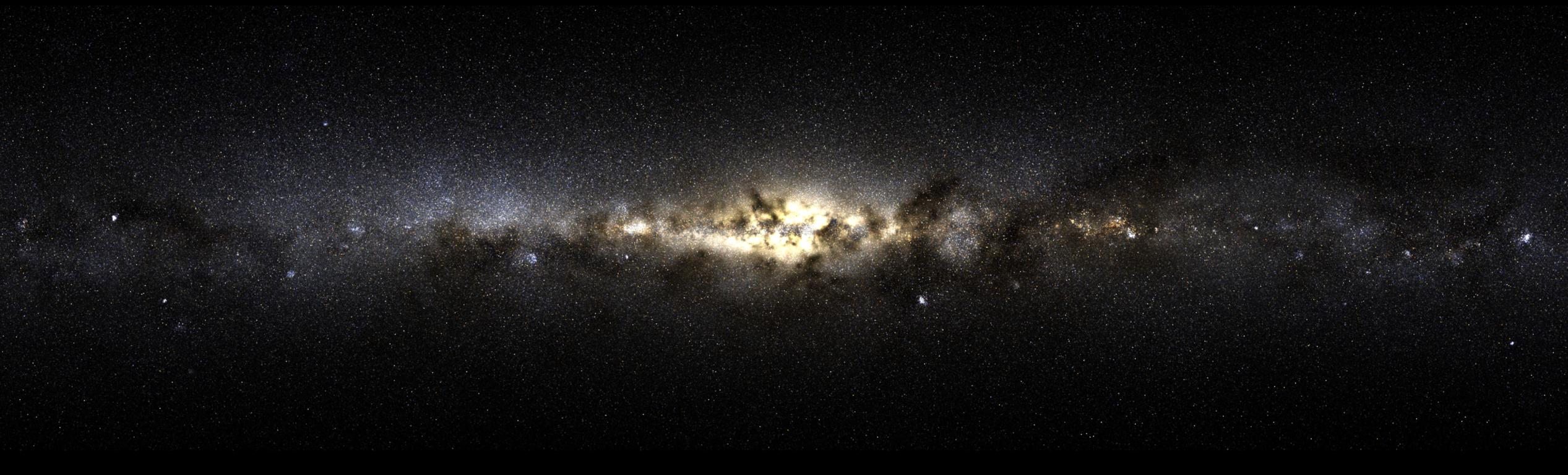
#### The Inner Dark Matter Distribution in Hydrodynamic Simulations

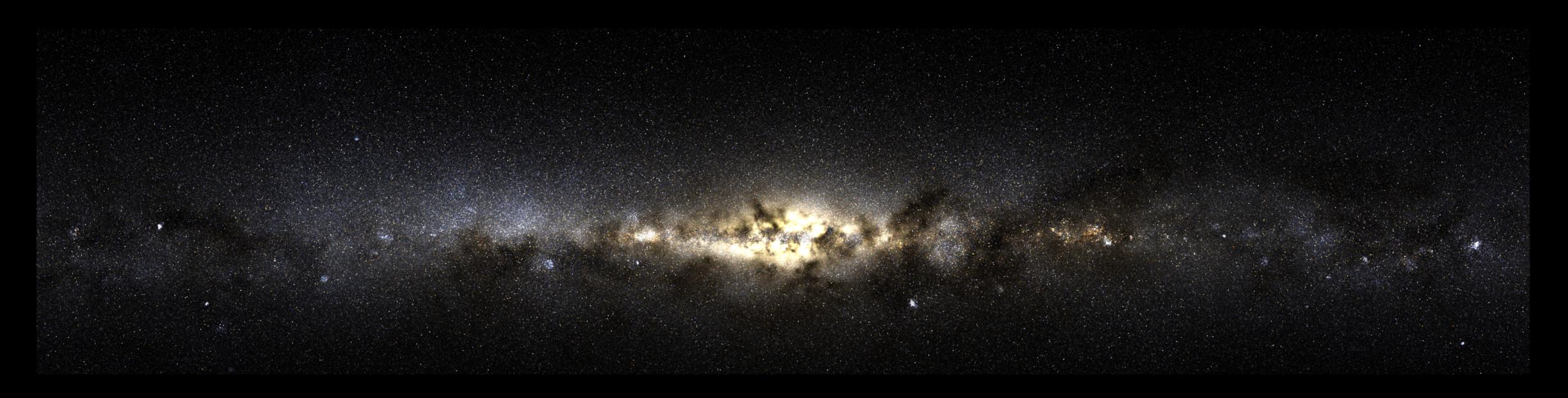


Abdelaziz Hussein

In collaboration with: Lina Necib, Manoj Kaplinghat, Viraj Pandya, Stacy Kim, Justin Read









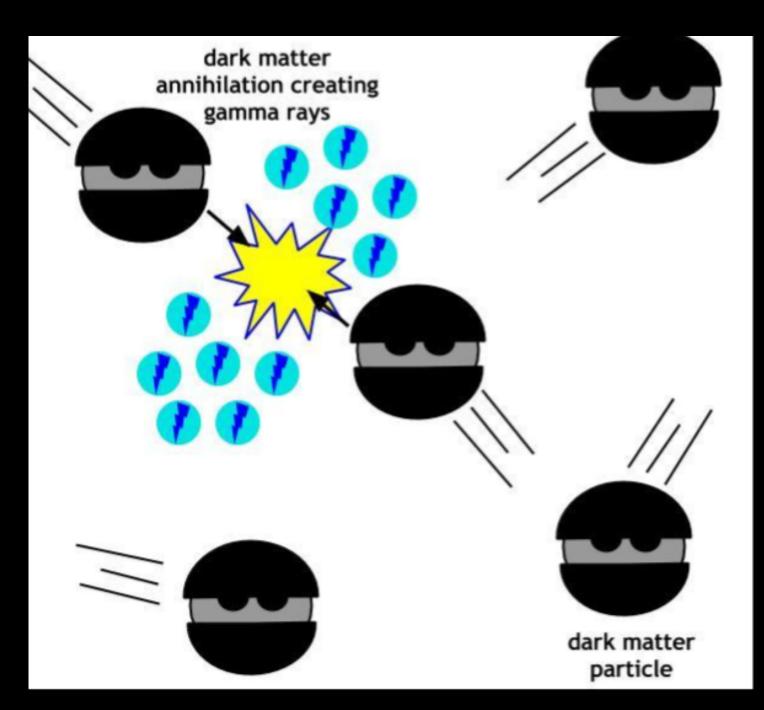


### Why care about the density distribution?

- For some DM models (ex: WIMPs) we get  $\gamma$ -ray emission from annhilation(Arcadi et al. 2018).
- The annihilation flux luminosity depends sensitively on  $ho_{\mathrm{DM}}$ .

$$\gg \mathscr{L} \propto \rho_{\text{DM}}^2$$

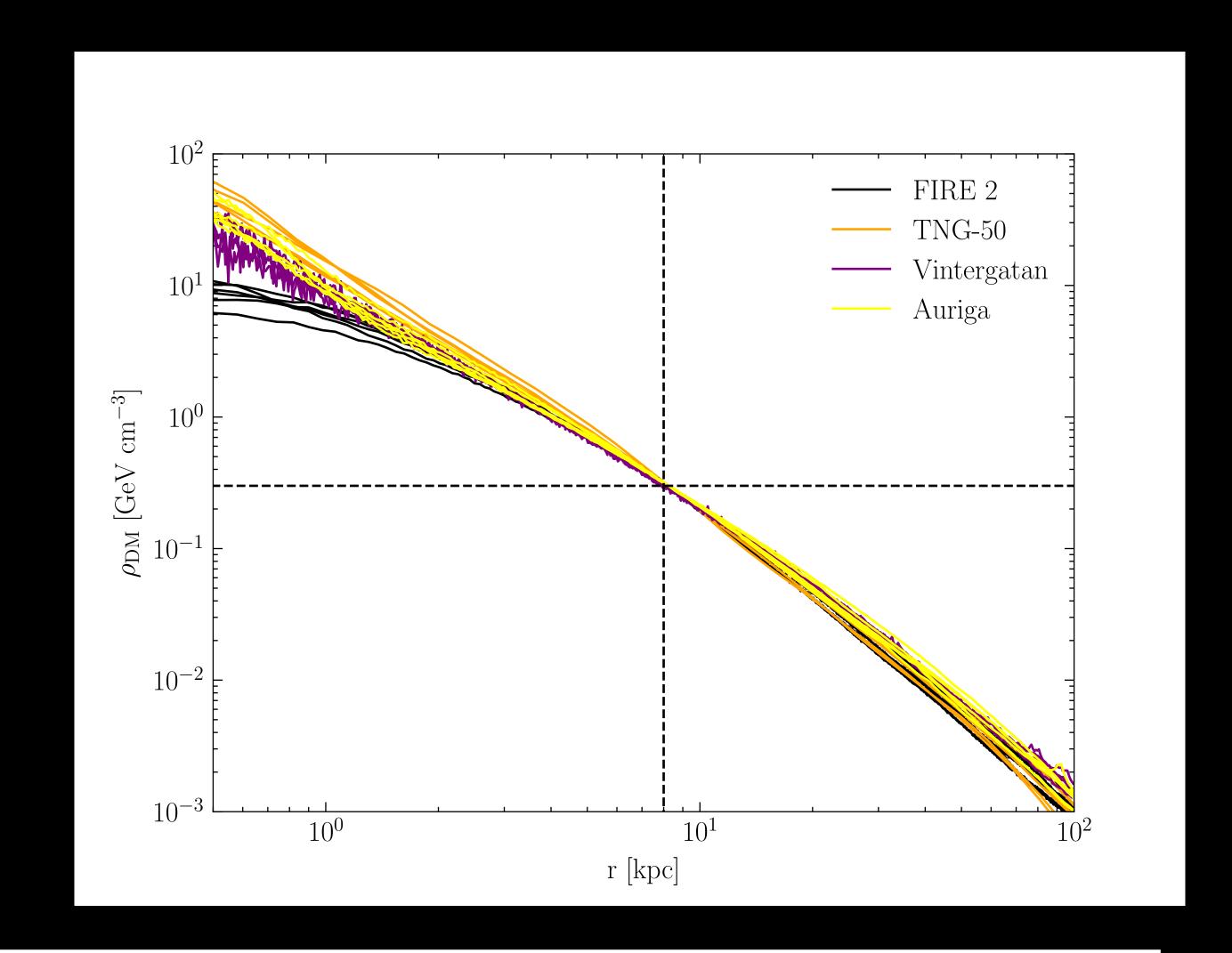
While traditionally a form for the DM density profile is assumed (NFW, Einasto,...), we can get a more informative result by using the density numerically calculated from the simulation.



(Credit: Andrea Albert)

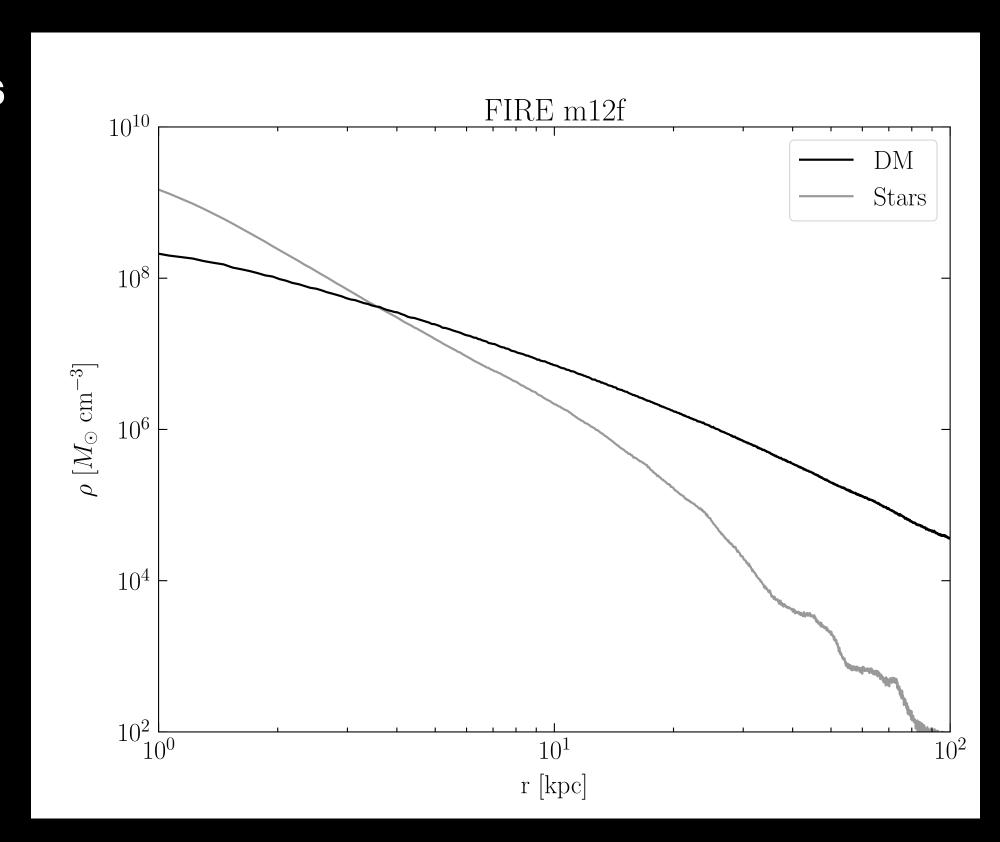
### DM Distribution in different simulation suites:

- **Largest difference within 1 kpc**
- **Density similar for r > 1 kpc**
- How can we quantify the difference?
  - Can any of these be modeled through adiabatic contraction?



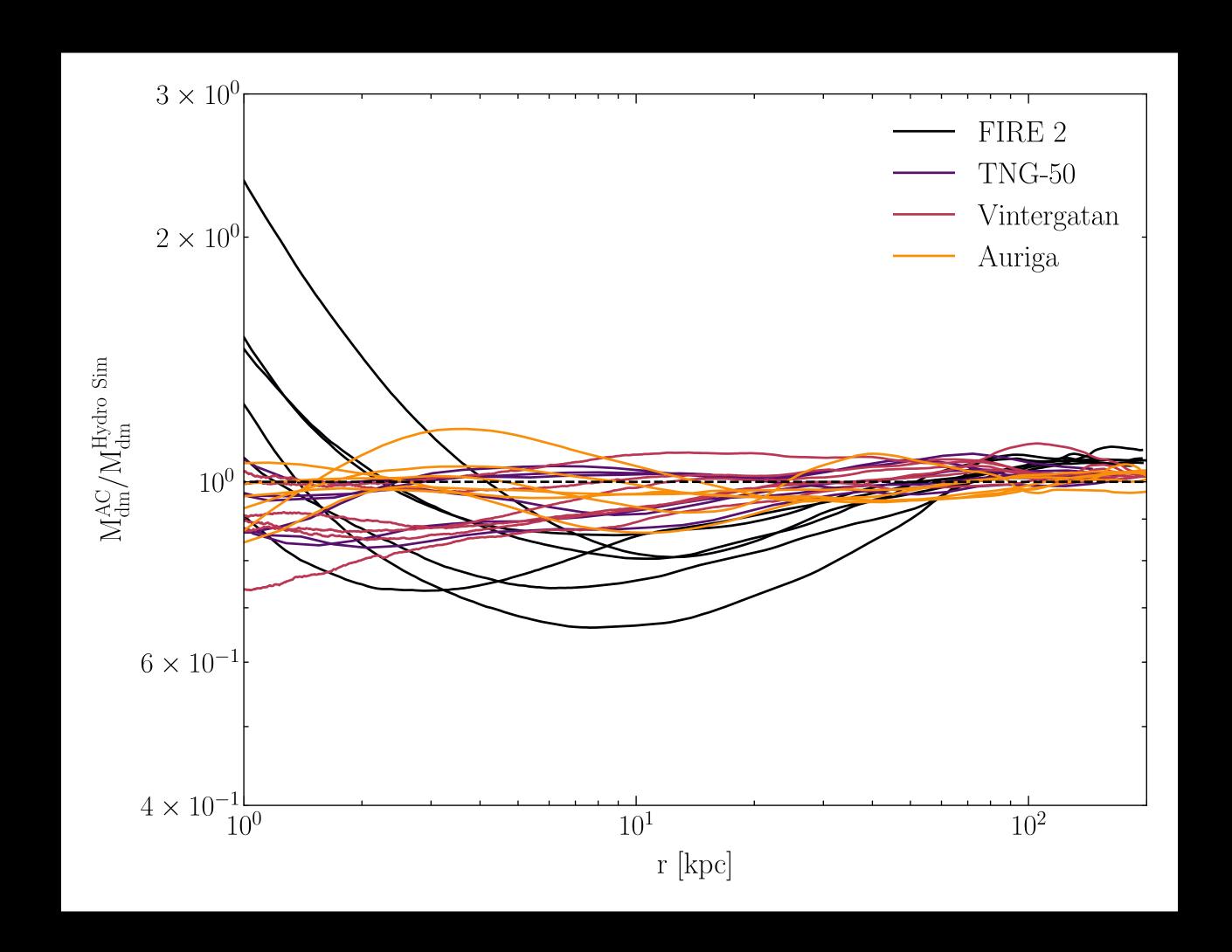
### Adiabatic contraction overview:

- The gravitational field in the central regions of galaxies is dominated by stars.
- The conserved quantities for eccentric orbits (Ghigna et al. 1998)
  - $\Rightarrow \text{ the radial action } I_r \equiv \frac{1}{\pi} \int_{r_p}^{r_a} v_r \ dr$ 
    - (Gnedin et al. 2004) argued that the conserved quantity r  $M(\bar{r})$  is a better proxy for the radial action.



### Results:

- The ratio deviates within 10 kpc from 1 for FIRE sims relative to TNG50, Vintergatan and Auriga
- Vintergatan, TNG50 and Auriga DM density profiles can be described using adiabatic contraction.



#### Conclusion:

- Two possible solution:
  - Adiabatic contraction
  - Strong Feedback
- We will use AC to model the DM density profile of the MW
  - Obtain photon emission from DM annihilation signal.

# Back up

# Cosmological simulations overview:

| Simulations | Year | Technique             | SMBH<br>Feedback | $m_{DM}(M_{\odot})$ | $^m$ baryon $^{(M_{\odot})}$ |
|-------------|------|-----------------------|------------------|---------------------|------------------------------|
| Auriga L3   | 2017 | Zoom in               | Yes              | 5E+04               | 6E+03                        |
| FIRE-2      | 2017 | Zoom in               | No               | 3.5E+04             | 7.1E+03                      |
| Vintergatan | 2020 | Zoom in               | No               | 3.5E+04             | 7.07E+03                     |
| TNG-50      | 2019 | Uniform<br>Resolution | Yes              | 4.5E+05             | 8E+04                        |

### Adiabatic contraction input:

$$M_{\rm DM}^{\rm inital}(r_{\rm inital}) = M_{\rm DM}^{\rm final}(r_{\rm final})$$
 
$$r_{\rm initial}(M_{\rm DM}^{\rm initial}(\bar{r}_{\rm initial}) + M_{\rm Stars}^{\rm initial}(\bar{r}_{\rm initial})) = r_{\rm final}(M_{\rm DM}^{\rm final}(\bar{r}_{\rm final}) + M_{\rm Stars}^{\rm final}(\bar{r}_{\rm final}))$$

- > Inputs (all z=0):
  - **DM** distribution from DMO sim
  - A stellar distribution that is self similar to the DMO distribution
  - > Stellar density profile from hydro sim

# Cosmological simulations overview:

z = 2.12

10 kpc

Stars



(credit: Phil Hopkins)

#### Calculation overview:

$$f_b = \frac{M_{Stars}^{hydro}(r_{200c})}{M_{DM}^{hydro}(r_{200c})}$$
(5)

$$f_{norm} = \frac{M_{DM}^{hydro}(r_{200c}) + M_{Stars}^{hydro}(r_{200c})}{M_{DM}^{DMO}(r_{200c})}$$
(6)

$$M_{\rm DM}^{\rm initial}(r) = (M_{DM}^{DMO}(r) \cdot f_{norm}) \cdot (1 - f_b) \tag{7}$$

$$M_{\text{Stars}}^{\text{initial}}(r) = (M_{DM}^{DMO}(r) \cdot f_{norm}) \cdot f_b \tag{8}$$

$$r_{\text{initial}}(M_{\text{DM}}^{\text{initial}}(\bar{r}_{\text{initial}}) + M_{\text{Stars}}^{\text{initial}}(\bar{r}_{\text{initial}})) = r_{\text{final}}(M_{\text{DM}}^{\text{final}}(\bar{r}_{\text{final}}) + M_{\text{Stars}}^{\text{final}}(\bar{r}_{\text{final}}))$$

$$(9)$$

$$M_{\mathrm{DM}}^{\mathrm{inital}}(r_{\mathrm{inital}}) = M_{\mathrm{DM}}^{\mathrm{final}}(r_{\mathrm{final}})$$

#### Find fixed point

$$\bar{r} = r_{vir} A(\frac{r}{r_{vir}})^w$$
 tested by (Gustafsson et al 2007)

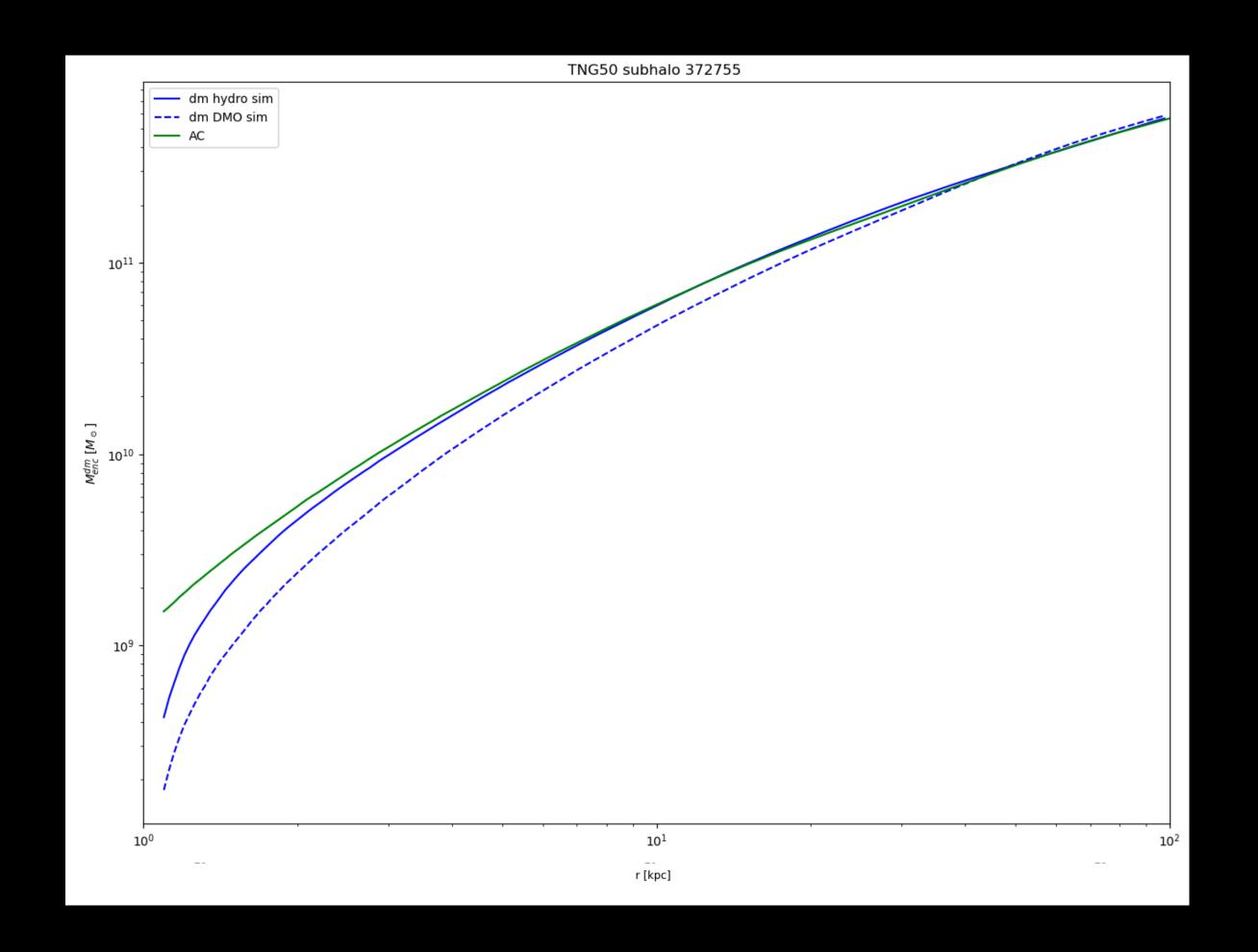
Given such a wide eccentricity distribution, the orbit-averaged radius varies for particles at a given current radius r depending on the orbital phase. Nevertheless, the mean relation can be described by a power law function.

# Density threshold:

| Simulation           | $ ho_{ m th}~({ m cm}^{-3})$ |  |  |
|----------------------|------------------------------|--|--|
| $\mathrm{TNG}_{-}50$ | 0.13                         |  |  |
| Auriga               | 0.13                         |  |  |
| Vintergatan          | 100                          |  |  |
| FIRE                 | 1000                         |  |  |

**Table 7.** Density threshold  $\rho_{th}$  for star formation

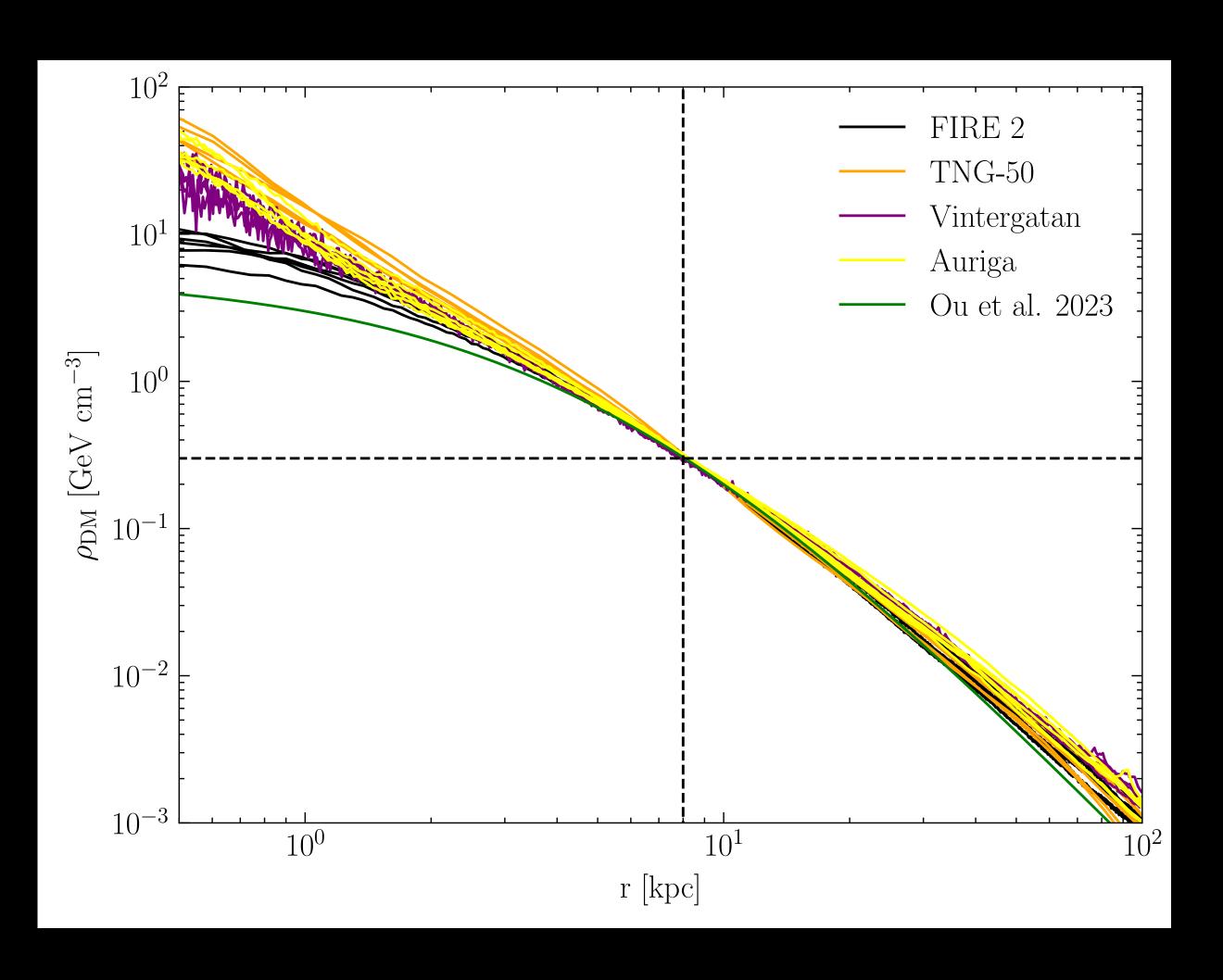
## Adiabatic Contraction in TNG50:



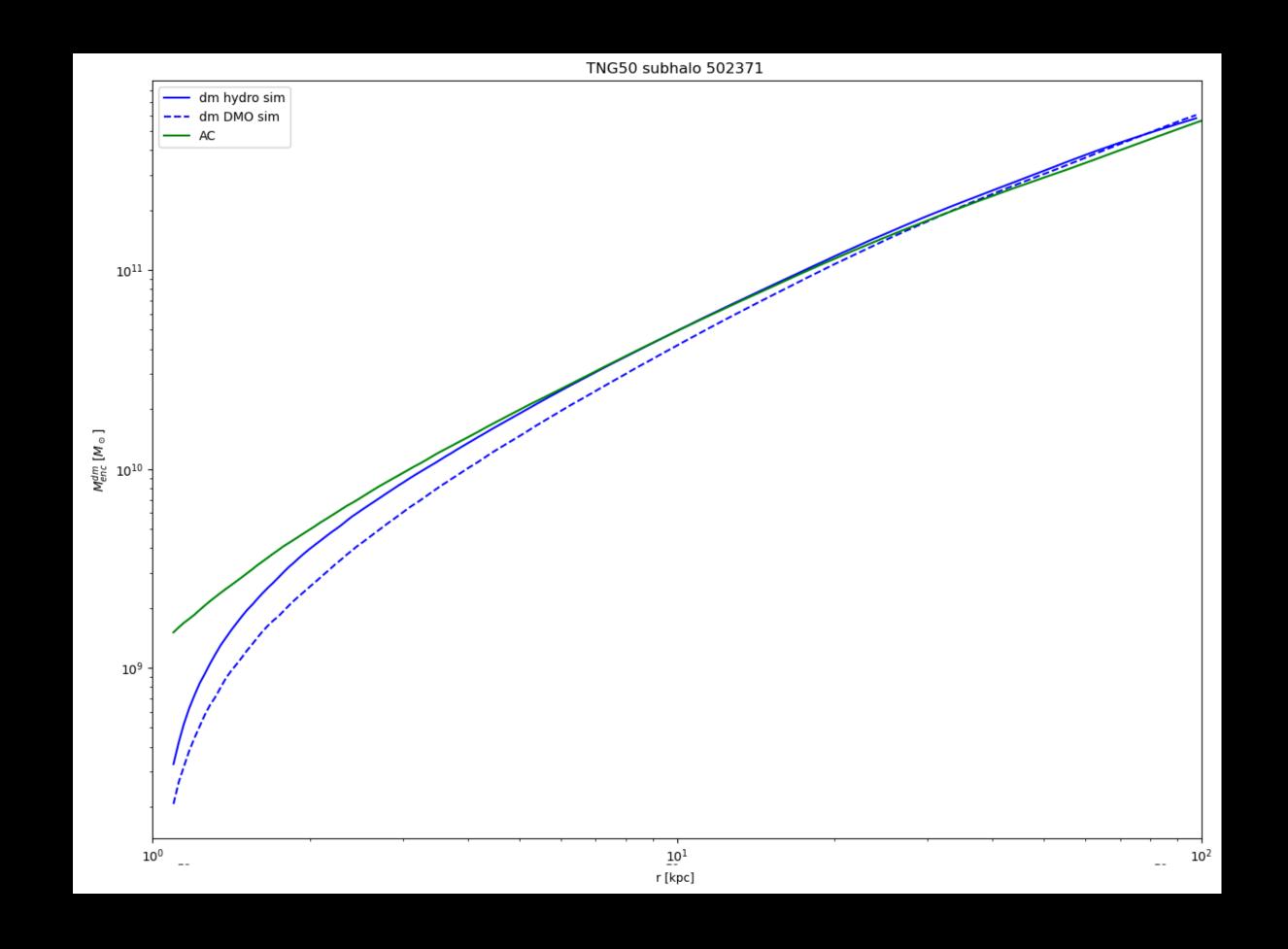


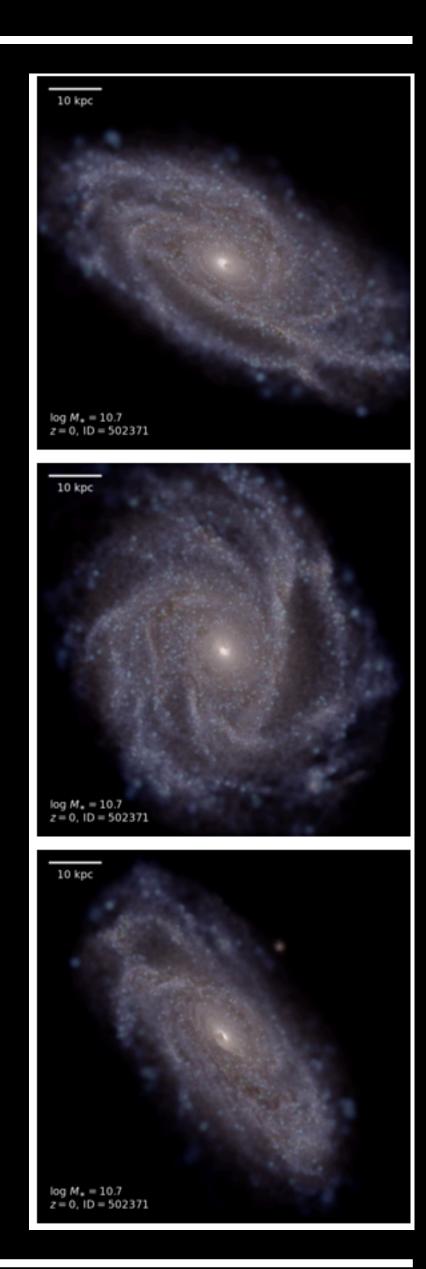
#### DM Distribution in different simulation suites:

- Largest difference within 1 kpc
- Density similar for r > 1 kpc
- How can we quantify the difference?
  - Can any of these be modeled through adiabatic contraction?

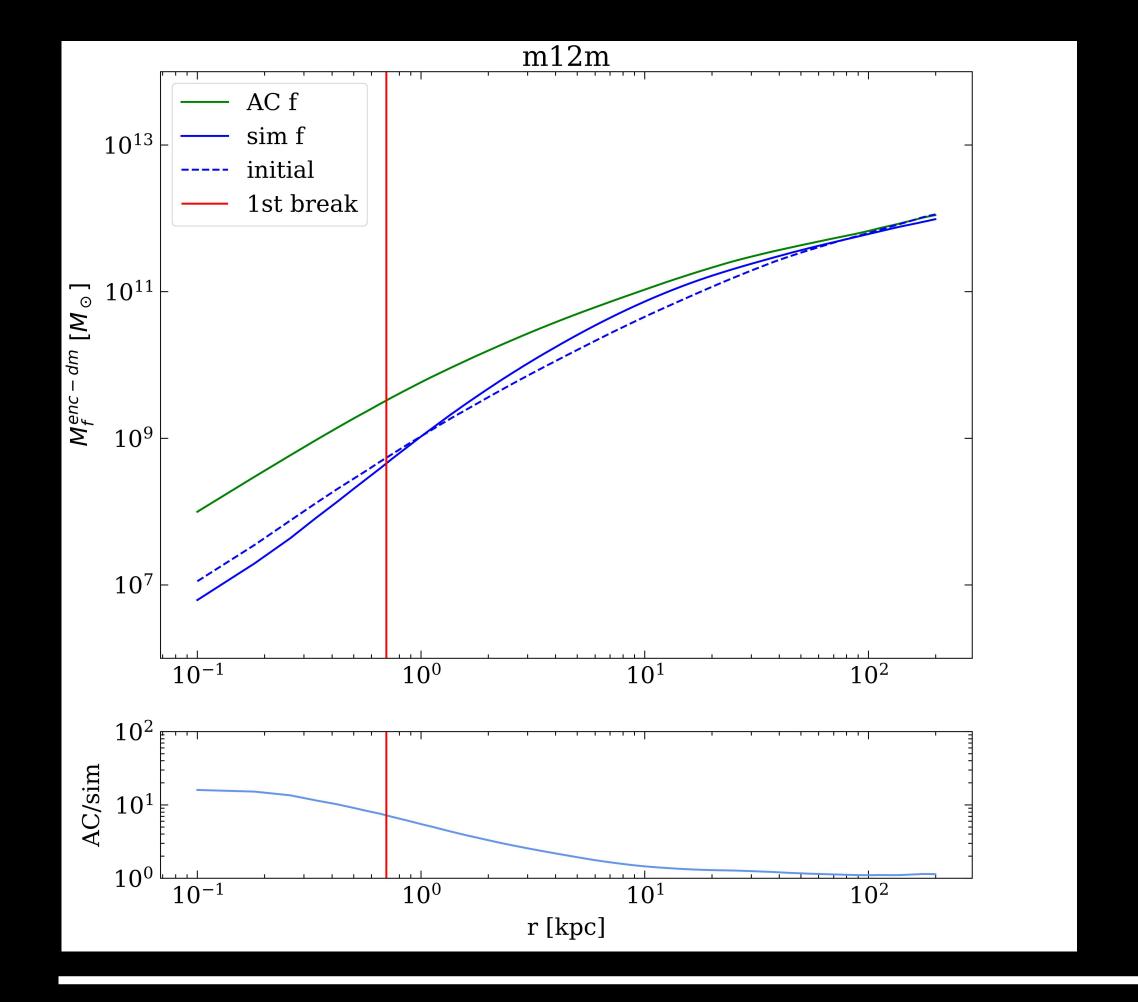


## Adiabatic Contraction in TNG50:



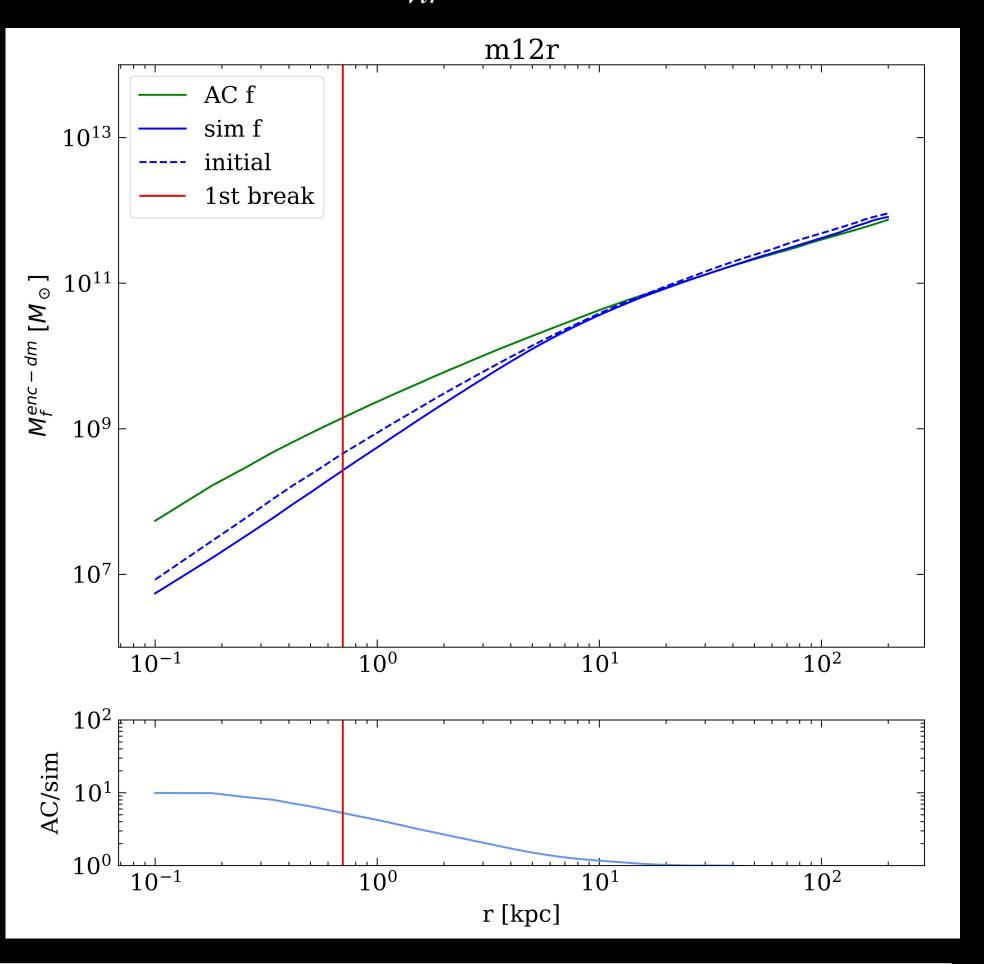


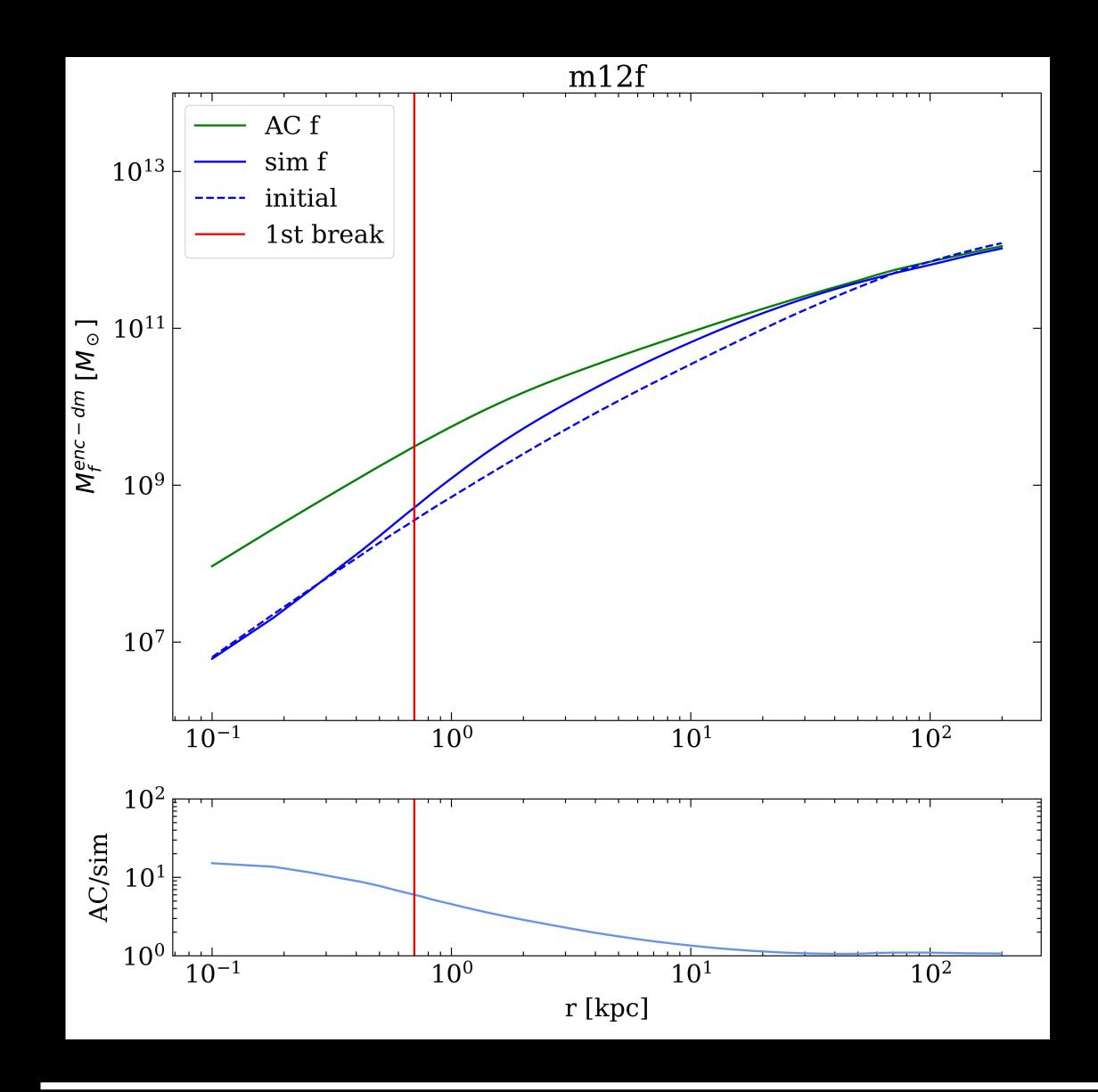
#### Adiabatic Contraction in FIRE m12s

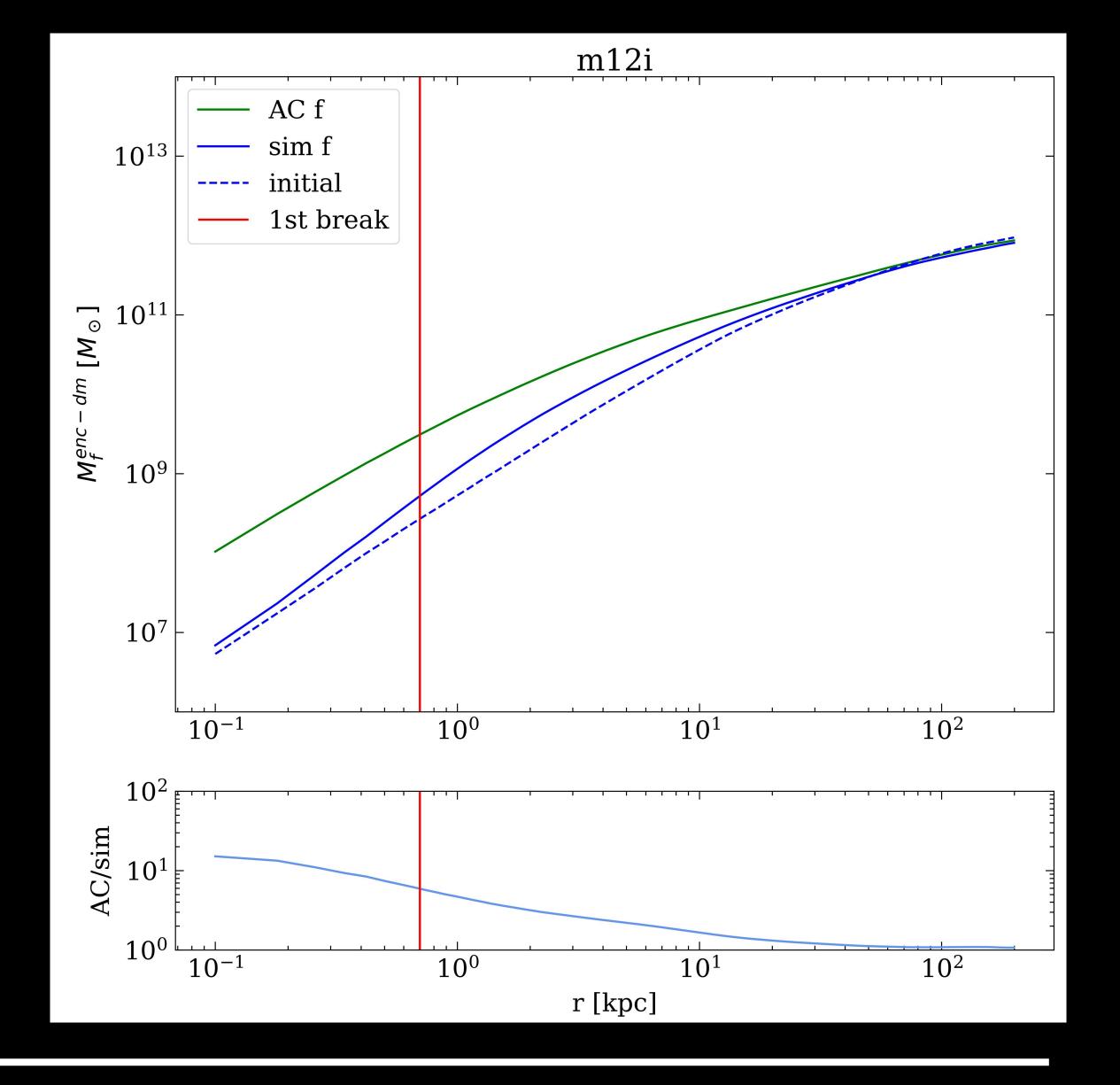


#### (Gnedin et al. 2004)

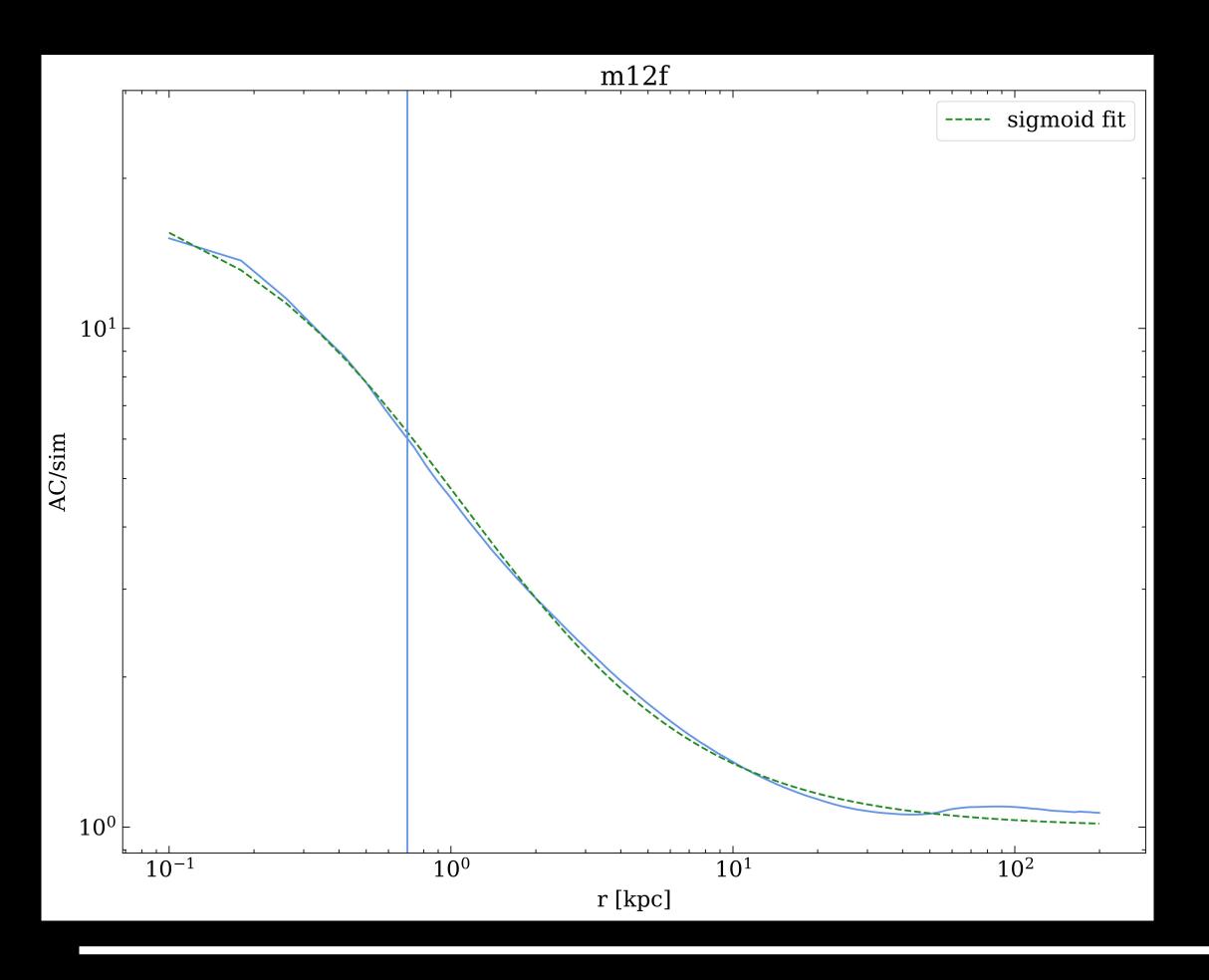
$$r M(\bar{r}) = const$$
  
 $\bar{r} = r_{vir} A(\frac{r}{r_{vir}})^w \qquad A = 0.85, w = 0.8$ 

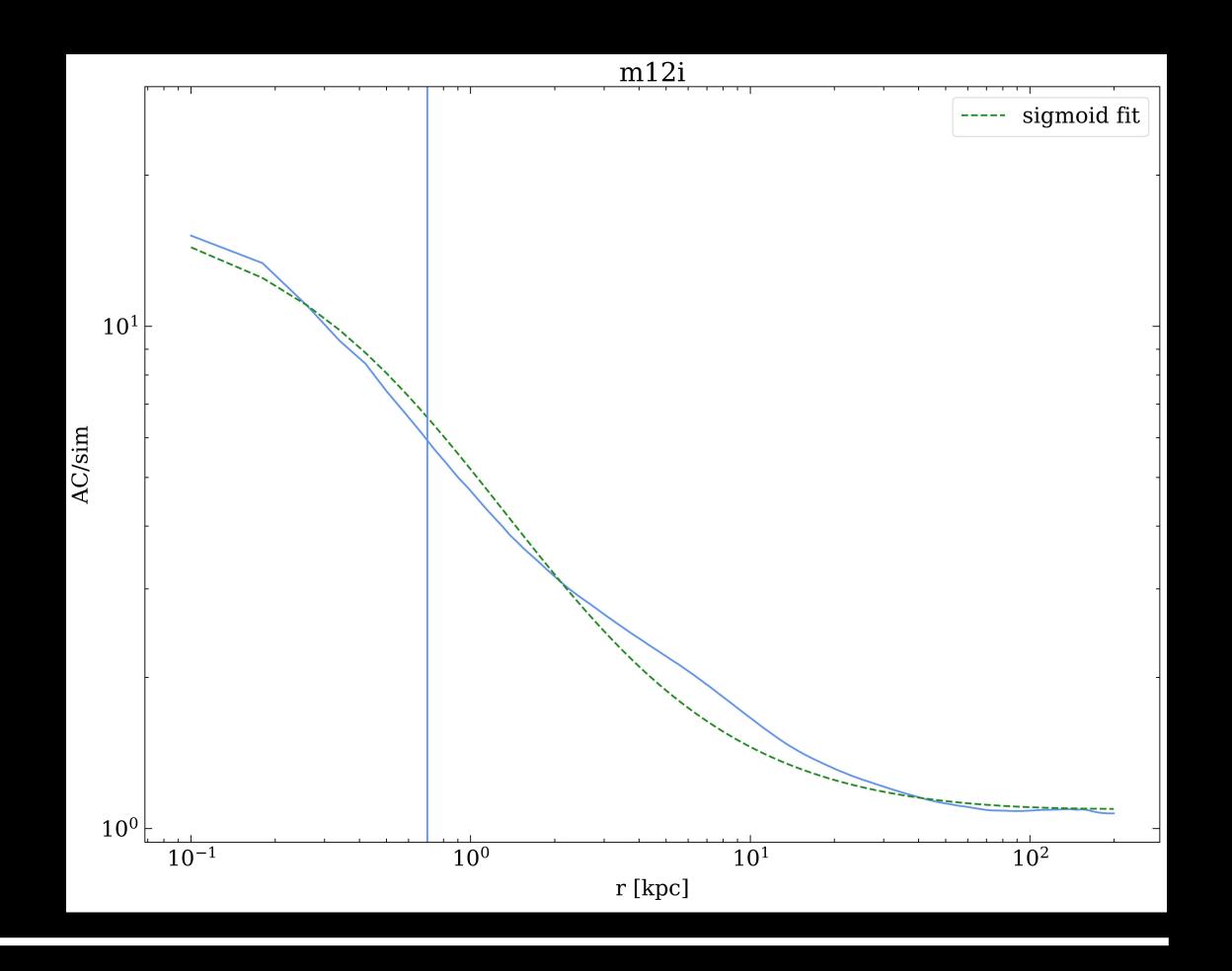






# Looking at transformation





# Adiabatic Contraction in Vintergatan Halo 685

