Benvenuto and G. Lugones, Phys. Rev. D. 51, 1989 (1995)

B C Backes et al . J. Phys. G: Nucl. Part. Phys. 48 (2021) 055104

DD term

$$\mathscr{E} = \Omega_0(\{\mu_i^*\}, m_i) + \sum_i \mu_i^* n_i = \Omega_0(\{\mu_i^*\}, m_i) - \sum_i \mu_i^* \frac{d}{d}$$

$$P = -\Omega_0 + \sum_{i,j} \frac{\partial \Omega_0}{\partial m_j} n_i \frac{\partial m_j}{\partial n_i}$$

$$\Omega_0 = -\sum_i \frac{g_i}{24\pi^2} \left[\mu_i^* \nu_i \left(\nu_i^2 - \frac{3}{2} m_i^2 \right) + \frac{3}{2} m_i^4 ln \left(\frac{\mu_i^* + \nu_i}{m_i} \right) \right]$$

Germán Lugones et al JCAP, 03 (2023) 028

Results

Length of the SSHS branch

* ∝ 1/(Energy density jump between two phases).
* ∝ Stiffness of the quark EoS.

Slow conversion

Rapid conversion

Summary

Observation of a new class of phase in Neutron Stars: **Slow stable hybrid stars.** Oscillation functions of Δ -inclusive nuclear (N + Δ) and hyperonic matter (N + H + Δ). Radial oscillations with Δ -baryons and Phase transition to the Quark matter.

