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INTRODUCTION: Neutrinos are tracers of
cosmic-ray acceleration: electrically neutral
and traveling at nearly the speed of light, they
can escape the densest environments andmay
be traced back to their source of origin. High-
energy neutrinos are expected to be produced
in blazars: intense extragalactic radio, optical,
x-ray, and, in somecases, g-ray sources
characterized by relativistic jets of
plasma pointing close to our line of
sight. Blazars are among the most
powerful objects in the Universe and
are widely speculated to be sources
of high-energy cosmic rays. These cos-
mic rays generate high-energy neutri-
nos and g-rays, which are produced
when the cosmic rays accelerated in
the jet interact with nearby gas or
photons. On 22 September 2017, the
cubic-kilometer IceCube Neutrino
Observatory detected a ~290-TeV
neutrino from a direction consistent
with the flaring g-ray blazar TXS
0506+056. We report the details of
this observation and the results of a
multiwavelength follow-up campaign.

RATIONALE:Multimessenger astron-
omy aims for globally coordinated
observations of cosmic rays, neutri-
nos, gravitational waves, and electro-
magnetic radiation across a broad
range of wavelengths. The combi-
nation is expected to yield crucial
information on the mechanisms
energizing the most powerful astro-
physical sources. That the produc-
tion of neutrinos is accompanied by
electromagnetic radiation from the
source favors the chances of a multi-
wavelength identification. In par-
ticular, a measured association of
high-energy neutrinos with a flaring
source of g-rays would elucidate the
mechanisms and conditions for ac-
celeration of the highest-energy cos-

mic rays. The discovery of an extraterrestrial
diffuse flux of high-energy neutrinos, announced
by IceCube in 2013, has characteristic prop-
erties that hint at contributions from extra-
galactic sources, although the individual sources
remain as yet unidentified. Continuously mon-
itoring the entire sky for astrophysical neu-

trinos, IceCube provides real-time triggers for
observatories around the world measuring
g-rays, x-rays, optical, radio, and gravitational
waves, allowing for the potential identification
of even rapidly fading sources.

RESULTS: A high-energy neutrino-induced
muon trackwas detected on22 September 2017,
automatically generating an alert that was

distributed worldwide
within 1 min of detection
and prompted follow-up
searchesby telescopesover
a broad range of wave-
lengths. On 28 September
2017, theFermiLargeArea

Telescope Collaboration reported that the di-
rection of the neutrino was coincident with a
cataloged g-ray source, 0.1° from the neutrino
direction. The source, a blazar known as TXS
0506+056 at a measured redshift of 0.34, was
in a flaring state at the time with enhanced
g-ray activity in the GeV range. Follow-up ob-
servations by imaging atmospheric Cherenkov
telescopes, notably the Major Atmospheric

Gamma ImagingCherenkov (MAGIC)
telescopes, revealed periods where
the detected g-ray flux from the blazar
reached energies up to 400GeV.Mea-
surements of the source have also
been completed at x-ray, optical, and
radio wavelengths. We have inves-
tigated models associating neutrino
and g-ray production and find that
correlation of the neutrino with the
flare of TXS 0506+056 is statistically
significant at the level of 3 standard
deviations (sigma). On the basis of the
redshift of TXS 0506+056, we derive
constraints for the muon-neutrino
luminosity for this source and find
them to be similar to the luminosity
observed in g-rays.

CONCLUSION: The energies of the
g-rays and the neutrino indicate that
blazar jetsmay accelerate cosmic rays
to at least several PeV. The observed
association of a high-energy neutrino
with a blazar during a period of en-
hanced g-ray emission suggests that
blazarsmay indeed be one of the long-
sought sources of very-high-energy
cosmic rays, andhence responsible for
a sizable fraction of the cosmic neu-
trino flux observed by IceCube.▪
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Multimessenger observations of blazar TXS 0506+056.The
50% and 90% containment regions for the neutrino IceCube-
170922A (dashed red and solid gray contours, respectively),
overlain on a V-band optical image of the sky. Gamma-ray sources
in this region previously detected with the Fermi spacecraft are
shown as blue circles, with sizes representing their 95% positional
uncertainty and labeled with the source names. The IceCube
neutrino is coincident with the blazar TXS 0506+056, whose
optical position is shown by the pink square. The yellow circle
shows the 95% positional uncertainty of very-high-energy g-rays
detected by the MAGIC telescopes during the follow-up campaign.
The inset shows a magnified view of the region around TXS 0506+056
on an R-band optical image of the sky. IM
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Previous detections of individual astrophysical sources of neutrinos are limited to the
Sun and the supernova 1987A, whereas the origins of the diffuse flux of high-energy
cosmic neutrinos remain unidentified. On 22 September 2017, we detected a high-energy
neutrino, IceCube-170922A, with an energy of

e

290 tera–electron volts. Its arrival
direction was consistent with the location of a known g-ray blazar, TXS 0506+056,
observed to be in a flaring state. An extensive multiwavelength campaign followed,
ranging from radio frequencies to g-rays. These observations characterize the
variability and energetics of the blazar and include the detection of TXS 0506+056
in very-high-energy g-rays. This observation of a neutrino in spatial coincidence with
a g-ray–emitting blazar during an active phase suggests that blazars may be a source
of high-energy neutrinos.

S
ince the discovery of a diffuse flux of high-
energy astrophysical neutrinos (1, 2),
IceCube has searched for its sources. The
only nonterrestrial neutrino sources iden-
tified previously are the Sun and the super-

nova 1987A, producing neutrinos with energies
millions of times lower than the high-energy dif-
fuse flux, such that the mechanisms and the envi-
ronments responsible for the high-energy cosmic
neutrinos are still to be ascertained (3, 4). Many
candidate source types exist, with active galactic
nuclei (AGN) among the most prominent (5), in
particular the small fraction of them designated
as radio-loud (6). In these AGNs, the central su-
permassive black hole converts gravitational energy
of accretingmatter and/or the rotational energy
of the black hole into powerful relativistic jets,
within which particles can be accelerated to high
energies. If a number of these particles are pro-
tons or nuclei, their interactions with the radia-
tion fields andmatter close to the source would
give rise to a flux of high-energy pions that even-
tually decay into photons and neutrinos (7). In
blazars (8)—AGNs that have one of the jets point-
ing close to our line of sight—the observable flux
of neutrinos and radiation is expected to be greatly
enhanced owing to relativistic Doppler boosting.
Blazar electromagnetic (EM) emission is known
to be highly variable on time scales fromminutes
to years (9).
Neutrinos travel largely unhindered by matter

and radiation. Even if high-energy photons (TeV

and above) are unable to escape the source owing
to intrinsic absorption, or are absorbed by inter-
actions with the extragalactic background light
(EBL) (10, 11), high-energy neutrinos may escape
and travel unimpeded to Earth. An association
of observed astrophysical neutrinos with blazars
would therefore imply that high-energy protons
or nuclei up to energies of at least tens of PeV are
produced in blazar jets, suggesting that theymay
be the birthplaces of the most energetic particles
observed in the Universe, the ultrahigh-energy
cosmic rays (12). If neutrinos are produced in
correlation with photons, the coincident obser-
vation of neutrinos with electromagnetic flares
would greatly increase the chances of identifying
the source(s). Neutrino detections must therefore
be combined with the information from broad-
band observations across the electromagnetic
spectrum (multimessenger observations).
To take advantage of multimessenger oppor-

tunities, the IceCube neutrino observatory (13)
has established a system of real-time alerts that
rapidly notify the astronomical community of the
direction of astrophysical neutrino candidates
(14). From the start of the program in April 2016
through October 2017, 10 public alerts have been
issued for high-energy neutrino candidate events
with well-reconstructed directions (15).
We report the detection of a high-energy neu-

trino by IceCube and the multiwavelength/multi-
instrument observations of a flaring g-ray blazar,
TXS 0506+056, which was found to be position-
ally coincident with the neutrino direction (16).
Chance coincidence of the IceCube-170922A
event with the flare of TXS 0506+056 is statis-
tically disfavored at the level of 3s in models

evaluated below, associating neutrino and g-ray
production.

The neutrino alert

IceCube is a neutrino observatory with more
than 5000 optical sensors embedded in 1 km3 of
the Antarctic ice-sheet close to the Amundsen-
Scott South Pole Station. The detector consists of
86 vertical strings frozen into the ice 125m apart,
each equipped with 60 digital optical modules
(DOMs) at depths between 1450 and 2450 m.
When a high-energy muon-neutrino interacts
with an atomic nucleus in or close to the detec-
tor array, a muon is produced moving through
the ice at superluminal speed and creating
Cherenkov radiation detected by the DOMs. On
22 September 2017 at 20:54:30.43 Coordinated
Universal Time (UTC), a high-energy neutrino-
induced muon track event was detected in an
automated analysis that is part of IceCube’s real-
time alert system. An automated alert was dis-
tributed (17) to observers 43 s later, providing an
initial estimate of the direction and energy of the
event. A sequence of refined reconstruction algo-
rithms was automatically started at the same
time, using the full event information. A repre-
sentation of this neutrino event with the best-
fitting reconstructed direction is shown in Fig. 1.
Monitoring data from IceCube indicate that the
observatory was functioning normally at the time
of the event.
A Gamma-ray Coordinates Network (GCN)

Circular (18) was issued ~4 hours after the initial
notice, including the refined directional informa-
tion (offset 0.14° from the initial direction; see
Fig. 2). Subsequently, further studies were per-
formed to determine the uncertainty of the direc-
tional reconstruction arising from statistical and
systematic effects, leading to a best-fitting right
ascension (RA) 77:43þ0:95

�0:65 and declination (Dec)
þ5:72þ0:50

�0:30 (degrees, J2000 equinox, 90% con-
tainment region). The alert was later reported
to be in positional coincidence with the known
g-ray blazar TXS 0506+056 (16), which is lo-
cated at RA 77.36° and Dec +5.69° (J2000) (19),
0.1° from the arrival direction of the high-energy
neutrino.
The IceCube alert prompted a follow-up search

by theMediterraneanneutrino telescopeANTARES
(Astronomy with a Neutrino Telescope and Abyss
environmental RESearch) (20). The sensitivity of
ANTARES at the declination of IceCube-170922A
is about one-tenth that of IceCube’s (21), and no
neutrino candidateswere found in a ±1 day period
around the event time (22).
An energy of 23.7 ± 2.8 TeV was deposited in

IceCube by the traversing muon. To estimate the
parent neutrino energy, we performed simulations
of the response of the detector array, considering
that the muon-neutrino might have interacted
outside the detector at an unknown distance.We
assumed the best-fitting power-law energy spec-
trum for astrophysical high-energy muon neutri-
nos, dN=dEºE�2:13 (2), where N is the number
of neutrinos as a function of energy E. The sim-
ulations yielded amost probable neutrino energy
of 290 TeV, with a 90% confidence level (CL)
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lower limit of 183 TeV, depending onlyweakly on
the assumed astrophysical energy spectrum (25).
The vast majority of neutrinos detected by

IceCube arise from cosmic-ray interactions within
Earth’s atmosphere. Although atmospheric neu-
trinos are dominant at energies below 100 TeV,
their spectrum falls steeply with energy, allowing
astrophysical neutrinos to be more easily identi-
fied at higher energies. The muon-neutrino as-

trophysical spectrum, together with simulated
data, was used to calculate the probability that a
neutrino at the observed track energy and zenith
angle in IceCube is of astrophysical origin. This
probability, the so-called signalness of the event
(14), was reported to be 56.5% (17). Although
IceCube can robustly identify astrophysical neu-
trinos at PeV energies, for individual neutrinos
at several hundred TeV, an atmospheric origin

cannot be excluded. Electromagnetic observations
are valuable to assess the possible association of
a single neutrino to an astrophysical source.
Following the alert, IceCube performed a

complete analysis of relevant data prior to
31 October 2017. Although no additional excess
of neutrinoswas found from the direction of TXS
0506+056 near the time of the alert, there are
indications at the 3s level of high-energy neutrino
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Fig. 1. Event display for
neutrino event IceCube-
170922A. The time at which a
DOM observed a signal is
reflected in the color of the hit,
with dark blues for earliest hits
and yellow for latest. Times
shown are relative to the first
DOM hit according to the track
reconstruction, and earlier and
later times are shown with the
same colors as the first and
last times, respectively. The
total time the event took to
cross the detector is ~3000 ns.
The size of a colored sphere is
proportional to the logarithm
of the amount of light
observed at the DOM, with
larger spheres corresponding
to larger signals. The total
charge recorded is ~5800 photoelectrons. Inset is an overhead perspective view of the event. The best-fitting track direction is shown as an arrow,

consistent with a zenith angle 5:7þ0:50
�0:30 degrees below the horizon.

Fig. 2. Fermi-LATand MAGIC observations of IceCube-170922A’s
location. Sky position of IceCube-170922A in J2000 equatorial coordinates
overlaying the g-ray counts from Fermi-LAT above 1 GeV (A) and the signal
significance as observed by MAGIC (B) in this region. The tan square
indicates the position reported in the initial alert, and the green square
indicates the final best-fitting position from follow-up reconstructions (18).
Gray and red curves show the 50% and 90% neutrino containment regions,
respectively, including statistical and systematic errors. Fermi-LATdata are
shown as a photon counts map in 9.5 years of data in units of counts per

pixel, using detected photons with energy of 1 to 300 GeV in a 2° by 2°
region around TXS0506+056. The map has a pixel size of 0.02° and was
smoothed with a 0.02°-wide Gaussian kernel. MAGIC data are shown as
signal significance for g-rays above 90 GeV. Also shown are the locations of
a g-ray source observed by Fermi-LAT as given in the Fermi-LAT Third
Source Catalog (3FGL) (23) and the Third Catalog of Hard Fermi-LAT
Sources (3FHL) (24) source catalogs, including the identified positionally
coincident 3FGL object TXS 0506+056. For Fermi-LAT catalog objects,
marker sizes indicate the 95% CL positional uncertainty of the source.
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emission from that direction in data prior to 2017,
as discussed in a companion paper (26).

High-energy g-ray observations of
TXS 0506+056

On 28 September 2017, the Fermi Large Area
Telescope (LAT) Collaboration reported that the
direction of origin of IceCube-170922A was con-
sistent with a known g-ray source in a state of
enhanced emission (16). Fermi-LAT is a pair-
conversion telescope aboard the Fermi Gamma-
ray Space Telescope sensitive to g-rays with energies
from 20MeV to greater than 300 GeV (27). Since
August 2008, it has operated continuously, pri-
marily in an all-sky survey mode. Its wide field
of view of ~2.4 steradian provides coverage of the
entire g-ray sky every 3 hours. The search for pos-
sible counterparts to IceCube-170922Awas part of
the Fermi-LAT collaboration’s routinemultiwave-
length, multimessenger program.
Inside the error region of the neutrino event,

a positional coincidence was found with a pre-
viously cataloged g-ray source, 0.1° from the best-
fitting neutrino direction. TXS 0506+056 is a
blazar of BLLacertae (BLLac) type. Its redshift of
z ¼ 0:3365T0:0010was measured only recently
based on the optical emission spectrum in a
study triggered by the observation of IceCube-
170922A (28).

TXS 0506+056 is a known Fermi-LAT g-ray
source, appearing in three catalogs of Fermi
sources (23, 24, 29) at energies above 0.1, 50, and
10 GeV, respectively. An examination of the
Fermi All-Sky Variability Analysis (FAVA) (30)
photometric light curve for this object showed
that TXS 0506+056 had brightened consider-
ably in the GeV band starting in April 2017 (16).
Independently, a g-ray flare was also found by
Fermi ’s Automated Science Processing [ASP (25)].
Such flaring is not unusual for a BLLac object and
would not have been followed up as extensively if
the neutrino were not detected.
Figure 3 shows the Fermi-LAT light curve and

the detection time of the neutrino alert. The light
curve of TXS 0506+056 from August 2008 to
October 2017was calculated in bins of 28 days for
the energy range above 0.1 GeV. An additional
light curve with 7-day bins was calculated for the
period around the time of the neutrino alert. The
g-ray flux of TXS 0506+056 in each time bin was
determined through a simultaneous fit of this
source and the other Fermi-LAT sources in a
10° by 10° region of interest along with the
Galactic and isotropic diffuse backgrounds, using
a maximum-likelihood technique (25). The inte-
grated g-ray flux of TXS 0506+056 forE> 0.1 GeV,
averaged over all Fermi-LAT observations span-
ning 9.5 years, is ð7:6 T 0:2Þ � 10�8 cm�2 s�1. The

highest flux observed in a single 7-day light curve
bin was ð5:3 T 0:6Þ � 10�7 cm�2 s�1, measured in
the week 4 to 11 July 2017. Strong flux variations
were observed during the g-ray flare, themost prom-
inent being a flux increase from ð7:9 T 2:9Þ�
10�8 cm�2 s�1 in the week 8 to 15 August 2017
to ð4:0 T 0:5Þ � 10�7 cm�2 s�1 in the week 15 to
22 August 2017.
The Astro-Rivelatore Gamma a Immagini Leg-

gero (AGILE) g-ray telescope (31) confirmed the
elevated level of g-ray emission at energies above
0.1 GeV from TXS 0506+056 in a 13-day window
(10 to 23 September 2017). The AGILEmeasured
fluxofð5:3 T 2:1Þ � 10�7 cm�2 s�1 is consistentwith
the Fermi-LAT observations in this time period.
High-energy g-ray observations are shown in

Figs. 3 and4.Details on theFermi-LAT andAGILE
analyses can be found in (25).

Very-high-energy g-ray observations of
TXS 0506+056

Following the announcement of IceCube-170922A,
TXS 0506+056 was observed by several ground-
based Imaging Atmospheric Cherenkov Tele-
scopes (IACTs). A total of 1.3 hours of observations
in the direction of the blazar TXS 0506+056
were taken using the High-Energy Stereoscopic
System (H.E.S.S.) (32), located in Namibia, on
23 September 2017 [Modified Julian Date (MJD)
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Fig. 3. Time-dependent multiwavelength observations of TXS
0506+056 before and after IceCube-170922A. Significant variability of
the electromagnetic emission can be observed in all displayed energy
bands, with the source being in a high-emission state around the
time of the neutrino alert. From top to bottom: (A) VHE g-ray
observations by MAGIC, H.E.S.S., and VERITAS; (B) high-energy g-ray
observations by Fermi-LAT and AGILE; (C and D) x-ray observations by
Swift XRT; (E) optical light curves from ASAS-SN, Kiso/KWFC, and
Kanata/HONIR; and (F) radio observations by OVRO and VLA. The red

dashed line marks the detection time of the neutrino IceCube-170922A.
The left set of panels shows measurements between MJD 54700
(22 August 2008) and MJD 58002 (6 September 2017). The set of
panels on the right shows an expanded scale for time range
MJD 58002 to MJD 58050 (24 October 2017). The Fermi-LAT light
curve is binned in 28-day bins on the left panel, while finer 7-day bins
are used on the expanded panel. A VERITAS limit from MJD 58019.40

(23 September 2017) of 2:1� 10�10 cm�2 s�1 is off the scale of the plot
and not shown.
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58019], ~4 hours after the circulation of the neu-
trino alert. A 1-hour follow-up observation of the
neutrino alert under partial cloud coverage was
performed using the Very Energetic Radiation
Imaging Telescope Array System (VERITAS) g-ray
telescope array (33), located in Arizona, USA, later
on the same day, ~12 hours after the IceCube
detection. Both telescopes made additional obser-
vations on subsequent nights, but neither detected
g-ray emission from the source [see Fig. 3 and
(25)]. Upper limits at 95% CL on the g-ray flux
were derived accordingly (assuming the mea-
sured spectrum, see below): 7:5� 10�12 cm�2 s�1

during the H.E.S.S. observation period and 1:2�
10�11 cm�2 s�1 during the VERITAS observations,
both for energies E >175 GeV.
The Major Atmospheric Gamma Imaging

Cherenkov (MAGIC) Telescopes (34) observed
TXS 0506+056 for 2 hours on 24 September 2017
(MJD 58020) under nonoptimal weather con-
ditions and then for a period of 13 hours from
28 September to 4 October 2017 (MJD 58024–
58030) under good conditions. MAGIC consists
of two 17-m telescopes, located at the Roque de
los Muchachos Observatory on the Canary
Island of La Palma (Spain).
No g-ray emission from TXS 0506+056 was

detected in the initial MAGIC observations on
24 September 2017, and an upper limit was derived
on the flux above 90 GeV of 3:6� 10�11 cm�2 s�1

at 95% CL (assuming a spectrumdN=dEºE�3:9).
However, prompted by the Fermi-LAT detection
of enhanced g-ray emission, MAGIC performed
another 13 hours of observations of the region
starting 28 September 2017. Integrating the data,
MAGIC detected a significant very-high-energy
(VHE) g-ray signal (35) corresponding to 374 ±
62 excess photons, with observed energies up to
about 400 GeV. This represents a 6.2s excess over
expected background levels (25). The day-by-day
light curve of TXS 0506+056 for energies above
90 GeV is shown in Fig. 3. The probability that a
constant flux is consistent with the data is less
than 1.35%. The measured differential photon
spectrum (Fig. 4) can be described over the energy
range of 80 to 400 GeV by a simple power law,
dN=dEºEg, with a spectral index g=�3:9 T 0.4
and a flux normalization of (2.0 T 0.4) � 10�10

TeV�1 cm�2 s�1 atE = 130 GeV. Uncertainties are
statistical only. The estimated systematic uncer-
tainties are <15% in the energy scale, 11 to 18% in
the flux normalization, and ±0.15 for the power-
law slope of the energy spectrum (34). Further
observations after 4 October 2017 were prevented
by the full Moon.
An upper limit to the redshift of TXS 0506+056

can be inferred from VHE g-ray observations
using limits on the attenuation of the VHE flux
due to interaction with the EBL. Details on the
method are available in (25). The obtained upper

limit ranges from 0.61 to 0.98 at a 95% CL, de-
pending on the EBL model used. These upper
limits are consistent with the measured redshift
of z ¼ 0:3365 (28).
No g-ray source above 1 TeV at the location of

TXS 0506+056 was found in survey data of the
High Altitude Water Cherenkov (HAWC) g-ray
observatory (36), either close to the time of the
neutrino alert or in archival data taken since
November 2014 (25).
VHE g-ray observations are shown in Figs. 3

and 4. All measurements are consistent with the
observed flux from MAGIC, considering the dif-
ferences in exposure, energy range, and obser-
vation periods.

Radio, optical, and x-ray observations

The Karl G. Jansky Very Large Array (VLA) (37)
observed TXS 0506+056 starting 2 weeks after
the alert in several radio bands from 2 to 12 GHz
(38), detecting significant radio flux variability
and some spectral variability of this source. The
source is also in the long-term blazar monitoring
program of the Owens Valley Radio Observatory
(OVRO) 40-m telescope at 15 GHz (39). The light
curve shows a gradual increase in radio emission
during the 18months preceding the neutrino alert.
Optical observations were performed by

the All-Sky Automated Survey for Supernovae
(ASAS-SN) (40), the Liverpool Telescope (41), the
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Fig. 4. Broadband spectral
energy distribution for the blazar
TXS 0506+056. The SED is
based on observations obtained
within 14 days of the detection of
the IceCube-170922A event. The

E2dN=dE vertical axis is equivalent
to a nFn scale. Contributions are
provided by the following
instruments: VLA (38), OVRO
(39), Kanata Hiroshima Optical
and Near-InfraRed camera
(HONIR) (52), Kiso, and the Kiso
Wide Field Camera (KWFC) (43),
Southeastern Association for
Research in Astronomy Observa-
tory (SARA/UA) (53), ASAS-SN
(54), Swift Ultraviolet and Optical
Telescope (UVOT) and XRT (55),
NuSTAR (56), INTEGRAL (57),
AGILE (58), Fermi-LAT (16),
MAGIC (35),VERITAS (59), H.E.S.S.
(60), and HAWC (61). Specific
observation dates and times are
provided in (25). Differential flux
upper limits (shown as colored
bands and indicated as “UL” in the legend) are quoted at the 95% CL,
while markers indicate significant detections. Archival observations are
shown in gray to illustrate the historical flux level of the blazar in the
radio-to-keV range as retrieved from the ASDC SED Builder (62), and in the
g-ray band as listed in the Fermi-LAT 3FGL catalog (23) and from an
analysis of 2.5 years of HAWC data. The g-ray observations have not been
corrected for absorption owing to the EBL. SARA/UA, ASAS-SN, and
Kiso/KWFC observations have not been corrected for Galactic attenua-
tion. The electromagnetic SED displays a double-bump structure, one

peaking in the optical-ultraviolet range and the second one in the GeV
range, which is characteristic of the nonthermal emission from blazars.
Even within this 14-day period, there is variability observed in several of the
energy bands shown (see Fig. 3), and the data are not all obtained
simultaneously. Representative nm þ �nm neutrino flux upper limits that
produce on average one detection like IceCube-170922A over a period
of 0.5 (solid black line) and 7.5 years (dashed black line) are shown,
assuming a spectrum of dN=dEºE�2 at the most probable neutrino
energy (311 TeV).
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Kanata Telescope (42), the Kiso Schmidt Tele-
scope (43), the high-resolution spectrograph (HRS)
on the Southern African Large Telescope (SALT)
(44), the Subaru telescope Faint Object Camera
and Spectrograph (FOCAS) (45), and the X-
SHOOTER instrument on the Very Large Tele-
scope (VLT) (46). The V band flux of the source is
the highest observed in recent years, and the
spectral energy distribution has shifted toward
blue wavelengths. Polarization was detected by
Kanata in the R band at the level of 7%. Redshift
determination for BLLac objects is difficult owing
to the nonthermal continuum from the nucleus
outshining the spectral lines from thehost galaxies.
Attempts were made using optical spectra from
the Liverpool, Subaru, and VLT telescopes to
measure the redshift of TXS 0506+056, but only
limits could be derived [see, e.g., (47)]. The redshift
of TXS 0506+056 was later determined to be
z ¼ 0:3365 T 0:0010 using the Gran Telescopio
Canarias (28).
X-ray observations were made by the X-Ray

Telescope (XRT) on the Neil Gehrels Swift
Observatory (0.3 to 10 keV) (48),MAXI Gas Slit
Camera (GSC) (2 to 10 keV) (49), Nuclear Spectro-
scopic Telescope Array (NuSTAR) (3 to 79 keV)
(50), and the INTernational Gamma-Ray Astro-
physics Laboratory (INTEGRAL) (20 to 250 keV)
(51), with detections by Swift and NuSTAR . In a
2.1 square degree region around the neutrino
alert, Swift identified nine x-ray sources, includ-
ing TXS 0506+056.
Swift monitored the x-ray flux from TXS

0506+056 for 4 weeks after the alert, starting
23 September 2017 00:09:16 UT, finding clear
evidence for spectral variability (see Fig. 3D). The
strong increase in flux observed at VHE energies
over several days up until MJD 58030 (4 October
2017) correlates well with an increase in the x-ray
emission during this period of time. The spec-
trum of TXS 0506+056 observed in the week
after the flare is compatible with the sum of two
power-law spectra, a soft spectrum with index
�2:8 T 0:3 in the soft x-ray band covered by Swift
XRT, and a hard spectrum with index�1:4 T 0:3
in the hard x-ray band covered by NuSTAR (25).
Extrapolated to 20 MeV, the NuSTAR hard-
spectrum component connects smoothly to the
plateau (index �2) component observed by the
Fermi-LAT between 0.1 and 100 GeV and the soft
VHE g-ray component observed byMAGIC (com-
pare Fig. 4). Taken together, these observations
provide a mostly complete, contemporaneous
picture of the source emissions from 0.3 keV to
400 GeV, more than nine orders of magnitude in
photon energy.
Figures 3 and 4 summarize the multiwave-

length light curves and the changes in the broad-
band spectral energy distribution (SED), compared
to archival observations. Additional details about
the radio, optical, and x-ray observations can be
found in (25).

Chance coincidence probability

Data obtained from multiwavelength observa-
tions of TXS 0506+056 can be used to constrain
the blazar-neutrino chance coincidence probabil-

ity. This coincidence probability is a measure of
the likelihood that a neutrino alert like IceCube-
170922A is correlated by chance with a flaring
blazar, considering the large number of known
g-ray sources and the modest number of neu-
trino alerts.
Given the large number of potential neutrino

source classes available, no a priori blazar-neutrino
coincidence model was selected ahead of the
alert. After the observation, however, several cor-
relation scenarios were considered and tested
to quantify the a posteriori significance of the
observed coincidence. Testing multiple models
is important as the specific assumptions about
the correlation betweenneutrinos and g-rays have
an impact on the chance coincidence probability.
In each case, the probability to obtain, by chance,
a degree of correlation at least as high as that ob-
served for IceCube-170922A was calculated using
simulated neutrino alerts and the light curves of
Fermi-LAT g-ray sources. Given the continuous
all-sky monitoring of the Fermi-LAT since 2008,
all tests utilized 28-day binned g-ray light curves
above 1 GeV from 2257 extragalactic Fermi-LAT
sources, derived in the same manner as used for
the analysis of TXS 0506+056 g-ray data.
To calculate the chance probabilities, a like-

lihood ratio test is used that allows different
models of blazar-neutrino flux correlation to be
evaluated in a consistent manner. All models as-
sume that at least some of the observed g-ray flux
is produced in the same hadronic interactions
that would produce high-energy neutrinos within
the source. Our first model assumes that the
neutrino flux is linearly correlated with the high-
energy g-ray energy flux (4). In this scenario,
neutrinos are more likely to be produced during
periods of bright, hard g-ray emission. In the
second model, the neutrino flux is modeled as
strongly tied to variations in the observed g-ray
flux, regardless of the average flux of g-rays. Here,
a weak or a strong g-ray source is equally likely to
be a neutrino source if the neutrino is temporally
correlated with variability in the g-ray light curve.
Third, we consider a correlation of the neutrino
flux with the VHE g-ray flux. Because hadronic
acceleration up to a few PeV is required to explain
the detected neutrino energy, VHE g-ray sources
are potential progenitors. Full details and results
from these analyses are presented in (25).
The neutrino IceCube-170922A was found to

arrive in a period of flaring activity in high-energy
g-rays. Prior to IceCube-170922A, nine public
alerts had been issued by the IceCube real-time
system. Additionally, 41 archival events have been
identified among the IceCube data recorded since
2010, before the start of the real-time program
in April 2016, which would have caused alerts
if the real-time alert system had been in place.
These events were also tested for coincidence
with the g-ray data.
Chance coincidence of the neutrino with the

flare of TXS 0506+056 is disfavored at the 3s
level in any scenario where neutrino production
is linearly correlated with g-ray production or
with g-ray flux variations. This includes look-
elsewhere corrections for all 10 alerts issued

previously by IceCube and the 41 archival events.
One of the neutrino events that would have been
sent as an alert and had a good angular reso-
lution (<5°) is in a spatial correlation with the
g-ray blazar 3FGL J1040.4+0615. However, this
source was not in a particularly bright emission
state at the detection time of the corresponding
neutrino. Therefore, a substantially lower test
statistic would be obtained in the chance cor-
relation tests defined in this paper (25).
We have investigated how typical the blazar

TXS 0506+056 is among those blazars thatmight
have given rise to a coincident observation sim-
ilar to the one reported here. A simulation that
assumes that the neutrino flux is linearly cor-
related with the blazar g-ray energy flux shows
that in 14% of the signal realizations, we would
find a neutrino coincident with a similarly bright
g-ray state as that observed for TXS 0506+056
(25). The detection of a single neutrino does not
allow us to probe the details of neutrino produc-
tion models or measure the neutrino–to–g-ray
production ratio. Further observations will be
needed to unambiguously establish a correlation
between high-energy neutrinos and blazars, as
well as to understand the emission and acceler-
ation mechanism in the event of a correlation.

Discussion

Blazars have often been suggested as potential
sources of high-energy neutrinos. The calorimetric
high-energy output of certain candidate blazars is
high enough to explain individual observed IceCube
events at 100-TeV to 1-PeV energies (63). Spatial
coincidences between catalogs of blazars and
neutrinos have been examined in (64), while (65)
investigated one shower-like event with several
thousand square degrees angular uncertainty ob-
served in time coincidence with a blazar outburst.
A track-like event, IceCube-160731, has been pre-
viously connected to a flaring g-ray source (66).
However, the limited evidence for a flaring source
in the multiwavelength coverage did not permit
an identification of the source type of the poten-
tial counterpart (66).
Owing to the precise direction of IceCube-

170922A, combined with extensive multiwave-
length observations, a chance correlation between
a high-energy neutrino and the potential coun-
terpart can be rejected at the 3s level. Consid-
ering the association between IceCube-170922A
and TXS 0506+056, g-ray blazars are strong can-
didate sources for at least a fraction of the ob-
served astrophysical neutrinos. Earlier studies of
the cross-correlation between IceCube events and
the g-ray blazar population observed by Fermi-LAT
demonstrated that these blazars can only pro-
duce a fraction of the observed astrophysical
neutrino flux above 10 TeV (4). Although these
limits constrain the contribution from blazars to
the diffuse neutrino background, the potential
association of one or two high-energy neutrinos
to blazars over the total observing time of IceCube
is fully compatible with the constraint.
Adopting standard cosmological parameters

(67)H0 ¼ 67:8,Wm ¼ 0:308,Wl ¼ 0:692, where
H0 is the Hubble constant, Wm is the matter
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density, and Wl is the dark energy density, the
observed redshift of z ¼ 0:3365 implies an iso-
tropic g-ray luminosity between 0.1 and 100GeV of
1:3� 1047 erg s�1 in the ±2 weeks around the ar-
rival time of the IceCubeneutrino, and a luminosity
of 2:8� 1046 erg s�1, averaged over all Fermi-LAT
observations. Observations in the optical, x-ray,
and VHE g-ray bands show typical character-
istics of blazar flares: strong variability on time
scales of a few days and an indication of a shift
of the synchrotron emission peak toward higher
frequencies.VHE g-ray emission is found to change
by a factor of ~4 within just 3 days. Similarly,
the high-energy g-ray energy band shows flux
variations up to a factor of ~5 from one week to
the next.
No other neutrino event that would have

passed the selection criteria for a high-energy
alert was observed from this source since the
start of IceCube observations in May 2010. The
muon neutrino fluence for which we would expect
to detect onehigh-energy alert eventwith IceCube
in this period of time is 2:8� 10�3 erg cm�2. A
power-law neutrino spectrum is assumed in this
calculation with an index of −2 between 200 TeV
and 7.5 PeV, the range between the 90%CL lower
and upper limits for the energy of the observed
neutrino [see (25) for details].
The fluence can be expressed as an integrated

energy flux if we assume a time period during
which the source was emitting neutrinos. For a
source that emits neutrinos only during the
~6-month period corresponding to the duration
of the high-energy g-ray flare, the corresponding
average integrated muon neutrino energy flux
would be1:8� 10�10 erg cm�2 s�1. Alternatively,
the average integrated energy flux of a source
that emits neutrinos over the whole observation
period of IceCube (i.e., 7.5 years) would be 1:2�
10�11 erg cm�2 s�1 . These two benchmark cases
are displayed in Fig. 4. In an ensemble of faint
sources with a summed expectation of order 1,
we would anticipate observing a neutrino even
if the individual expectation value is ≪1. This is
expressed by the downward arrows on the neu-
trino flux points in Fig. 4.
The two cases discussed above correspond to

average isotropic muon neutrino luminosities of
7:2� 1046 erg s�1 for a source that was emitting
neutrinos in the ~6-month period of the high-
energy g-ray flare, and 4:8� 1045 erg s�1 for a
source that emitted neutrinos throughout the
whole observation period. This is similar to the
luminosity observed in g-rays and thus broadly
consistent with hadronic source scenarios (68).
A neutrino flux that produces a high-energy

alert event can, over time, produce many lower-
energy neutrino-induced muons in IceCube. A
study of neutrino emission from TXS 0506+056
prior to the high-energy g-ray flare, based on the
investigation of these lower-energy events, is re-
ported in a companion paper (26).
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Neutrino emission from a flaring blazar
Neutrinos interact only very weakly with matter, but giant detectors have succeeded in detecting small numbers of
astrophysical neutrinos. Aside from a diffuse background, only two individual sources have been identified: the Sun
and a nearby supernova in 1987. A multiteam collaboration detected a high-energy neutrino event whose arrival
direction was consistent with a known blazar—a type of quasar with a relativistic jet oriented directly along our
line of sight. The blazar, TXS 0506+056, was found to be undergoing a gamma-ray flare, prompting an extensive
multiwavelength campaign. Motivated by this discovery, the IceCube collaboration examined lower-energy neutrinos
detected over the previous several years, finding an excess emission at the location of the blazar. Thus, blazars are a
source of astrophysical neutrinos.

Science, this issue p. 147, p. eaat1378
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