BSM Physics Opportunities with Far-Forward Experiments at a 100 TeV Proton Collider

Jyotismita Adhikary National Centre for Nuclear Research(NCBJ) Warsaw, Poland

ISAPP 2024: Particle Candidates for Dark Matter

26th June, Padova

together with R.M. Abraham, J.L. Feng, M. Fieg, F. Kling, T.R. Rabemananjara, J. Rojo and S. Trojanowski

Possible dark matter candidates

Mass scale of dark matter

(not to scale)

TASI lectures on DM models and direct detection

The hunt for dark matter

Credit: Stefano Giagu

The hunt for dark matter@FCC

Forward Physics facility@FCC

FCC-hh era

- COM energies of 100 TeV and beyond
- Expected integrated luminosity of 30 ab⁻¹

How do we get to know what to expect in the detectors at FPF@FCC?

FORESEE

What is FORESEE: python based simulation tool for long lived particle searches at FASER available on github: <u>https://github.com/KlingFelix/FORESEE</u>

How does it work:

- 1. Define the model with production, lifetime and decay modes.
- 2. Obtain the long lived particle spectrum.
- 3. Define detector specifics.
- 4. Obtain the number of events expected in the detector.
- 5. Obtain parameter space available for exploring the model in specific detector.

BSM physics Cases

Dark Higgs Boson

The model

New scalar mixing with the SM Higgs

Dark higgs also inherits couplings to SM fermions

$$\mathcal{L} = -m_{\phi}^2 \phi^2 - \sin \theta \frac{m_f}{v} \phi \bar{f} f - \lambda v h \phi \phi,$$

Production:

- □ Heavy meson decays ($B \rightarrow X_s \phi$), ($B \rightarrow X_s \phi \phi$)
- $\Box \qquad \text{SM Higgs decay } h \to \phi \phi @ \text{FCC}$

Decay:

 \Box mostly bb, $\tau^+\tau^-$, ... final states

Large lifetime: TeV-energy
$$m_{\phi} = 10$$
 GeV,
 $\theta \sim 10^{-7} \rightarrow \tau_{\phi} \sim 100$ km

Dark Higgs sensitivity reach without or with trilinear coupling

Φ

DM

Millicharged particles

- Possible result of new unbroken gauge symmetries.
- Massless dark vector boson A' kinetically mixes with hypercharge boson.

$$(\epsilon'/2\cos\theta_W)B^{\mu
u}X_{\mu
u}$$

If dark fermion χ couples to A'

 \Box can also interact with hypercharge boson

$$(\epsilon' e'/\cos\theta_W)\bar{\chi}\gamma^\mu\chi B_\mu.$$

After EWSB, χ couples to photon and Z boson and hence gains millicharge

Millicharged particles sensitivity reach

 $\square \quad \text{mCP relic abundance is set by annihilation } \chi \chi \longrightarrow A'A'$ $\square \quad \text{e' is fixed by relic density of mCPs set to be equal to } f_{DM} = 10^{-5}$

Millicharged particles sensitivity reach

Conclusions

- \Box FPF@FCC out-of-the-box studies but updated for higher energies
- □ Long-lived particles with masses up to tens or hundreds of GeV can be probed (examples: dark Higgs, mCPs)
- Convenient simulation tool FORESEE
 (initial forward BSM studies for FCC-hh, HE-LHC, SppC)

