Radiative processes in high-energy astrophysics (with a focus on jetted AGN)

Cosimo Nigro

Astrophysics Data Camp at the University of Padova Shaping a World-class University **Padova, 25-29 September 2023**

Institut de Física d'Altes Energies

Overview and aim

This talk and the following hands-on session aim at:

> make you familiar with the state of matter in astrophysical environments and with the mechanism of particle acceleration (**Part I**);

> make you aware of the possible emission mechanisms of particles accelerated in astrophysical environments (**Part II**);

> apply the previous notions to a particular class of sources: active galaxies with jets, and identify the particle populations and the emission mechanisms generating its broad-band emission from radio to gamma-rays (**Part III**).

PROSPERO

Hast thou, spirit, Perform'd to point the tempest that I bade thee?

To every article. I boarded the king's ship; now on the beak, Now in the waist, the deck, in every cabin, I flamed amazement: sometime I'd divide, And burn in many places; on the topmast, The yards and bowsprit, would I flame distinctly, Then meet and join.

—Act I, Scene II, *The tempest*

Part I Plasma and particle acceleration

ARIEL

Plasma

> A plasma is an electrified gas with the atoms dissociated into positive ions and negative electrons:

$H \leftrightarrow p + e$

> Question: in the case of the hydrogen atom, how much energy do we need to separate p and e?

> On Earth, there are several natural occurrences of plasma (St. Elmo's fire, lightning, aurorae);

> leaving Earth's atmosphere we encounter **more and more matter in the state of plasma**: Earth's ionosphere and magnetosphere, solar winds, the sun and the stars, the interstellar and intergalactic medium;

> ultimately, **99% of the matter in the universe is in the state of plasma**.

Plasma

Non-thermal particles distribution

> Thermal particles follow the Maxwell-Boltzmann distribution. T determines both the peak of the energy distribution and its width (rigorously in the velocity space)

$$
f_E(E) = 2\sqrt{\frac{E}{\pi}}\left[\frac{1}{kT}\right]^{\frac{3}{2}}\exp\!\left(-\frac{E}{kT}\right)
$$

> relativistic particles accelerated in astrophysical sources display instead a power-law energy distribution

$$
f_E(E)=k\Big(\tfrac{E}{E_0}\Big)^{-\Gamma}
$$

> Question: which experimental evidence do we have of astrophysical power-law of particles?

Particle acceleration

reflection of an electron beam in a magnetic field converging (increasing) to the right

> Fermi's acceleration theory is **canonical as it naturally produces a power-law spectra for accelerated particles**;

> particles are accelerated by bouncing off "magnetic mirrors", regions, clouds, of plasma with increased B values;

 \blacktriangleright let us start with N_{0} particles, each with energy E_{0} , that undergo *n* collisions. For each collision the energy of a particle increases of a factor ξ . At each collision the particles has a probability P to remain in the acceleration region. After *n* collision:

$$
\begin{aligned} N &= N_0 P^n \Rightarrow \ln(N/N_0) = n \ln(P) \\ E &= E_0 \xi^n \Rightarrow \ln(E/E_0) = n \ln(\xi) \end{aligned}
$$

dividing and manipualting the two: $N = N_0 \left(\frac{E}{E_0}\right)^{\ln(P)/\ln(\xi)}$

> the spectral index of the power-law will depend on the average energy gain and the containment (or escape) probability.

Particle acceleration

> II order Fermi acceleration

> Question: Let us consider this analogy from mechanics. Which of the two balls is more efficiently accelerated?

> I order Fermi acceleration

Particle acceleration

> II order Fermi acceleration (clouds)

> I order Fermi acceleration (shock)

 \triangleright For a particle of velocity **v**, colliding at an angle θ with a scatterer of velocity *U*, we obtain in the reference frame of the observer:

$$
\Delta E = E - E_0 = \left[2\frac{Uv}{c^2}\cos\theta + 2\left(\frac{U}{c}\right)^2\right]E_0
$$

II order: the first term goes to 0 (we average cosine over all angles) and we obtain

$$
\tfrac{\Delta E}{E} \approx \tfrac{8}{3} \bigl(\tfrac{U}{c}\bigr)^2
$$

I order, we only have head-on collisions ($cos \theta > 0$). For v=c the first term dominates: we obtain

$$
\tfrac{\Delta E}{E} \approx \tfrac{4}{3} \tfrac{U}{c}
$$

> e.g. for a scatterer moving at U=10 km/s, the $\Delta E/E^{\sim}10^{-7}$ for the I order and $\Delta E/E^{\sim}10^{-4}$.

> shock acceleration is more efficient and the velocities of the shocks are even higher than this example \sim 10⁴ km/s

Recap of part I:

Let us write it together in a few points:

> plasma as electrified gas in astrophysical sources

> power-law distributions of particles in astrophysical sources, derived it

> acceleration by magnetic scattering

Cosimo Nigro 10 and 20 Radiative processes in high-energy astrophysics

Part II Radiation of accelerated particles

Synchrotron radiation

> A particle with velocity *v* enters a region of magnetic field *B*, which frequency can we associate to this motion?

$$
\begin{aligned}\n\frac{\mathrm{d}}{\mathrm{d}t}(\gamma m \vec{v}) &= \tfrac{q}{c} \vec{v} \times \vec{B} \\
\frac{\mathrm{d} v_{\perp}}{\mathrm{d}t} &= \tfrac{qB}{\gamma mc} v_{\perp} \Rightarrow \frac{\mathrm{d} v_{\perp}}{\mathrm{d}t} = \omega_{\mathrm{L}} v_{\perp}\n\end{aligned}
$$

 \triangleright where $\omega_{\rm B}$ is the **Larmor** or **gyrofrequency**. **Question:** What type of motion does this equation on v describe? We can use the Larmor formula to compute the power:

$$
P_{\rm synch}=-\langle \tfrac{\rm dE}{\rm d}t \rangle=\tfrac{4}{3}Z^4\big(\tfrac{m_e}{m}\big)^3 c\sigma_{\rm T}\, \Big(\tfrac{B^2}{8\pi}\Big) \beta^2\gamma^2=\tfrac{4}{3}c\sigma_{\rm T} U_B\beta^2\gamma^2
$$

> The radiation is relativistically beamed at an angle $\theta \sim 1/\gamma$, the resulting frequency of emission is Doppler-boosted, in case of electrons most of the emission will happen at:

$$
\nu_{\rm synch\ peak} = \tfrac{eB}{2\pi m_{\rm e}c}\gamma^2
$$

Cosimo Nigro 12 Radiative processes in high-energy astrophysics **Cosimo Nigro**

Synchrotron radiation

> Of course, a single particle will not emit at a single frequency, but will emit a synchrotron spectrum

$$
P_{\rm synch\,s.p.}(\nu,\gamma)
$$

Synchrotron radiation

> Of course, a single particle will not emit at a single frequency, but will emit a synchrotron spectrum

$$
P_{\rm synch\,s.p.}(\nu,\gamma)
$$

> But the Fermi acceleration gives us an energy distribution $n(y)$, what should we do to obtain the synchrotron emission of the whole power-law of particles? Convolution:

$$
P_{\rm synch}(\nu) \propto \int_0^\infty P_{\rm synch\,s.p.}(\nu,\gamma)\,n(\gamma)\,{\rm d}\gamma
$$

Cosimo Nigro 14 Radiative processes in high-energy astrophysics

(Inverse) Compton scattering

> Reverse of the classical Compton scattering: a high-energy electron scatters a photon to higher energies (and loses its own energy in the process). The energy of the photon in the reference frame in which the electron is at rest is:

$$
\bar{\epsilon} = \gamma \epsilon (1 - \cos \psi) \approx \gamma \epsilon
$$

> this parameter defines two regimes of the Compton scattering

$$
\bar{\epsilon} \ll 1
$$

In the Thompson regime, we have basically Thomson (elastic) scattering. The photon is - in average - scattered with energy

$$
\langle \epsilon_{\rm s} \rangle = \gamma \bar{\epsilon} = \gamma^2 \epsilon (1 - \cos \psi) \approx \gamma^2 \epsilon
$$

 $\bar{\epsilon}\gg 1$

note, for photons: $\epsilon = E/(m_{\rm e}c^2)$

In the Klein-Nishina regime, the cross section is very low, the interaction has low probability, and the energy of the scattered photon is

$$
\langle\epsilon_{\rm s}\rangle=\gamma
$$

Cosimo Nigro 15 and 2008 and 2009 15 and 2009 16 and 2

(Inverse) Compton scattering

> But, in an astrophysical source, we have don't have a single electron scattering a single photon, we have a distribution of both

 $P_{\rm IC}(\epsilon,\epsilon_{\rm s},\gamma) \propto \int {\rm d}\epsilon\, n_{\rm ph}(\epsilon)\int {\rm d}\gamma\, n_{\rm e}(\gamma)\frac{{\rm d}\sigma_{\rm C}}{{\rm d}\epsilon}$

> as an example, we can see as the synchrotron radiation is scattered by the very same electrons that produced it: *Synchrotron Self-Compton* scenario.

> in the Thomson regime, the energy losses have the same formula as the synchrotron ones, but changing the energy density in magnetic field with that in target radiation.

$$
P_{\rm IC}=-\langle \tfrac{{\rm d} E}{{\rm d} t}\rangle=\tfrac{4}{3}c\sigma_{\rm T} u_{\rm rad}\beta^2\gamma^2
$$

Cosimo Nigro **16** Radiative processes in high-energy astrophysics

Exercise:

> Consider an electron of energy 1 TeV scattering three different photons with energies 1 meV, 1eV, and 1 keV, respectively. Determine the following:

- in which regime each interaction is occurring (KN or Thomson);
- what is the energy of the scattered photon in each case.

You can use astropy to speed-up the calculations.

Hadronic models (pp)

> Gamma rays can of course be produced also by hadronic interactions

$$
\mathrm{p}+\mathrm{p}\rightarrow\pi^{\pm},\pi^{0},K^{\pm},K^{0},\ldots
$$

> pions then decay in 2 gammas:

$$
\pi^0 \to 2\gamma
$$

> a major result of Fermi-LAT was the demonstration that the spectra of two SNR could be fitted with a π 0-decay model;

> this works very well in SNR, which are surrounded by their dense ejecta. There is not enough matter around AGN to consider this interaction.

Cosimo Nigro 18 and 18 Radiative processes in high-energy astrophysics

Hadronic models (p)

> The environment around jetted active galaxies is rich in photons, so p interactions are more often considered

$$
p + \gamma \rightarrow \left\{ \begin{aligned} &\text{photo-pion} &\Delta^+ \rightarrow \begin{cases} p + \pi^0 \\ n + \pi^+ \end{cases} &\sqrt{s} = (m_p + m_\pi) c^2, \\ &\text{Bethe-Heitler} &\sqrt{s} = (m_p + 2 \, m_e) \, c^2, \end{aligned} \right.
$$

> at the end of the decay chain of pions there are neutrinos. These models were re-discovered when an astrophysical neutrino was observed in coincidence with a flaring blazar.

Plenty of line/thermal emission

Cosimo Nigro 19 and 19 Radiative processes in high-energy astrophysics

Recap of part II:

Let us write it together in a few points:

> two types of emission models: leptonic (electrons emission) + hadronic (proton emission);

> leptonic: synchrotron + inverse compton Hadronic: pp, p-gamma (+neutrinos)

>

Part III Broad-band emission of jetted AGN

Structure of a jetted AGN

> Central Engine

black hole, $M_{BH} > 10^5 M_{\odot}^{\dagger}$ accretion disk \rightsquigarrow UV-peaking black body

 $^{\dagger}M_{\odot} = 2 \times 10^{30}$ kg

> Reprocessing Material central engine photoionisation ~> broad and narrow line regions

dust torus \rightsquigarrow IR-peaking black body

 $>$ Jet

relativistic plasma outflow ~ non-thermal emission, radio - gamma rays $\rightarrow L_{\rm obs} = \delta_D^4 L_{\rm em}$ \rightarrow maximum δ_D^{\dagger} (θ < 10°): blazar ${}^{\dagger}\delta_D = [\Gamma_{\rm jet}(1-\mathcal{B}_{\rm jet}\cos\theta)]^{-1}$

Cosimo Nigro 22 Radiative processes in high-energy astrophysics

Structure of a jetted AGN

> Central Engine black hole, $M_{BH} > 10^5 M_{\odot}^{\dagger}$ accretion disk \rightsquigarrow UV-peaking black body

 $^{\dagger}M_{\odot} = 2 \times 10^{30}$ kg

> Reprocessing Material

central engine photoionisation ~> broad and narrow line regions

dust torus \rightarrow IR-peaking black body

 $>$ Jet

relativistic plasma outflow ~ non-thermal emission, radio - gamma rays $\rightarrow L_{\rm obs} = \delta_D^4 L_{\rm em}$ \rightarrow maximum δ_D^{\dagger} (θ < 10°): blazar

 ${}^{\dagger}\delta_D = [\Gamma_{\rm jet}(1-\mathcal{B}_{\rm jet}\cos\theta)]^{-1}$

Cosimo Nigro 23 Radiative processes in high-energy astrophysics

Structure of a jetted AGN

> Central Engine

black hole, $M_{BH} > 10^5 M_{\odot}^{\dagger}$ accretion disk \rightsquigarrow UV-peaking black body

 $^{\dagger}M_{\odot} = 2 \times 10^{30}$ kg

> Reprocessing Material central engine photoionisation ~> broad and narrow line regions

dust torus \rightsquigarrow IR-peaking black body

 $>$ Jet

relativistic plasma outflow \rightsquigarrow non-thermal emission, radio - gamma rays $-L_{\rm obs} = \delta_D^4 L_{\rm em}$ \rightarrow maximum δ_{D}^{\dagger} (θ < 10°): blazar ${}^{\dagger} \delta_D = [\Gamma_{\rm jet} (1 - \mathcal{B}_{\rm jet} \cos \theta)]^{-1}$

Cosimo Nigro 24 Radiative processes in high-energy astrophysics

Broad-band emission of galaxies

Normal galaxy:

> L < 1045 erg/s (1038 W);

> thermal emission (mostly in optical), cumulative emission of stars.

Cosimo Nigro 25 Radiative processes in high-energy astrophysics

Broad-band emission of active galaxies

Active galactic nucleus (AGN):

- $> L \sim 10^{44}$ -10⁴⁹ erg/s;
- **> thermal emission** from black hole's (BH) accretion disk;
- **> line emission** from ionised material orbiting BH;
- **>** broadband emission from radio to X rays.

Cosimo Nigro 26 Radiative processes in high-energy astrophysics

Broad-band emission of jetted active galaxies

Cosimo Nigro 27 Radiative processes in high-energy astrophysics

Broad-band emission of jetted active galaxies

Cosimo Nigro 28 Radiative processes in high-energy astrophysics

Broad-band emission of jetted active galaxies

Cosimo Nigro 29 Radiative processes in high-energy astrophysics

How do we measure their emission?

How do we measure their emission?

> Flux is measured by several instruments in different energy bands;

How do we interpret their emission?

> Flux is measured by several instruments in different energy bands;

> Could you gess, from the spectra you have seen which processes are generating the two emission continua?

Mrk421 SSC

Electron-positron (electrons) plasma

> The low-energy bump is the **synchrotron** radiation of the accelerated electrons;

> the high-energy bump is due to **inverse Compton** scattering by the electrons of their own synchrotron radiation (synchrotron self-Compton SSC);

> few observed properties (e.g. minute-scale flux variability) cannot be accommodated with this model.

Mrk421 Proton Synchrotron

Proton-electron plasma

> The low-energy bump is still due to the **synchrotron** radiation of the accelerated **electrons**;

Cosimo Nigro 34 Radiative processes in high-energy astrophysics

Mrk421 Proton Synchrotron

Proton-electron plasma

> The low-energy bump is still due to the **synchrotron** radiation of the accelerated **electrons**;

> the high-energy bump is due to **proton synchrotron** (but requires high values of

Cosimo Nigro 2012 2013 2014 2015 2016 2017 2018 2019 2014 2015 2016 2017 2018 2019 2017 2018 2019 2017 2018 201

Mrk421 Proton Synchrotron

Proton-electron plasma

> The low-energy bump is still due to the **synchrotron** radiation of the accelerated **electrons**;

> the high-energy bump is due to **proton synchrotron** (but requires high values of $B^{\sim}10 G$;

> proton-gamma interactions: $p + \gamma \rightarrow p + \pi^0$ $n + \pi^+$ $p + \pi^{+} + \pi^{-}$ produce mesons whose secondaries initiate particle cascades (that produce further

Mrk421 Proton Synchrotron

Proton-electron plasma

> The low-energy bump is still due to the **synchrotron** radiation of the accelerated **electrons**;

> the high-energy bump is due to **proton synchrotron** (but requires high values of $B^{\sim}10 G$;

> proton-gamma interactions: $p + \gamma \rightarrow p + \pi^0$ $n + \pi^+$ $p + \pi^{+} + \pi^{-}$ produce mesons whose secondaries initiate

particle cascades (that produce further radiation) and decay into **neutrinos!**

Mrk421 Lepto-Hadronic

Proton-electron plasma

> Same model as before but different part of the parameter space: **much lower B values** (< $1 G$;

> radiations by leptons dominant, **radiation by p secondaries cascade subdominant**;

> leptonic model "loaded with hadrons".

Recap of part III:

Let us write it together in a few points:

> AGN with jets: non-thermal emission; emit along a broader energy range;

> often SSC is considered, proton synchrotron feasible but with "unrealistic" B;

> mixed models with hadrons (subdominant components);