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What are we going to talk about?

1. The Bayesian approach: probability theory and the Bayes Theorem
The frequentist approach: p-values and sigmas

The likelihood

> W b

Statistical inference in On/Off measurement
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Why is Statistic so important?
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Why is Statistic so important?

Short answer: the experimental data on their own are useless!

The final goal is to infer from the observed data a given hypothesis

Definition of infer verb from the Oxford Learner's Dictionary of Academic English

® infer verb

OPAL
written

BrE /1in'f3:(r)/ ¢{); NAME /1n'f3:r/ )

| 4+ Verb Forms

to reach an opinion or decide that something is true on the basis of information that is available
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Why is Statistic so important?

Short answer: the experimental data on their own are useless!

The final goal is to infer from the observed data a given hypothesis

Definition of infer verb from the Oxford Learner's Dictionary of Academic English

® infer verb

OPAl Anopinion that has to be
SO quantified through the
[gWAl instrument of probability and
statistics

4+ Verb Forms

A given theoretical model

The data we have
- collected

to reach an{ppinion pbr decide thagsomething Js true on the basis of{information }hat is available
R RRRRRRRRRRRRRRRRRRRRRRRRRRRRREEEEEEEEEEEmmmwwIImmE
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Why is Statistic so important?

The Model All Italians are good drivers
The data
The opinion The model is rejected
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Why is Statistic so important?

hadronic radiative processes are negligible in

The Moael the emission of the source
The data

10 10 10 10 10[:2] 102 10 10 10
The opinion 27
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The Bayesian approach
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- The Bayesian approach tries to answer the question:

Given our prior knowledge and the observed data, what is the probability
that the model is true?
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Probability theory

Marginalised probability
p(x) = [dy px,y) p(x) = Zp(x, Yi)

Conditional probability

px,y) =pxly) - pQy)
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Probability theory

Marginalised probability

— | d :
P [ Y P ) PO %) - )

(x]y) =
S |dy p(y|x) - p@)

Conditional probability

px,y) =pxly) - pQy)
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Probability theory

Marginalised probability _
Likelihood Prior

— | d :
P [ Y P ) PO %) - )

px1y) = |dy p(y|x) - p@)

Conditional probability

Posterior Normalisation

px,y) =pxly) - pQy)
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The Monty Hall problem

In two boxes there Is a goat and in the other a car

You have to choose one and only one box
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The Monty Hall problem

Imagine we randomly pick the first one, but without opening it
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The Monty Hall problem

- y
o S
%/
)

Now the host of the game (who knows where the car is) shows us
the content of the third box, which does not contain the car
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The Monty Hall problem

- y
o S
%/
)

S/He then give us the opportunity to change our box (n.1) with the
other (n. 2)

What would you do”” Would you accept the opportunity”?
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The Monty Hall problem

® [, The hypothesis “the car is in the i-th box”
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The Monty Hall problem

® [, The hypothesis “the car is in the i-th box”

® [/ The event “the host shows use the content of the third box”
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The Monty Hall problem

® [, The hypothesis “the car is in the i-th box”

® [/ The event “the host shows use the content of the third box”

® | Our prior knowledge

"3 boxes and 1 car” & “the host knows where the car I1s”
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The Monty Hall problem

® [, The hypothesis “the car is in the i-th box”

® [/ The event “the host shows use the content of the third box”

® | Our prior knowledge

"3 boxes and 1 car” & “the host knows where the car I1s”

wel Posterior f(H: | E, )
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The Monty Hall problem

B 1) = L _—

f(E)
~ f(E|H,I)f(Ha|I)
F(Ha| B ) = D —
_ f(E|Hs,I)f(H3|I)
F(H| B ) = D
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The Monty Hall problem

N :
S Y ¢ = /
- o

B f(E\Hq, I) f(H1|T) B -1/3
FHIED = =5 -
B f(E|H2,I)f(H2|T) B -1/3
_ f(E|Hs,I)f(H3|I) 1/3
: 1
Priors === f(H,|I) = f(H2|I) = f(H3|I) = ;
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The Monty Hall problem

N :
S Y ¢ = /
- o

 f(E|H ) f(HLT) 1/3
~ f(EH2, I)f(Ho|I) 1/3
_ f(E|H3,I)f(H3|I) 1/3

1
Normalisation == Zf(E|Hi,])f(Hiu) = f(E|I) = 5
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The Monty Hall problem

N :
S Y ¢ = /
- o

f(E|Hy D) 1/2-1/3

f(Hl‘Eal) —

f(EN) 1/2
_ f(E|H, I)f(Ho|l)  1-1/3
_ f(E|H3,I)f(H3|I)  0-1/3

LikelinoOds == /(El. 1) =5 [(B|Ho ) =1 [(E|Hy, 1) =0
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The Monty Hall problem

- f(E|H,,I)f(HW|I) 1/2-1/3 1
JULIED = === @y =12 3

_ f(B|Hy, Df(Ho|I) — 1-1/3 2 e

 f(BHs,Df(Hs|I)  0-1/3
fHB ) = ===~ ~ 12 "

If we want to win the P
we should change the box!
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The Monty Hall problem

What if the TV-Show

2/3 hoster did not know
where the car is?

12 — Priors
1/3 2/3
1/6
1/2
O 1 ))
H, H, Hs | observe” F ' 13
|
1
! > 1/6
2/3 ™ 0
/ .
12 Likelihoods My
1/3
16 Posteriors -~
0 m
E E
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Covid-19 test

What'’s the probability that | am sick (S) ?

p(S|+) =7
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Covid-19 test

What'’s the probability that | am sick (S) ?

p(S|+) =

Introduction to statistical analysis

P(
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Covid-19 test

What'’s the probability that | am sick (S) ?

COVID-19 Ag
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Specificity = P(— | S)
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Covid-19 test

What'’s the probability that | am sick (S) ?

p(S|+) = (1 - geS.p. i%)

Sp. = 97%
Se. = BOY%

10 -

0.8 -

0.6 |

p(S| +)

0.4 -

0.2 |

0.0 1

0.0 0.2 0.4 0.6 0.8 10
p(S)
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A trivial example

[ have performed an observation and got the experimental data D = 3

According to the hypotheses H, D is a random variable that follows
a normal distribution centered in zero and variance = 1

p(DIH)=N(x=3|lu=0,0=1) .

40 A
35 1
30 7

'ﬁ‘ 0.25 T
)

ff 0.20 -

=1
>
=1 0.15 ~

0.10 -

0.05 ~

0.00 -
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A trivial example

[ have performed an observation and got the experimental data D = 3

According to the hypotheses H, D is a random variable that follows
a normal distribution centered in zero and variance = 1

p(DIH)=N(x=3|lu=0,0=1) .

.30 T

40 -
35 -

'ﬁ‘ 0.25

According to the alternative hypotheses H, Dis a s

random variable that follows a normal distribution -1
centered in 4 and variance = 1

0.05 ~

P(D‘H)=/V(X=3‘,u=4,6= 1) = SRR
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A trivial example

Let's now assume that the observation D can only be explained by either H
or H and that we have no bias towards any of the two hypotheses

p(H) =1-p(H) =0.5

By applying the Bayes theorem

p(D|H) - p(H)

p(H\D) - == =
p(D|H)-p(H)+ p(D|H) - p(H)

__poi)  _ Na=3p=0e=1)
p(D|H)+p(D|H) Nx=3|u=0,6=1)+N(x=3|u=4,06=1)
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A trivial example

Let's now assume that the observation D can only be explained by either H
or H and that we have no bias towards any of the two hypotheses

p(H) =1-p(H) =0.5

By applying the Bayes theorem

p(D|H) - p(H)

p(H\D) - == =
p(D|H)-p(H)+ p(D|H) - p(H)

0 —(3=0)%/2 1 1

o—G=0P12 4 o—(G=4P2 | 4 o92-12 | 4 4 1.8 %
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A trivial example

Conclusion of the inference analysis performed with the Bayesian approach:

Having observed D=3 and assuming uniform priors, the probability of the
hypothesis H being true is 1.8%
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The Frequentist approach
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The Frequentist approach

- In the Frequentist approach an inference analysis is performed by trying to
answer the following question:

If | repeat the experiment an infinite time, assuming the model is true; with
which frequency | would observe a value more extreme than the one
actually observed?

value ;s frequency
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The Frequentist approach

- In the Frequentist approach an inference analysis is performed by trying to
answer the following question:

If | repeat the experiment an infinite time, assuming the model is true; with
which frequency | would observe a value more extreme than the one
actually observed?

value ;s frequency

The data “D” itself or a
function of them

known as the statistic m

S = S(D)
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The Frequentist approach

Again the trivial example:
[ have performed an observation and got the experimental data D = 3

According to the hypotheses H, D is a random variable that follows
a normal distribution centered in zero and variance = 1

0.40 A

pDIH) =N (x=3|p=00=1) .

0.30 T

'H‘ 0.25

ff 0.20 -

=

>

< 0.15 1
0.10 -

0.05 ~

0.00 -
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The Frequentist approach

Again the trivial example:
[ have performed an observation and got the experimental data D = 3

According to the hypotheses H, D is a random variable that follows
a normal distribution centered in zero and variance = 1

pD|H) =N (x=3|pu=0,0=1)

Conclusion of the inference analysis performed with the frequentist approach:

It | repeat the experiment an infinitely time, assuming Hto be true, | would have
observed D > 3 only 0.27% of the times
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The Frequentist approach

The P-VALUE is the frequency in which we would have observed
“something” more extreme assuming the null hypothesis to be true

p-value = p(z more extreme than .| Hp)
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The Frequentist approach

The P-VALUE is the frequency in which we would have observed
“something” more extreme assuming the null hypothesis to be true

p-value = p(x more extreme than 5| Hg

... but then, what are all these “sigmas”™?

PKS 1413+135: Bright GeV v-ray Flares with Hard-spectrum and Hints for First Detection of TeV

We therefore consider emission from the Sgr dSph as an alternative origin for the cocoon. In order to test this possibility, we y-rays from a Compact Symmetric Object !
fit the y-ray emission observed by Fermi-LAT over a region of interest (ROI) containing the cocoon via template analysis. In our )
baseline model these templates include only known point sources and sources of Galactic diffuse y-ray emission. We contrast YING-YING GAN," JIN ZHANGT,! SU YA0,? HAI-MING ZHANG,” YUN-FENG LiaNG,* AND EN-WEI Liang*
the baseline with a baseline + Sgr dSph model that invokes these same templates plus an additional template constructed to be X 1S¢chool of Physics, Beijing Institute of Technology, Beijing 100081, People’s Republic of China; j.zhang@bit.edu.cn
spatially coincident with the bright stars of the Sgr dSph (Extended Data (E.D.) Figure 1 and S.I. Figure 1); full details of the N 2 Maz- Planck-Institute fiir Radioastronomie, Auf dem Hiigel 69, 58121 Bonn, Germany
fitting procedure are provided in Methods and S.I. sec. 3. Using the best motivated choice of templates, we find that the baseline - 3School of Astronomy and Space Science, Nanjing University, Nanjing 210023, People’s Republic of China
+ Sgr dSph model is preferred at 8.1@ significance over the baseline model. We also repeat the analysis for a wide range of N 4Guangzi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangzi University, Nanning 530004,
alternative templates for both Galactic diffuse emission and for the Sgr dSph (Table 1) and obtain > 5¢ detections for all - People’s Republic of China
combinations but one. Moreover, even this is an extremely conservative estimate, because our baseline model uses a structured =
template for the FBs that absorbs some of the signal that is spatially coincident with the Sgr dSph into a structure of unknown ey ABSTRACT
origin. If we follow the method recommended by the Fermi collaboration [2] and use a flat FB template in our analysis, the N PKS 1413--135. a tvoical ¢ ool S0 ot it
significance of our detection of the Sgr dSph is always > 146. Despite this, for the remainder of our analysis we follow the — i +_ & e co.mpac .symme r1(.: S j ( ) wi 'a e s e
most conservative choice by using the structured template in our baseline model. In Methods, we also show that our analysis miniature radio morphology, is spatially gssoaated with the Fi ermz—LAT source 4FGL J1416.1+1320 |
passes a series of validation tests: the residuals between our best-fitting model and the data are consistent with photon counting g, and recently announced to be detected in the TeV 7-ray band with the MAGIC telescopes. We
statistics (E.D. Figure 2 and Figure 3), our pipeline reliably recovers synthetic signals superimposed on a realistic background m present the analysis of its X-ray and GeV ~-ray observations obtained with Swift-XRT, XMM-Newton,

(E.D. Figure 4), fits using a template tracing the stars of the Sgr dSph yield significantly better results than fits using purely m Chandra, and Fermi-LAT for revealing its high energy radiation physics. No significant variation
geometric templates (S.1. Table 1), and if we artificially rotate the Sgr dSph template on the sky, the best-fitting position angle ,S: trend is observed in the X-ray band. Its GeV +v-ray light curve derived from the Fermi-LAT 13.5-
is very close to the actual one (E.D. Figure 5). By contrast, if we displace the Sgr dSph template, we find moderate (4.50 c year observations shows that it is in a low ~-ray flux stage before MJD 58500 and experiences violent £
significance) evidence that the best-fitting position is ~ 4° from the true position, in a direction very closely aligned with the [ outbursts after MJD 58500. The confidence level of the flux variability is much higher than 5@, and
dwarf galaxy’s direction of travel (E.D. Figure 5); this plausibly represents a small, but real and expected (as explained below) 8 the flux at 10 GeV varies ~ 3 orders of magnitude. The flux variation is accompanied by the clearly E

physical offset between the stars and the y-ray emission. T ——————

N
N
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The Frequentist approach

The P-VALUE is the frequency in which we would have observed
“something” more extreme assuming the null hypothesis to be true

ABSTRACT

It is usually thought that long-duration gamma-ray bursts (GRBs) are associated with massive star
core collapse whereas short-duration GRBs are associated with mergers of compact stellar binaries.
The discovery of a kilonova associated with a nearby (350 Mpc) long-duration GRB- GRB 211211A,
however, indicates that the progenitor of this long-duration GRB is a compact object merger. Here we
report the Fermi-LAT detection of gamma-ray (> 100 MeV) afterglow emission from GRB 211211A,
which lasts ~ 20000 s after the burst, the longest event for conventional short-duration GRBs ever
detected. We suggest that this gamma-ray emission results mainly from afterglow synchrotron emission.
The soft spectrum of GeV emission may arise from a limited maximum synchrotron energy of only a
few hundreds of MeV at ~ 20000 s. The usually long duration of the GeV emission could be due to
the proximity of this GRB and the long deceleration time of the GRB jet that is expanding in a low
density cricumburst medium, consistent with the compact stellar merger scenario.

p-value = p(x more extreme than 5| Hg

... but then, what are all these “sigmas”™?

Keywords: Gamma-ray bursts (629) — High energy astrophysics (739)

We therefore consider emission from the Sgr dSph as an alternative origin for the cocoon. In order to test this possibility, we
fit the y-ray emission observed by Fermi-LAT over a region of interest (ROI) containing the cocoon via template analysis. In our
baseline model these templates include only known point sources and sources of Galactic diffuse y-ray emission. We contrast
the baseline with a baseline + Sgr dSph model that invokes these same templates plus an additional template constructed to be
spatially coincident with the bright stars of the Sgr dSph (Extended Data (E.D.) Figure 1 and S.I. Figure 1); full details of the
fitting procedure are provided in Methods and S.I. sec. 3. Using the best motivated choice of templates, we find that the baseline
+ Sgr dSph model is preferred at 8.1@ significance over the baseline model. We also repeat the analysis for a wide range of
alternative templates for both Galactic diffuse emission and for the Sgr dSph (Table 1) and obtain > 5¢ detections for all
combinations but one. Moreover, even this is an extremely conservative estimate, because our baseline model uses a structured
template for the FBs that absorbs some of the signal that is spatially coincident with the Sgr dSph into a structure of unknown
origin. If we follow the method recommended by the Fermi collaboration [2] and use a flat FB template in our analysis, the
significance of our detection of the Sgr dSph is always > 146. Despite this, for the remainder of our analysis we follow the
most conservative choice by using the structured template in our baseline model. In Methods, we also show that our analysis
passes a series of validation tests: the residuals between our best-fitting model and the data are consistent with photon counting
statistics (E.D. Figure 2 and Figure 3), our pipeline reliably recovers synthetic signals superimposed on a realistic background
(E.D. Figure 4), fits using a template tracing the stars of the Sgr dSph yield significantly better results than fits using purely
geometric templates (S.I. Table 1), and if we artificially rotate the Sgr dSph template on the sky, the best-fitting position angle
is very close to the actual one (E.D. Figure 5). By contrast, if we displace the Sgr dSph template, we find moderate (4.5¢
significance) evidence that the best-fitting position is ~ 4° from the true position, in a direction very closely aligned with the
dwarf galaxy’s direction of travel (E.D. Figure 5); this plausibly represents a small, but real and expected (as explained below)
physical offset between the stars and the y-ray emission.
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PKS 1413+135: Bright
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1. INTRODUCTION

Gamma-ray bursts (GRBs) are usually divided into
two populations (Kouveliotou et al. 1993; Norris et al.
1984): long GRBs that originate from the core-
collapse of massive stars (Galama et al. 1998) and short
GRBs formed in the merger of two compact objects
(Abbott et al. 2017). While it is common to divide
the two populations at a duration of 2s for the prompt
keV /MeV emission, classification based on duration only
does not always correctly point to the progenitor. Grow-
ing observations (Ahumada et al. 2021; Gal-Yam et al.
2006; Gehrels et al. 2006; Zhang et al. 2021) have shown
that multiple criteria (such as supernova/kilonova asso-
ciations and host galaxy properties) rather than burst
duration only are needed to classify GRBs physically.

GRB 211211A triggered the Burst Alert Telescope
(Barthelmy et al. 2005) onboard The Neil Gehrels Swift
Observatory at 13:09:59 UT (D’Aiet al. 2021), the
Gamma-ray Burst Monitor (Meegan et al. 2009) on-
board The Fermi Gamma-Ray Space Telescope at
13:09:59.651 UT (Mangan et al. 2021) and High energy
X-ray Telescope onboard Insight-HXMT (Xiao et al.
2022) at 13:09:59 UT on 11 December 2021. The
burst is characterized by a spiky main emission phase
lasting ~13 seconds, and a longer, weaker extended
emission phase lasting ~55 seconds (Yang et al. 2022).
The prompt emission is suggested to be produced by
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the fast-cooling synchrotron emission (Gompertz et al.
2022). The discovery of a kilonova associated with
this GRB indicates clearly that the progenitor is a
compact object merger (Rastinejad et al. 2022). The
event fluence (10-1000 keV) of the prompt emission is
(5.4 0.01) x 10~* erg cm~2, making this GRB an ex-
ceptionally bright event. The host galaxy redshift of
GRB 211211A is z = 0.0763 £ 0.0002 (corresponding to
a distance of ~350 Mpc (Rastinejad et al. 2022)). At
350 Mpc, GRB 211211A is one of the closet GRBs, only
a bit further than GRB 170817A, which is associated
with the gravitational wave (GW)-detected binary neu-
tron star (BNS) merger GW170817. For GRB 170817A,
no GeV afterglow was detected by the LAT on timescales
of minutes, hours, or days after the LIGO/Virgo detec-
tion (Ajello et al. 2018).

As the angle from the Fermi-LAT boresight at the
GBM trigger time of GRB 211211A is 106.5 degrees
(Mangan et al. 2021), LAT cannot place constraints on
the existence of high-energy (E > 100 MeV) emission
associated with the prompt GRB emission. We focus in-
stead on constraining high-energy emission on the longer
timescale. We analyze the late-time Fermi-LAT data
when the GRB enters the field-of-view (FOV) of Fermi-
LAT. We detect a transient source with a significance of
TSmax =~ 51, corresponding to a detection significance
over 6@. The result of the data analysis is shown in §2



The Frequentist approach

It is common to express such probability in multiples S of the standard deviations of a
normal distribution via the inverse error function

Here the (in-)famous number
of “sigma”

S =2 erf ! (1 — p-value)

from scipy import special

o pval np.geomspace(le-7, 1, 1000)
y np.sqrt(2)+special.erfinv(1l - pval)

plt.plot(pval,y)
plt.xscale('log')

plt.xlabel('p-value')
plt.ylabel(r'$\sigma$')
0 plt.grid()

1077 10°6 1073 1074 103 102 101 10°
p-value
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The Frequentist approach

A bit of terminology...

It | repeat the experiment an infinitely time, assuming Hto be true, | would have
observed D > 3 only 0.27% of the times

N e

The above frequentist conclusion can be rephrased as follow

Confidence level = 1 - p-value

The hypothesis H is rejected with a 99.73% C.L.

The hypothesis H is rejected with a significance of 3 “sigma”
\ o = \ﬁ . erf~}(CL)
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The Frequentist approach

... When you read something like

... We detected the source at 6 sigma ...~

what they actually mean is:

It we repeat the experiment an infinitely time, assuming the "no-source”

hypothesis to be true, we would have observed the statistic & > &,
1.97 - 10~/ % of the times

. only
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Recap:

1. The Bayesian approach allows us to quantify our “opinion” on a given model from the
observed data using the rules of probability theory

Pros: Alternative hypotheses are taken into account. No need to define a statistic
and to know its distribution.

Cons: One needs a prior distribution.

2. The frequentist approach makes us exclude a model with given confidence by looking
at infinity repetitions of the experiments in which the model is assumed to be true

Pros: No need for priors

Cons: Choice of the statistic is arbitrary. Alternative hypothesis not taken into
account. Type | and |l errors.
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The Likelihood
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The Likelihood

Let's take a look at some recent papers

Find (1/9) X

=
Long-term multi-wavelength study of 1ES 0647+250

MAGIC Collaboration: V. A. Acciari', T. Aniello’, S. Ansoldi**, L. A. Antonelli?, A. Arbet Engels*, C. Arcaro’, M. Artero®, K. Asano’,

D. Baack®, A. Babi¢?, A. Baquero'’, U. Barres de Almeida'', J. A. Barrio'’, I. Batkovié’, J. Becerra Gonzilez', W. Bednarek'?, E. Bernardini’,

M. Bernardos'?, A. Berti*, J. Besenrieder*, W. Bhattacharyya'#, C. Bigongiari®, A. Biland'>, O. Blanch®, H. Bokenkamp®, G. Bonnoli?,
Z. Bo$njak®, 1. Burelli*, G. Busetto®, R. Carosi'®, M. Carretero-Castrillo'?, G. Ceribella’, Y. Chai*, A. Chilingarian'®, S. Cikota®, E. Colombo',
J. L. Contreras'?, J. Cortina'?, S. Covino?, G. D’Amico®, V. D’Elia?, P. Da Vela'®*, F. Dazzi®, A. De Angelis’, B. De Lotto®, A. Del Popolo?,
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The Likelihood

Let's take a look at some recent papers

Find (1/10) X

likelihood
H. Abe,! S. Abe,! V. A. Acciari,? T. Aniello,® S. Ansoldi,**® L. A. Antonelli,> A. Arbet Engels,® C. Al
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(MAGIC Collaboration)

Search for Gamma-ray Spectral Lines from Dark Matter Annihilation up to 1
towards the Galactic Center with MAGIC
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The Likelihood

Let's take a look at some recent papers

Find (1/15) X

likelihood|

MAGIC Collaboration: V. A. Acciari', S. Ansoldi>**, L. A. Antonelli*, A. Arbet Engels*, D. Baack’, A. Babic¢®, B. Banerjee’, U. Barres de
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D. Paneque'®, R. Paoletti'!, J. M. Paredes'®, L. Pavleti¢®, P. Peiiil’, M. Peresano®, M. Persic*>??, P. G. Prada Moroni'’, E. Prandini'®, I. Puljak®,
W. Rhode’, M. Rib6'®, J. Rico'®, C. Righi®, A. Rugliancich'’, L. Saha’, N. Sahakyan'?, T. Saito**, S. Sakurai**, K. Satalecka'?, B. Schleicher®,
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T. Surié®, M. Takahashi?*, F. Tavecchio®, P. Temnikov®, T. Terzi¢®, M. Teshima'#?*, N. Torres-Alba'®, L. Tosti'?, J. van Scherpenberg'*,

G. Vanzo', M. Vazquez Acosta', S. Ventura'', V. Verguilov®, C. E Vigorito'®, V. Vitale'?, I. Vovk'*2** M. Will'¥, D. Zari¢®
External authors: S. Celli*’, and G. Morlino*'-*

Study of the GeV to TeV morphology of the y-Cygni SNR
(G 78.2+2.1) with MAGIC and Fermi-LAT

Evidence for cosmic ray escape
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The Likelihood

SCENARIO 1 SCENARIO 2

0.4 Distiribution under 0.5
null hypothesis
0357 Distiribution under
“ alternative hypothesis 0.4
0.30 -
—— observed value
0.251 Distiribution under
: 0.3 :
null hypothesis
o~ &
0.201 Distiribution under
E E ]

Observed value

alternative hypothesis

0 Observe& value

* “~| —— observed value

0.15-

0.101 ‘
0.1
0.051
0.00 1 0.01
7 - b 5 H 7 5 b 5 3 ;
Statistic Statistic

Frequentist conclusion: Frequentist conclusion:
The null hypothesis is rejected at 4 sigma level The null hypothesis is rejected at 4 sigma level
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The Likelihood

SCENARIO 1 SCENARIO 2

0.51

0.40 1 Distiribution under

null hypothesis

0.35; Distiribution under

alternative hypothesis 0.4
0.30
—— observed value
0.25- Distiribution under
: 0.3 :
null hypothesis

L L

0.20 ; Distiribution under
E 8 ]

Observed value alternative hypothesis

Observeéﬂ value

0.21

0.151 —— observed value

SR |[f the null hypothesis is * It the null hypothesis is ‘

WMl alse, the chances of jl false, the chances of

| correctly rejecting it are correctly rejecting it are

0.00- very low very high

—4 —2 0 2 4 —4 —2 0 2 4 6
Statistic Statistic

Frequentist conclusion: Frequentist conclusion:
The null hypothesis is rejected at 4 sigma level The null hypothesis is rejected at 4 sigma level
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The Likelihood

You want the statistic to give you a high chance
of rejecting a hypothesis that is false

You want your statistic to be

POWERFUL!

Introduction to statistical analysis 54 Astro Data Camp 2023 - Padova



The Likelihood

Probability of accepting
HO when H1 is true | 6

1 — @ = specificity =

y -

1 =0

Distribution of the S assuming H1 is true

—

Power of the test

1l — «

1 — B = sensitivity =
Distribution of the S assuming HO is true

Unit of measure of the test 3 :. -
b \ ‘
ol g K By g Y . \\ ’ '

a T —
False positive: { Type-I error J
Probability of rejecting N /
HO when HO is true
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The Likelihood

Distiribution under

ldeal case: Oprution under ”
[\ Very far away
M
o |deally infinitely far away
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The Likelihood

Distiribution under

0.5 - null hypothesis n
| Distiribution under
I d ea I case n = alternative hypothesis
04 - (\

Very far away
G——-

|[deally infinitely far away

0.3 -

PDF

0.2 |

In reality:

Neyman—-Pearson lemma:

the most powerful statistic is the likelihood ratio! ” 5 5

Statistic
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The Likelihood

Definition of likelihood:

the likelihood Is a function of t

observir

g the data assuming t

e T

eI

odel parameters defined as the probability of
odel to be true

‘C(9|Dobs) o

P(Dobsle)

Parameter of the hypothesis
you want 1o test

Introduction

to statistical analysis

The data we observed

58

Astro Data Camp 2023 - Padova



The Likelihood

Definition of likelihood ratio:

Parameter of the hypothesis
you want to test

L"(Q‘Dobs)
£(9‘Dobs)

Best fit or value

that maximises Observed data
the likelihood
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The Likelihood

Another very useful property of the likelihood ratio

—2 - log AL ~ y*

\

['(9|Dobs)
£(9|Dobs)
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The Likelihood

Example:

2400 ) 1 ) ) l ] Ll 1 I ] ) ] ) L ' ) | 1 ) ] ) ) ) ' l ] ] ] )
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Sig + Bkg inclusive fit (mH = 126.5 GeV)

--------- 4th order polynomial
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Introduction to statistical analysis

This is the plot that led ATLAS to claim the
discovery of the HIGGS.

Let’s figure out how they were able to make
such a claim with a Toy Model and with the
theory we have learned so far

61
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The Likelihood

Example:

L e L A B B B B S S B B B S B A B
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Toy Model

62

800 -

600 |

400 -

200 A

Null hypothesis HO
a=0

Alternative hyp. H1
a=>5
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The Likelihood

Example: Y =mzx+q+a-G(xz;u=50,0 =8)
Likelihood g~ N (i =y, 0 = 70)
L(a) = p(Z,7la) = | | p(xi, yila)

()

1 (yﬁ;(a;—w;)Q .
p(xi, yila) o< e o

le—48

£(a) 0 20 40 " 60 80

Null hypothesis HO
a=0

() - N ) 4 v o ~J o
1 1 1 1 1 1 1 1 1

Alternative hyp. H1
; : ; : ;D a=>5
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The Likelihood

Example: Y =mzx+q+a-G(xz;u=50,0 =8)
Likelihood y~Np=y, o=10)
L(a) =p(Z,yla) = Hp(:vz-,ina)

i

1 (yﬁ;(a;—w;)z .
p(zi,yila) o< e

Lla=0 X
s=La=0 g5 1077
E(a — a) Null hypothesis HO
a=0

How do we interpret this value of

isti Alternative hyp. H1
the statistic? ive hyp

a=>5
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The Likelihood

Example:

140 ] . . . .
Distiribution under

0 - null hypothesis: a=0
Distiribution under

100 - alternative hypothesis: a=5

—— observed value
80 -

60 -

Observed: 3.52- 10"

20 -
al

=
S
H

a)

Introduction to statistical analysis

107

65

v =mz+q+a-G(z;u=>500=28)

y~N(pu=y,o="70)

800 -

600 |

400 -

200 A

Null hypothesis HO
a=0

Alternative hyp. H1
a=>5
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The Likelihood

Example:

140

120 A

100 A

80 -

60 -

40 -

20 -

Distiribution under
null hypothesis: a=0

Distiribution under
alternative hypothesis: a=5

observed value

Observed: 3.52- 10"

10—12‘

L(a = 0)
L(a = a

S —

|
Q
N—"

Introduction to statistical analysis

10-1° 10°° 107° 10-%

10-2

107

66

Such a value of the statistic is
more luckily to have been
produced by the alternative
hypothesis rather than by the null
hypothesis!

Therefore, we can exclude the null
hypothesis and be quite sure of
avoiding a type | error.

But with what confidence?
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The Likelihood

140

120 A

100 A

Distiribution under
null hypothesis: a=0

~ Distiribution under
~alternative hypothesis: a=5

observed value

Observed: 3.52- 10"

10—12

L(a = 0)

Szﬁ(a )

|
Q
N—"

Introduction to statistical analysis

10-1° 10°° 107° 10°%

10-#

107

6/

Taking the —2 - log(S)
the distribution becomes a
X2 distribution

This 1s known as the
Wilks’ theorem
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The Likelihood

120 ; Distiribution under TaKing th_e _2 lOg(S)
null hypothesis: a=0 the distribution becomes a
100 - | - Distiribution under 2 - : :
— alternative hypothesis: a=5 X distribution
80 1 —— observed value
a0 -
. % Observed: 50 7 Th_ls S known as the
Wilks’ theorem
20 -
. 5 10 15 20 25 30 35 40
—2 - log(S)
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The Likelihood

O
120 - Distiribution under _ 2 ~ F 1038
null hypothesis: a=0 p-value = /29 . dz x*(z) =510
lt _ - Distiribution under |
—  alternative hypothesis: a=5
o —— observed value Converting the p-value to a
. “Sigma”
o Observed: 29.7 V2-erf (1 -5-107%) ~ 5.45
20 A
NI E—— = - We are above the 5 sigmas, we
0 5 10 15 20 25 30 35 40 . _
can therefore claim a discovery!
—2 - log(S)
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The Likelihood

O
120 - Distiribution under __ 2 ~ 5.10"°%
null hypothesis: a=0 p-value = /29 . dz x"(z) =510
100 1 , ~ Distiribution under |
—  alternative hypothesis: a=5
o —— observed value Converting the p-value to a
- “Sigma”
o Observed: 29.7 V2-erf (1 -5-107%) ~ 5.45
20 -
T8 5 10 15 = .2'0 - 4-2'5 30 3'5‘ 40 Notice that \/297 ~ 5.49
Why?
—2 - log(S) y
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Statistical inference in On/Off measurement
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Statistical inference in On/Off measurement

108 F
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102 103

Neve nts
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700
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22°30°
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Time = 0.32 h
Non = 895; N_ = 17.6+ 1.9

Energy (GeV)

Fig.2|Spectrumabove 0.2 TeV averaged over the periodbetweenT,+62s
and T, +2,454 sfor GRB190114C. Spectral-energy distributions for the
spectrumobserved by MAGIC (grey open circles) and the intrinsic spectrum
corrected for EBL attenuation® (bluefilled circles). The errors on the flux
correspond toone standard deviation. The upper limits at 95% confidence level
are shownfor thefirst non-significant bin at high energies. Alsoshownis the
best-fit modelfor theintrinsic spectrum (black curve) when assuming a power-
law function. The grey solid curve for the observed spectrumis obtained by
convolving this curve with the effect of EBL attenuation. The grey dashed curve
is the forward-folding fit to the observed spectrum with a power-law function
(Methods).
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Extended DataFig.2|Significance of the y-ray signal between T, + 62sand
T,+1,227sfor GRB190114C. Distribution of the squared angular distance, 6%,
for the MAGIC data (points) and background events (grey shaded area). 6%is
defined asthe squared angular distance between the nominal position of the
source and thereconstructed arrival direction of the events. The dashed

/2

0 [ deg” ]
vertical line represents the value of the cut on 6. This defines the signal region,
where the number of events coming from the source (N,,) and fromthe
background (N,¢) are computed. The errorsfor ‘on’ events are derived from

Poissonian statistics. FromN,,and N, the number of excess events (N,,) is
computed. The significanceis calculated using the Li & Ma method*.
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Statistical inference in On/Off measurement

o I These are the typical plots shown in a scientific s

M= > ublication in gamma-ray astronomy and are all h

the product of statistical analysis.

Flux (erg cm™2 s71)

10710 F
How do we interpret them? What is “Li&Ma”?
_ i £ 800F
107 E & Observed s F Time = 0.32 h
- - EBL-corrected Z 700
| . - 3 i Non = 895; N =17.6+ 1.9
102 108 600 | of |
Energy (GeV) - N, =877.4 + 30.0 36™ 34 32m
Fig.2|Spectrumabove 0.2 TeV averaged over the period between T, + 62 s >00 C Significance (Li&Ma) = 51.4¢ o™ Rscension
and T, + 2,454 sfor GRB190114C. Spectral-energy distributions for the 400 F
spectrumobserved by MAGIC (grey opencircles) and theintrinsic spectrum _
corrected for EBL attenuation?® (bluefilled circles). The errors on the flux 300
correspond to one standard deviation. The upper limits at 95% confidence level -+
are shown for the first non-significant bin at high energies. Alsoshownisthe 200 = +
best-fit modelfor theintrinsic spectrum (black curve) when assuming a power- 100 -
law function. The grey solid curve for the observed spectrumis obtained by - ++++
convolving this curve with the effect of EBL attenuation. The grey dashed curve 0 e S ' '
is the forward-folding fit to the observed spectrum with a power-law function 0 0.1 0.2 0.3 ) 20'4
(Methods). 0% [ deg” ]
Extended Data Fig. 2| Significance of the y-ray signal between T, + 62sand vertical line represents the value of the cut on 8. This defines the signal region,

— T,+1,227sfor GRB190114C. Distribution of the squared angular distance, 6%, where the number of events coming from the source (N,,) and fromthe
for the MAGIC data (points) and background events (grey shaded area). 8*is background (N,¢) are computed. The errorsfor ‘on’ events are derived from
defined asthe squared angular distance between the nominal position of the Poissonian statistics. FromN,,and N, the number of excess events (N,,) is

sourceandthereconstructed arrival direction of the events. The dashed computed. The significanceis calculated using the Li & Ma method*2.
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Statistical inference in On/Off measurement

inference analysis

Raw images

Events

e Energy, direction, ...
e Energy, direction, ...
e Energy, direction, ...
| * Energy, direction, ...
e Energy, direction, ...
e Energy, direction, ...

Expected ~y-ray
counts

>
Observed Intrinsic
flux flux

Background

Exposure

IRF Model 9

parameters
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Statistical inference in On/Off measurement

inference analysis

AW 1mages

Events

- o
p e
B - .
Y
Y /4
y
0

|
|
|
|
|
|
|

e Energy, direction, ...
e Energy, direction, ...
e Energy, direction, ...
| * Energy, direction, ...
e Energy, direction, ...
e Energy, direction, ...

>
Expected y-ray ~ Observed o  Intrinsic g
counts flux W flux
S /
A A A
Background | | Exposure| | IB Model % ()
r .4  parametersig

We will skip the first and last part (being too technical and too instrument
dependent) and focus on the remaining part:

given a list of events how do we reconstruct the flux and with which
confidence can we claim that there is indeed a flux of gamma-ray?

Introduction to statistical analysis
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Statistical inference in On/Off measurement

= g s < - =

! Fvents Expected y-ray } Observed Give your eve S AS e

counts |  flux expected number of gamma-ray?

| e Energy, direction, ...
e Energy, direction, ... S
“ e Energy, direction, ... I
g * Energy, d!rect}on, A A Table length=6310
f e Energy, direction, ... !
‘ : : 3 EVENT_ID TIME RA DEC ENERGY
e Energy, direction, ...
’- . S deg deg TeV
¢ int64 float64 float32 float32 float32
' 42  333778849.5267153 444.21463 23.44914 0.08397394
Background Xposure
g # p 67 333778849.61315054 443.5247 22725792 0.10596932
S I I I T T ol it it i AP St OSSR 80 333778849.6690142 443.76956 22.451006 0.19733498 B
-
116  333778849.7778549 443.71518 21985115  1.0020943 N
N
179  333778849.9826064 443.64136 22.041315  0.10316629 :}
198  333778850.0339344 444.84238 22175398 0.118843034 g
570 333780036.17792755 443.99866 22.431725 0.14909887
599 333780036.2743846 444.22705 22.348415 0.19341666
622 333780036.33778954 444.08524 22571606 0.07879259
660 333780036.47105366 443.41534 2167344  0.2096362
675 333780036.5179095 44355164 22.772985 0.17672835
)

924 333780037.3755159 444.85886 22.116222 0.123453744
963 333780037.52476007 444.8693 21.290916 0.13630114

R
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Statistical inference in On/Off measurement

Events Expected y-ray § Observed

counts flux

e Energy, direction, ...
e Energy, direction, ...
e Energy, direction, ... |
e Energy, direction, ... Y 1 A
e Energy, direction, ...

e Energy, direction, ...
L J

Background Xposure

We have 6310 events (in a given temporal,
energetic, and spatial window). Does that
mean that the gamma-ray flux is 63107

Consider this event at 1 TeV. Is it a signal
event (a gamma-ray) or a background
event (a muon, proton, etc...)?

Introduction to statistical analysis 77

EVENT_ID

int64
42

67

80
116
179
198

570
599
622
660
675
924
963

Table length=6310

TIME

s

float64
333778849.5267153
333778849.61315054
333778849.6690142
333778849.7778549
333778849.9826064
333778850.0339344

333780036.17792755
333780036.2743846
333780036.33778954
333780036.47105366
333780036.5179095
333780037.3755159
333780037.52476007

Astro Data Camp 2023 - Padova

RA

deg
float32
444.21463
443.5247
443.76956
443.71518
443.64136
444.84238

443.99866
444.22705
444.08524
443.41534
443.55164
444.85886

444.8693

DEC

deg
float32
23.44914
22.725792
22.451006
21.985115
22.041315
22.175398

22.431725
22.348415
22.571606
21.67344
22.772985
22116222
21.290916

ENERGY
TeV

float32
0.08397394
0.10596932
0.19733498
1.0020943
0.10316629

0.118843034

0.14909887
0.19341666
0.07879259

0.2096362
0.17672835

0.123453744

0.13630114

Given your event list what’s the
expected number of gamma-ray?

| \T~=xJ 1] |
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Statistical inference in On/Off measurement

The “ingredients”

The flux
number N, of expected photons per unit energy (E), time (t), and area (A)
. 4N, (E,t,h)
PELR) = = IEdAdr

— Expected signal events “s”
EXpeCted baCkg round events “b Taking into account the exposure of the observation

e can be assumed to be known given by the energetic (E), temporal (t) and solid angle (Q2) range (hereafter denote by A) in

e can be estimated from an OFE measurement which the events have been collected we have

(see next slide) . — / ® (E,f ,¢)dE df dt
A

Total number of observed events “on source” . s
Total number of observed events “off source

s+ b)Non pNorr
| NO)N' e+t Norr ~ P(Norr|b) = e’

NON ~ P(NON‘S—I—[?) — N '
OFF-

Introduction to statistical analysis /8 Astro Data Camp 2023 - Padova



Statistical inference in On/Off measurement

On/0Off measurement

k‘.

No. | variable | description property
- >ignal event N,. number of events in the On region measured
" Nor Bl Background event Nots number of events in the Off region measured
* Q exposure in the On region over the one in the Off regions measured
_ | b expected rate of occurrences of background events in the Off regions | unknown
HEEE EEE S expected rate of occurrences of signal events in the On region unknown
HEEE EEN N, number of signal events in the On region unknown |
AEEE EEE /
HEEE EEE
AEE EHEE
AEE EEE
AEE EEE
AN EEN
On measurement Off measurement
(5 + ab)Non —(s+ab) bNos s b
Noy! Nys!
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Statistical inference in On/Off measurement

On/0Off measurement Signal estimation in the frequentist approach:

- i (5 + ab)Non _(s-+ab) pNorr
Likelihood function: P(Non, Noss | s,05a) = p(Now | s,ab) - p(Noss | b) = N1 € N €
on: of -
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Statistical inference in On/Off measurement

On/0Off measurement Signal estimation in the frequentist approach:

(3 + ab)Non 6—(s—|—ozb) . bNoss —b
l

leellhOOd funCtion: p(Non,NOff | S,b; Oé) = p(Non ‘ S,Ozb) -p(NOff ‘ b) — N N '6
on: of -

( N N | A B ) value of b that maximizes the
i i - — P\Non, Noff | 5,0 =0, & likelihood for a given s
Likelihood ratio: A(S) =

( ) p(Non,Noff‘S:Non—OfNoff, b:NOffy Oé)

- N2+ /N2 +4(1+41/a)sNys¢
B 2(1+ )
N = N,, + Noff — 8(1 + 1/04)

Introduction to statistical analysis 81 Astro Data Camp 2023 - Padova



Statistical inference in On/Off measurement

On/0Off measurement Signal estimation in the frequentist approach:

T : b)Non bNoss
Likelihood function: P(Non, Noss | s,05a) = p(Now | s,ab) - p(Noss | b) = (s + ab) e~ (s+ad). e b

N,y,! Ny !
value of b that maximizes the

i i - — p(j"onvj”Off | 5,0 = b ; Q) likelihood for a given s
Likelihood ratio: A(s) =
(5) P(Non, Noff | s = Now —alNoss , b= Nyss; )

- N2+ /N2 +4(1+41/a)sNys¢

2(1+ )
l NZNon—I—Noff—S(l—l—l/Oz)

N, N, ~
—2log A(s) = 2 N(mlog( A) —I—NOfflog( Aff) + s+ (1 4+ a)b— Nyp = Ny
s + ab b
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Statistical inference in On/Off measurement

On/0Off measurement Signal estimation in the frequentist approach:

| Non No 7 _
—2log A(s) = 2 N(mlog< A> + Nory log< Aff> + s+ (1+a)b— N,y — Nory
I s+ ab b _

6 1 — log-likelihood
— True value of signal

Example with: 5 -
Non =57
Noff = 85 *
a = 0.5

log likelihood

Let’s assume we
want to test the

/
hypothesis s=20 ’ 0 10 20 30 40

signal
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Statistical inference in On/Off measurement

On/0Off measurement Signal estimation in the frequentist approach:

i Non No 7 _
—Qlog)\<8):2 NanlOg( A>—|_Noff10g< Aff> + 5+(1+a)b_Non_Noff

s+ ab b
Our statistic is 6|[— bateiivood
- Irue vailue o1 signa
s=20
—2log A(s = 20) ~ 0.38 5-
Values more extreme than 0.38 would g *]
have been observed ~ 54% of the times =
X 3-
—— x? distribution 3
2_
1 -
0 | . — |
0 10 20 30 40

signal
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Statistical inference in On/Off measurement

On/0Off measurement Signal estimation in the frequentist approach:

i Non No 7 _
—QlOg)\<S):2 NanlOg( A>—|_Noff10g< Aff> + 5+(1+a)b_Non_Noff

s + ab b
Our statistic is o[ baeiood
S— rue vaiue or signa
s=20
—2log A(s = 20) ~ 0.38 5-
Values more extreme than 0.38 would 7 We can therefore claim that a value

of 20 is excluded with a 46%
3 - confidence level.

have been observed ~ 54% of the times

log likelihood

—— x? distribution

/

20 30 40
signal
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Statistical inference in On/Off measurement

Non =57 Noff = 85 a =0.5

6 -
? |? ? ? ?
Does it mean that we have to
repeat this for all possible >
values of the signal ’s’?
© 4 -
é 3.84
o
— 3 -
o
= 2.45
2 -
1.04
14 0.37
; 0.06
1'5 20 215 3'0 3'5 4'0 415 Sb 55

signal
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Statistical inference in On/Off measurement

Non =57 Noff = 85 a =0.5

Conventionally 3 confidence
levels are reported:

- 0% CL : which is by definition :
when the chi-squared is zero

- 68% CL : which is when the chi-
squared is 1

- 95% CL : which is when the chi-
squared is 3.84

3.84
4 3.84

log likelihood

15 20 25 30 35 40 45 50 55
signal
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Statistical inference in On/Off measurement

Non =57 Noff = 85 a =0.5

Conventionally 3 confidence
levels are reported:

0% CL : which is by definition :
when the chi-squared is zero

68% CL : which is when the chi-
squared is 1

95% CL : which is when the chi-
squared is 3.84

3.84

4 -
68% uncertainty 3.84
3 \

—

log likelihood

95% Upper Iimit

1 best estimated 1

0
0 | | | | ! | | !
15 20 25 30 35 40 45 50 55

signal
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Statistical inference in On/Off measurement

Non =57 Noff = 85 a =0.5

So do we need each time to
compute the likelihood ratio 6
and find where it is equal to
Zero, one, and 3.847

3.84

4 -
68% uncertainty 3.84

log likelihood

;- \
ﬁ
95% Upper Iimit
best estimated
1 - 1 1
0
0 | | | | | | | |
15 20 25 30 35 40 45 50 55

signal
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Statistical inference in On/Off measurement

So do we need each time to
compute the likelihood ratio
and find where it is equal to
Zero, one, and 3.847

Thankfully in most cases we
can get a good
approximation using the
following expression

Introduction to statistical analysis

log likelihood

4
1

W
1

Non =57

Noff = 85 a

= 0.5

3.84

. Nesstlhn

0

3.84

90

25 30 35 40

signal

45 50 55
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Statistical inference in On/Off measurement

Nan — aNOf — 32

\xNOI/l_I_azNOf — 806 6 -

- The signal estimation is:

32+ 8

log likelihood

- with upper limit
48.1
- and lower limit

15.9

Introduction to statistical analysis

Non =57

Noff = 85 a

= 0.5

4
|

W
|

3.84

 Ne-alas |

15

20

91

25

30

3.84

0

35 40 45 50 55

signal
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The Li&Ma formula

Among all the possible
hypotheses, there Is a
‘'special’ one we are
interested In excluding...

... the one in which there is
no signal, i.e. s=0

Introduction to statistical analysis

log likelihood

20.0 -

17.5 A

15.0 -

12.5 A

Non =57

Noff = 85 a =0.5

92

20 30 40 50
signal

Astro Data Camp 2023 - Padova



The Li&Ma formula

Among all the possible
hypotheses, there Is a
‘'special’ one we are
interested In excluding...

... the one in which there is
no signal, i.e. s=0

Li&Ma N,, log (

Introduction to statistical analysis

log likelihood

Non =57

Noff = 85 a =0.5

20.0 ~

19.5
17.5 -

—
>
o

st
N
o

—
o
o

N, 11/2
>+Nofflog((o‘+ ) ff)

Non =+ Noff

signal
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The Li&Ma formula

Non =57 Noff = 85 a =0.5

Among all the possible .

hypotheses, there Is a 95 A chi-squared variable can take

‘'special’ one we are 17.5 values bigger than 19.5 only
1/100°000 of the time!

interested In excluding... =0 -
... the one In which there is

. . 12.5 - sgrt(19.5) = 4.4, which means
no signal, i.e. s=0

that ... ?

10.0 A

log likelihood

5.0 - /
I 1 (a+1)N (a+1)Nosr\ ok
' ::\/5 N,, lo ( o > + N,r¢lo (
Li&Ma ' 5 o Nop + Nogy ff 206 Non + Nogt )

signal
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The Li&Ma formula

Applying the Li&Ma significance in the ‘real’ world

Italy

700000 A

600000 A

500000 A

400000 A

300000 A

Total Deaths - All Causes
Total Deaths - All Causes

200000 A

100000 A

o -
2016 2017 2018 2019 2020
Year

Introduction to statistical analysis

500000 A

400000 A

300000 -

200000 ~

100000 -

Spain

2016

2017

2018
Year

95

2019

2020

Total Deaths - All Causes

Source: UN World Population Prospects

Norway

40000 -

35000 A

= N N w
w o w o
o o o o
o o o o
o o o o

10000 -

5000 A

2016 2017 2018 2019 2020
Year
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The Li&Ma formula

Applying the Li&Ma significance in the ‘real’ world

Source: UN World Population Prospects

Italy Spain Norway

0000000

0000000000000

000000

00000000000000

Total Deaths - All Causes
Total Deaths - All Causes
Total Deaths - All Causes

0000000
000000

0000000
0000000

N

0,

N =716,753 N = 493,075 N = 40,578
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The Li&Ma formula

Applying the Li&Ma significance in the ‘real’ world

Source: UN World Population Prospects

Italy Spain Norway

0000000

0000000000000

000000

00000000000000

Total Deaths - All Causes
Total Deaths - All Causes
Total Deaths - All Causes

0000000
000000

0000000
0000000

N

0,

N =716,753 N = 493,075 N = 40,578
1/4 1/4 1/4

&
|
&
|

04
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The Li&Ma formula

Applying the Li&Ma significance in the ‘real’ world

Source: UN World Population Prospects

Spain Norway

Italy

0000000
000000

0000000
000000

00000000000000

Total Deaths - All Causes
Total Deaths - All Causes
Total Deaths - All Causes

0000000
000000

0000000

0000000

N, 1,672,737 N, = 162,809

N, =716,753 N, = 493,075 N = 40,578
a=1/4 1/4 a=1/4
oc=97.3 o= 100 o= —0.5
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From excess to flux

NOI’Z i \/ NOl’l

102 :

On events Ngp

109 -

101 . —{—\

1071 10°
Energy / TeV
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101

99

Off events Ny

102§

'—I
o
[

109 1

1071 10°
Energy / TeV

101
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From excess to flux

/ 2
N, — aNOf +4 /N, +« NOff

Excess events
p—
o
—

109

T

——

RESS

Rins

102
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10~1

109 101
Energy / TeV
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From excess to flux

) + Noy g log (

CRLATAVES
Non + Noypy ) _

1 (a4 1)Nop
::\/5 N(m log
_ & Nop + Nog
10 - —— o
——
g -
—e— '_._',_._,
§ ,
“% —6—
;5 -
—6—
-
——t+—0— i
—6—
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Energy / TeV

101

10°

101
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From excess to flux

Collection Area of the telescope (per each energy bin)

Introduction to statistical analysis

Area/ m”™2

10° 7

104 1

-
o
w

102 3

101 4

10~2

10~

102

10°

Energy / TeV

10!
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From excess to flux

At a first approximation (there are some caveats that won’t be discussed here)

FLUX = EXCESS / ( Collection Area X Observation Time)

<AT
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From excess to flux

10—6 —
: - Reference flux - Crab Nebula
— \« I
107° 7 ——
—e—

>
@
(F)]
™
¢
= 10—10..
|-
>
-
w

10—12 -

10~ 14 +—mq . —_—————— , — .

102 101 10° 101

Energy / TeV
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From excess to flux

With many more observation hours and after much more refined work:

EdN/JE (cm® s™)

Index

o A
107 Em
= . Cl‘ab
10 [ -
10" B
101 = \b"i‘
1072 =—
— — HEGRA 2004
10" —e— H.E.S.S. 2006
—&— MAGIC 2015&2020
107 —@— ARGO-YBJ 2013
Tibet ASy 2019
10" e HAWC 2019
——@— LHAASO-WCDA
107'° = =@ LHAASO-KM2A v
— == LHAASO log-parabola model
107" e | HAASO power-law model @>10 TeV '
2Elllll | 1 lllllll | | lllllll 1 | llllllI | | llllllI 4
25— B
- :_
-3.5 —
—4;..‘1 A 2 g .g-_g-_piig gl g g g g g _g n-§ a2 a2 a1
= 3
10°" 1 10 10° 10
Energy (TeV)

Image from: The LHAASO Collaboration et al. , Peta—electron volt gamma-ray emission from the Crab Nebula.Science373,425-430(2021).DOI:10.1126/science.abg5137
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108 F l E
100 F . 3
= N
(&) AN
>
) 1010 E B =
X
-

L
-1 F -
10 - Observed ]

-¢- EBL-corrected

102 10°

Energy (GeV)

Fig.2|Spectrumabove 0.2 TeV averaged over the periodbetweenT,+62s
and T, +2,454 sfor GRB190114C. Spectral-energy distributions for the
spectrumobserved by MAGIC (grey opencircles) and the intrinsic spectrum
corrected for EBL attenuation® (bluefilled circles). The errors on the flux
correspond toonestandard deviation. The upper limits at 95% confidence level
are shown for thefirst non-significantbin at high energies. Alsoshownisthe
best-fit model for theintrinsic spectrum (black curve) when assuming a power-
law function. The grey solid curve for the observed spectrumis obtained by
convolving this curve with the effect of EBL attenuation. The grey dashed curve
isthe forward-folding fit to the observed spectrum with a power-law function
(Methods).
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2 800
Z 700

600
500
400
300
200

100

Extended DataFig. 2| Significance of the y-ray signal between T, + 62sand
T,+1,227sfor GRB190114C. Distribution of the squared angular distance, 6%,
for the MAGIC data (points) and background events (grey shaded area). 6%is
defined asthe squared angular distance between the nominal position of the
source and thereconstructed arrival direction of the events. The dashed

23°00°

This arrow here
iIndicates an upper

22°30°
limit, and now you
know what it
means!

Declination
=

Time = 0.32 h
Non = 895; N =17.6 £1.9

.

_ N, = 877.4 £ 30.0

- Significance (Li&Ma) = 51.4¢

- Now you know what

S

— these values refer to!

0 0.1 0.2 0.3 0.4
6° [ deg” ]

where the number of events coming from the source (N,,) and fromthe
background (N,) are computed. The errorsfor ‘on’ events are derived from
Poissonian statistics. FromN,,and N, the number of excess events (N,,) is
computed. The significanceis calculated using the Li & Ma method*.
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35

- 30

- 25

- 20

36™ 347"
Right Ascension

32™

vertical line representsthe value of the cut on 6. This defines the signal region,

Here you are seeing
the TS or the log-
Ikelihood value

obtained Iin each
pixel for the null
hypothesis
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Recap

1. We have defined an On/Off measurement, which is the most common type of
measurement in gamma-ray astronomy when dealing with an unknown background

2. We have seen how to estimate the excess from an On and Off measurement in both
the frequentist and bayesian approaches and how to put confidence/credible
Intervals on such estimates

3. The frequentist approach allows us to exclude the null hypothesis with given
confidence via the usage of the Li&Ma expression

We will apply this knowledge in the hands-on sessions on the spectra and light curve
analysis!
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