

Karlsruhe Institute of Technology

Collaborative Research Center TRR 257

Particle Physics Phenomenology after the Higgs Discovery

New facets of pySecDec

Gudrun Heinrich

Institute for Theoretical Physics, Karlsruhe Institute of Technology

MathemAmplitudes Padova, Sep 27, 2023

www.kit.edu

based on work in collaboration with

Stephen Jones, Matthias Kerner, Vitaly Magerya, Anton Olsson, Johannes Schlenk, et al.

https://arxiv.org/abs/2305.19768

https://arxiv.org/abs/2108.10807

https://secdec.readthedocs.io

also (not my work): https://arxiv.org/abs/2211.14845

MathemAmplitudes 2023

pySecDec Collaboration 2023

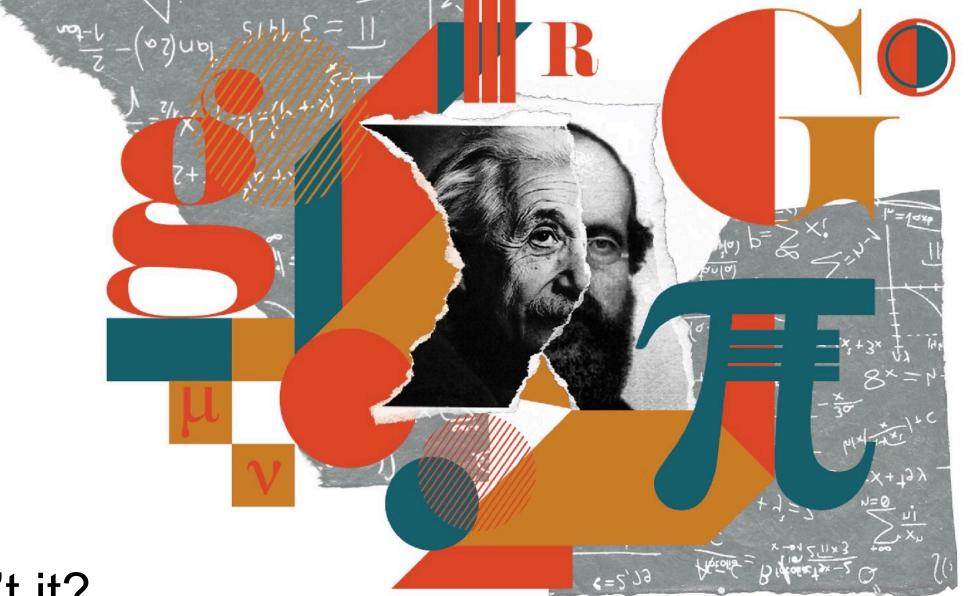
MathemAmplitudes 2023

Motivation

• The interplay between mathematics and physics was often fruitful in the history of science

 The story is ongoing, insights gained with scattering amplitudes are a prime example

• However, pySecDec is just number crunching ... isn't it?



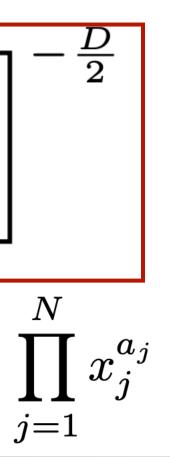
MathemAmplitudes 2023

Feynman integral in the Lee-Pomeransky representation in D space-time dimensions:

$$I(\nu_{1} \dots \nu_{N}) = \frac{(-1)^{N_{\nu}} \Gamma(D/2)}{\Gamma((L+1) D/2 - N_{\nu}) \prod_{j} \Gamma(\nu_{j})} \int_{0}^{\infty} \left(\prod_{j=1}^{N} dz_{j} z_{j}^{\nu_{j}-1} \right) (\mathcal{U} + \mathcal{F})^{-D/2}$$
$$\mathcal{U}(\vec{x}) = \sum_{T \in \mathcal{T}_{1}} \left[\prod_{j \in \mathcal{C}(T)} x_{j} \right] , \quad \mathcal{F}_{0}(\vec{x}) = \sum_{\hat{T} \in \mathcal{T}_{2}} \left[\prod_{j \in \mathcal{C}(\hat{T})} x_{j} \right] (-s_{\hat{T}}) , \quad \mathcal{F}(\vec{x}) = \mathcal{F}_{0}(\vec{x}) + \mathcal{U}(\vec{x}) \sum_{j=1}^{N} x_{j} m_{j}^{2} , \quad N_{\nu} = \sum_{i=1}^{N} \sum_{j=1}^{N} x_{j} m_{j}^{2}$$

structure:
$$I \sim \int_{\mathbb{R}^N_{>0}} \frac{\mathrm{d}\mathbf{x}}{\mathbf{x}} \mathbf{x}^{\nu} \left[\sum_{i=1}^m c_i \mathbf{x}^{\mathbf{p}_i} \right]$$

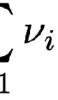
integral over a polynomial to some power, $\mathbf{x}^{\mathbf{a}} = \begin{bmatrix} x_{i}^{a_{j}} \\ x_{j}^{a_{j}} \end{bmatrix}$



important object:

Newton polytope

defined by exponent vectors \mathbf{p}_i

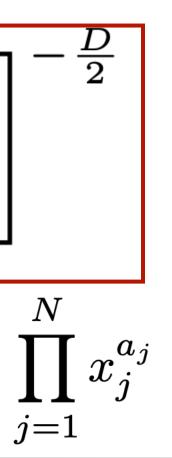


Feynman integral in the Lee-Pomeransky representation in D space-time dimensions:

$$I(\nu_{1} \dots \nu_{N}) = \frac{(-1)^{N_{\nu}} \Gamma(D/2)}{\Gamma((L+1) D/2 - N_{\nu}) \prod_{j} \Gamma(\nu_{j})} \int_{0}^{\infty} \left(\prod_{j=1}^{N} dz_{j} z_{j}^{\nu_{j}-1} \right) (\mathcal{U} + \mathcal{F})^{-D/2}$$
$$\mathcal{U}(\vec{x}) = \sum_{T \in \mathcal{T}_{1}} \left[\prod_{j \in \mathcal{C}(T)} x_{j} \right] , \quad \mathcal{F}_{0}(\vec{x}) = \sum_{\hat{T} \in \mathcal{T}_{2}} \left[\prod_{j \in \mathcal{C}(\hat{T})} x_{j} \right] (-s_{\hat{T}}) , \quad \mathcal{F}(\vec{x}) = \mathcal{F}_{0}(\vec{x}) + \mathcal{U}(\vec{x}) \sum_{j=1}^{N} x_{j} m_{j}^{2} , \quad N_{\nu} = \sum_{i=1}^{N} \left[\prod_{j \in \mathcal{C}(T)} x_{j} \right] (-s_{\hat{T}})$$

structure:
$$I \sim \int_{\mathbb{R}^N_{>0}} \frac{\mathrm{d}\mathbf{x}}{\mathbf{x}} \mathbf{x}^{\nu} \left[\sum_{i=1}^m c_i \mathbf{x}^{\mathbf{p}_i} \right]$$

integral over a polynomial to some power, $\mathbf{x}^{\mathbf{a}} = \begin{bmatrix} x_{j}^{a_{j}} \\ x_{j}^{a_{j}} \end{bmatrix}$



important object:

Newton polytope

see talks by Felix Tellander, Claudia Fevola, Simon Telen

defined by exponent vectors \mathbf{p}_i

Newton polytope:

$$\mathcal{N}(I) = \operatorname{convHull}(\mathbf{p}_1, \mathbf{p}_2, \dots) = \left\{ \sum_j \alpha_j \mathbf{p}_j \mid \alpha_j \ge 0 \land \sum_j \alpha_j = 1 \right\}$$

can be written as intersection of hyperplanes

$$\mathcal{N}(I) = \bigcap_{f \in F} \left\{ \mathbf{m} \in \mathbb{R}^{N+1} \mid \langle \mathbf{m}, \mathbf{n}_f \rangle + f \in F \right\}$$

F : set of polytope facets with inward-pointing normal vectors, \mathbf{n}_f : normal vectors

$+a_f \ge 0\}$ $a_f \in \mathbb{Z}$

MathemAmplitudes 2023

- $\sigma = \bigcap \{\mathbf{m} \in \mathbb{R}\}$ • a cone σ is defined as $f \in F$
- the set of simplicial cones forms the basis for the sector functions
- this transformation leads to the decomposed form

$$I \sim \sum_{\sigma \in \Delta_{\mathcal{N}}^{T}(f), \, \dim \sigma = N} \left(\prod_{f \in \sigma} \int_{0}^{1} \frac{\mathrm{d}y_{f}}{y_{f}} \, y_{f}^{\langle \mathbf{n}_{f}, \nu \rangle + a_{f} \frac{D}{2}} \right)$$

$$\mathbb{R}^{N+1} \mid \langle \mathbf{m}, \mathbf{n}_f \rangle \ge 0 \}$$

• cones are simplicial if their extreme rays are linearly independent, otherwise a triangulation should be performed

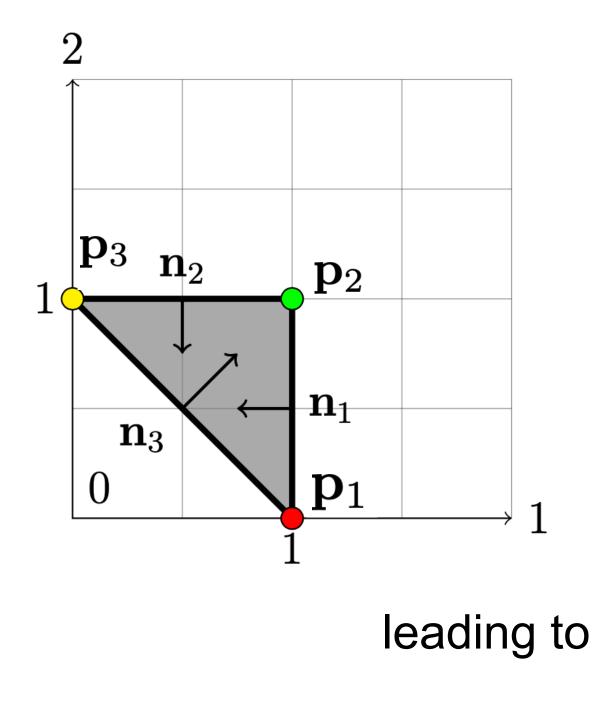
• the normal vectors define local coordinates on each facet of the simplicial cones $x_i = \prod y_f^{\langle {f n}_f, {f e}_i
angle}$ $f \in \sigma$

$$\left[\sum_{i} c_{i} \prod_{f \in \sigma} y_{f}^{\langle \mathbf{n}_{f}, \mathbf{p}_{i} \rangle + a_{f}}\right]^{-\frac{D}{2}}$$

Bogner, Weinzierl 2007 Kaneko, Ueda 2009 Schlenk 2016

Example:

Johannes Schenk '16



$$I = \underbrace{\prod_{i=1}^{m}}_{i=1} = \frac{(-1)^{\nu} \Gamma(\nu - LD/2)}{(m^2)^{\nu - LD/2} \prod_i \Gamma(\nu_i)} \int_0^\infty \frac{\mathrm{d}x_1 \,\mathrm{d}x_2}{x_1 x_2} x_1^{\nu_1} x_2^{\nu_2} \left(x_1^1 x_2^0 + x_1^1 x_2^1 + x_1^0 x_2^1\right)^{-\frac{D}{2}}$$

$$\mathbf{p}_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ \mathbf{p}_{2} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \ \mathbf{p}_{3} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}; \ \mathbf{n}_{1} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}, \ \mathbf{n}_{2} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}, \ \mathbf{n}_{3} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
$$a_{1} = 1, \ a_{2} = 1, \ a_{3} =$$
maximal cones are defined by $\{\mathbf{n}_{2}, \mathbf{n}_{1}\}, \{\mathbf{n}_{1}, \mathbf{n}_{2}\}, \{\mathbf{n}_{2}, \mathbf{n}_{3}\}$

incident to vertices $\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3$

de

fine variable transformations, e.g.
$$\mathbf{p}_1 : x_1 = y_1^{-1} y_3^1, x_2 = y_1^0 y_3^1$$

$$I = \frac{(-1)^{\nu} \Gamma(\nu - LD/2)}{(m^2)^{\nu - LD/2} \prod_i \Gamma(\nu_i)} \int_0^1 \frac{\mathrm{d}y_1 \, \mathrm{d}y_2 \, \mathrm{d}y_3}{y_1 y_2 y_3} y_1^{-\nu_1 + \frac{D}{2}} y_2^{-\nu_2 + \frac{D}{2}} y_3^{\nu_1 + \nu_2 - \frac{D}{2}} (y_1 + y_2 + y_3)^{-\frac{D}{2}} [\delta(1 - y_2) + \delta(1 - y_3) + \delta(1 - y_1)]$$

'∠**' --**ວ J

MathemAmplitudes 2023

Expansion by regions

pioneered by Beneke, Smirnov '97; see also Pak, Smirnov '10; Jantzen '11

idea:

- exploit hierarchies between kinematic scales
- expand integrand in small parameter, e.g. m^2/p^2
 - → integrals easier to evaluate

under certain conditions:

integrating expanded integrands over full integration range and summing over all regions gives full result

MathemAmplitudes 2023

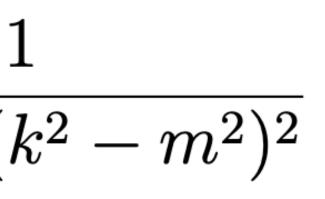
Expansion by regions in momentum space Example $I_2 = \mu^{2\epsilon} \int d\kappa \frac{1}{(k+p)^2 (k^2 - m^2)^2} - - \begin{pmatrix} & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ &$

two regions: hard: $|k^2| \gg m^2$ soft: $|k^2|, |k \cdot p| \ll p^2$

$$(h): \quad \frac{1}{(k+p)^2(k^2-m^2)^2} \to \frac{1}{(k+p)^2(k^2)^2} \left(1+2\frac{m^2}{k^2}+\ldots\right)$$

$$(s): \quad \frac{1}{(k+p)^2(k^2-m^2)^2} \to \frac{1}{p^2(k^2-m^2)^2} \left(1-\frac{k^2+2p\cdot k}{p^2}+\ldots\right)$$

$$(s): \quad \frac{1}{(k+p)^2(k^2-m^2)^2} \to \frac{1}{p^2(k^2-m^2)^2}$$





 $d\kappa = d^D k / i \pi^{rac{D}{2}}$

Geometric formulation of expansion by regions

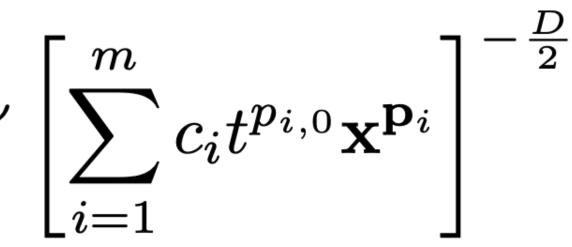
$$P(\mathbf{x},t) = \sum_{i=1}^{m} c_i t^{p_{i,0}} x_1^{p_{i,1}} \dots x_N^{p_{i,N}} \qquad c_i \ge 0$$

$$I = \int_0^\infty \frac{\mathrm{d}\mathbf{x}}{\mathbf{x}} t^{\nu_0} \mathbf{x}^{\nu}$$

Newton polytope Δ' of the polynomial:

 $\mathbf{p}'_i \equiv$ convex hull of exponent vectors

polynomials contain additional "smallness parameter" t, e.g. m^2/s in small mass expansion



$$\equiv (p_{i,0}, \mathbf{p}_i)$$

Expansion by regions in parameter space

procedure:

- find regions
- expand in smallness parameter t
- sum over regions and integrate

- (a) $t \rightarrow$ two ways to do the expansion:
 - t (b) $\mathbf{v} = (1, v_1, \ldots, v_N)$ region vector

automated in FIESTA A.V. Smirnov et al. and ASPIRE Ananthanarayan et al. '18

$$arrow zt , x_j \rightarrow z^{v_j} x_j$$

and pySecDec 2108.10807

Taylor expand in z, then set z=1

$$\rightarrow t \;,\; x_j \rightarrow t^{v_j} x_j$$

Expansion by regions geometrically

write Newton polytope Δ' as convex hull of exponent vectors $\mathbf{p}'_i \equiv (p_{i,0}, \mathbf{p}_i)$

 $F^+ = \{f \in F \mid (\mathbf{n}_f)_0 > 0\}$ facets with normal vectors pointing into positive t-direction

change variables
$$t \rightarrow z_f^{(\mathbf{n}_f)_0} t$$
, $x_i \rightarrow z_f^{(\mathbf{n}_f)_i} x_i$, $f \in F^+$
example:
 $P(x,t) = t + x + x^2$
 $\mathbf{v}_1 = (1,1), \mathbf{v}_2 = (1,0)$

(1, 0)

- region vectors are given by vectors in F^+ (method of regions projects onto facets of Δ')

Method of regions and pySecDec

after rescaling with "smallness parameter":

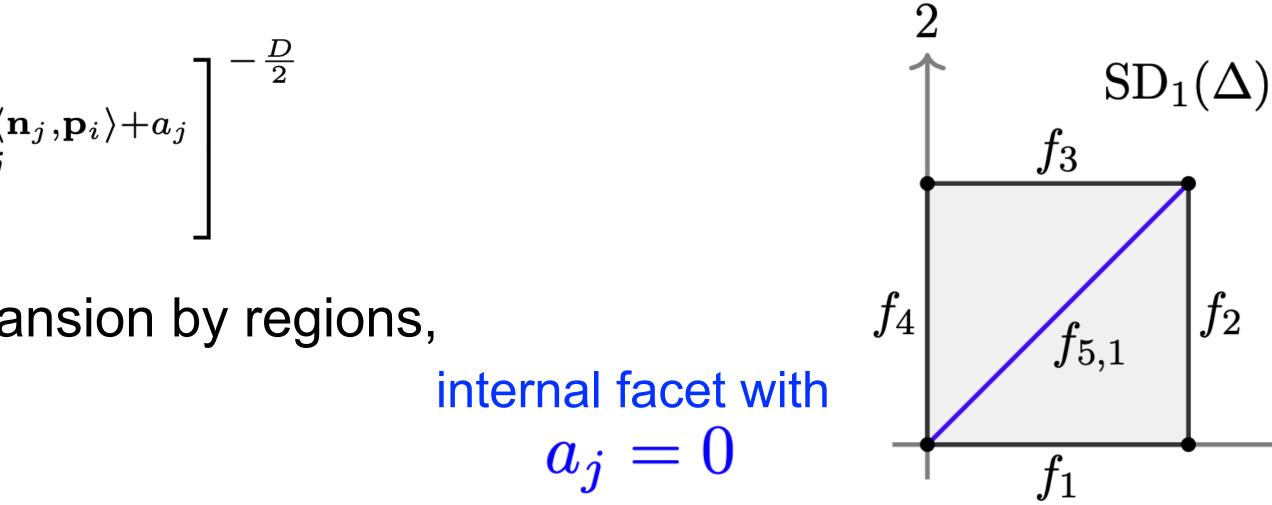
$$I = \left(\prod_{f \in F^+} z_f^{\langle \mathbf{n}_f, \nu' \rangle + \frac{D}{2}a_f}\right) \int_0^\infty \frac{\mathrm{d}\mathbf{x}}{\mathbf{x}} \mathbf{x}^\nu t^{\nu_0} \left[\sum_i c_i \mathbf{x}^{\mathbf{p}_i} t^{p_{i,0}} \prod_{f \in F^+} z_f^{\langle \mathbf{n}_f, \mathbf{p}_i' \rangle + a_f}\right]^{-\frac{D}{2}}$$

 $I = \sum_{f \in F^+} I_f$, I_f : results of expansion in z_f

local coordinates on each facet lead to form

$$I_f \sim \left(\prod_{j \in f} \int_0^1 \frac{\mathrm{d}y_j}{y_j} y_j^{\langle \mathbf{n}_j, \nu \rangle + a_j \frac{D}{2}}\right) \left[\sum_i c_i \prod_{j \in f} y_j^{\langle \mathbf{n}_j, \nu \rangle}\right]$$

for individual integrals occurring in the expansion by regions, a_j can be zero



Method of regions and pySecDec

pySecDec version 1.6, 2305.19768 NEW:

- method of regions can lead to integrals which are not regulated by dim. reg.
- these integrals need an additional regulator that cancels when summing over regions
- since pySecDec version 1.6:

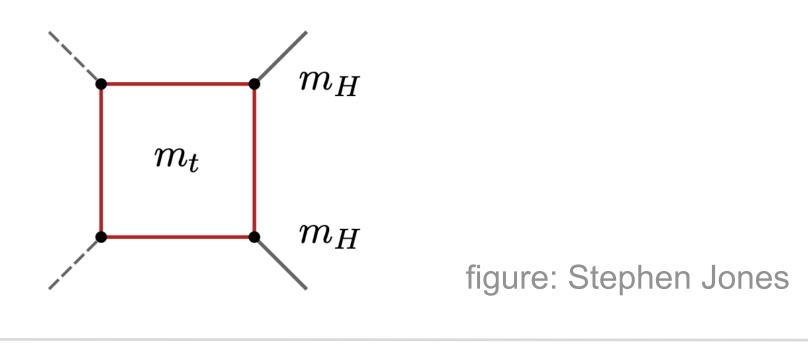
* detects automatically if extra regulators are needed * tells the user which of the Feynman parameters need an extra regulator

example 1-loop box in high energy expansion $m_H, m_t \ll s, |t|$

extra_regulator_constraints():

$$v_2 - v_4 \neq 0, v_1 - v_3 \neq 0$$

suggested_extra_regulator_exponent():
 $\{\delta \nu_1, \delta \nu_2, \delta \nu_3, \delta \nu_4\} = \{0, 0, \eta, -\eta\}$

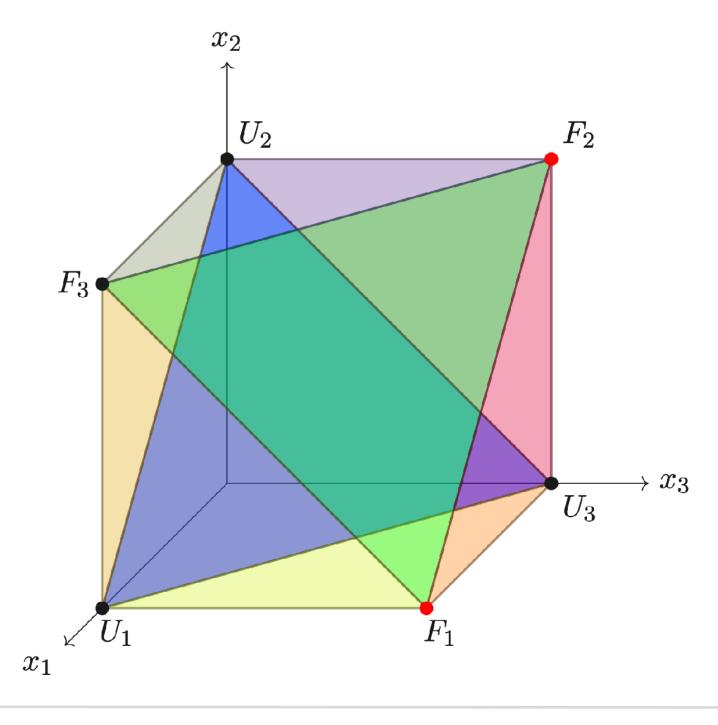


Landau equations and on-shell expansion

Gardi, Herzog, Jones, Ma, Schlenk '22

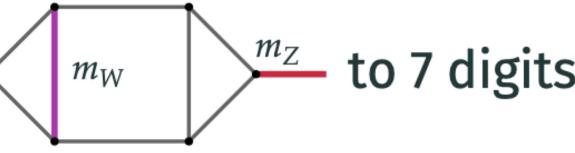
- consider regions of Feynman integrals with massless propagators and on-shell expansion of external momenta
- identify each region with a solution of Landau equations, or as a facet of the Newton polytope
- leads to necessary and sufficient conditions to classify infrared regions
- allows to identify infrared regions at the Feynman graph level
- valid to all orders in the power expansion

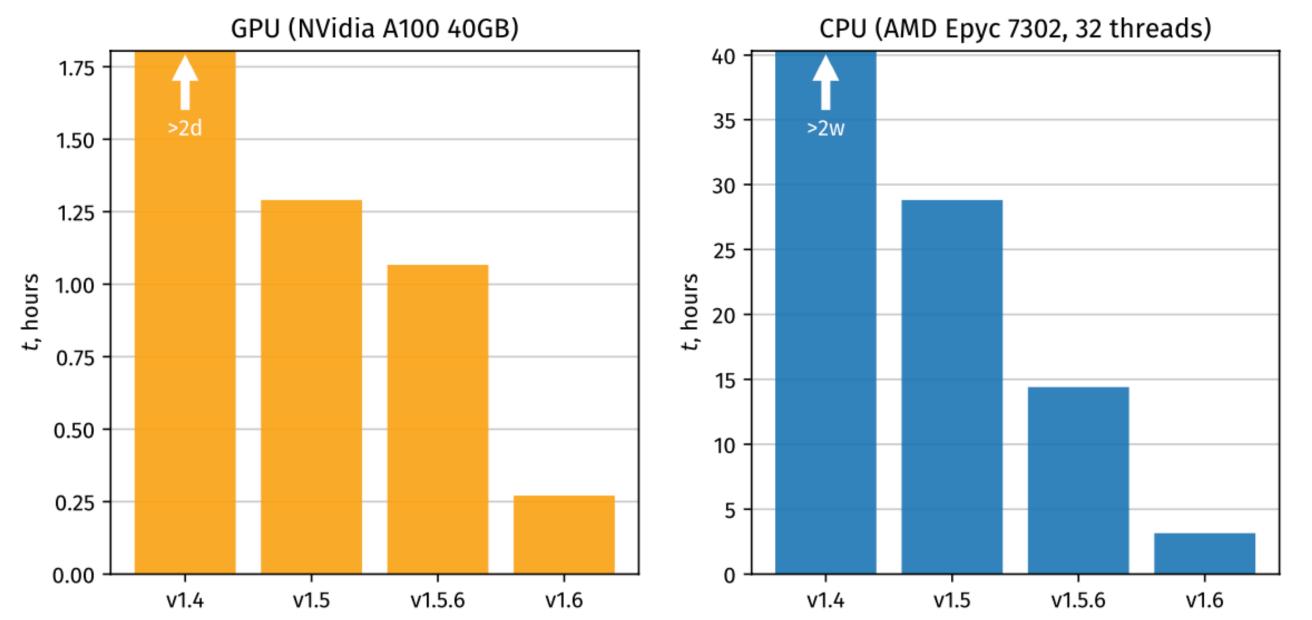
see also Arkani-Hamed, Hillmann, Mizera '22, Mizera, Telen '21, Dlapa, Helmer, Papathanasiou, Tellander '23



New developments in pySecDec: disteval

Time to integrate





•v1.5: weighted sampling of sums

to 7 digits of precision with pySecDec:

RADCOR 2023 Vitaly Margerya

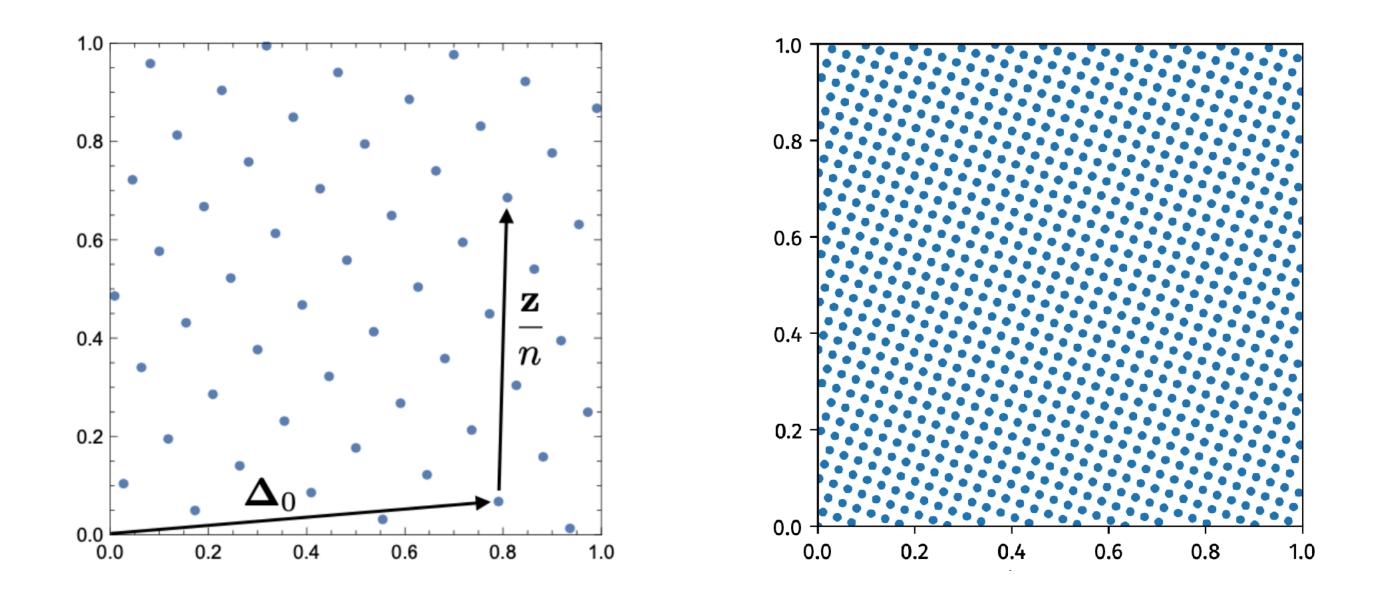
• v1.6: new quasi-Monte-Carlo integrator disteval (more distributed evaluation, performance improvements)

Quasi-Monte-Carlo method

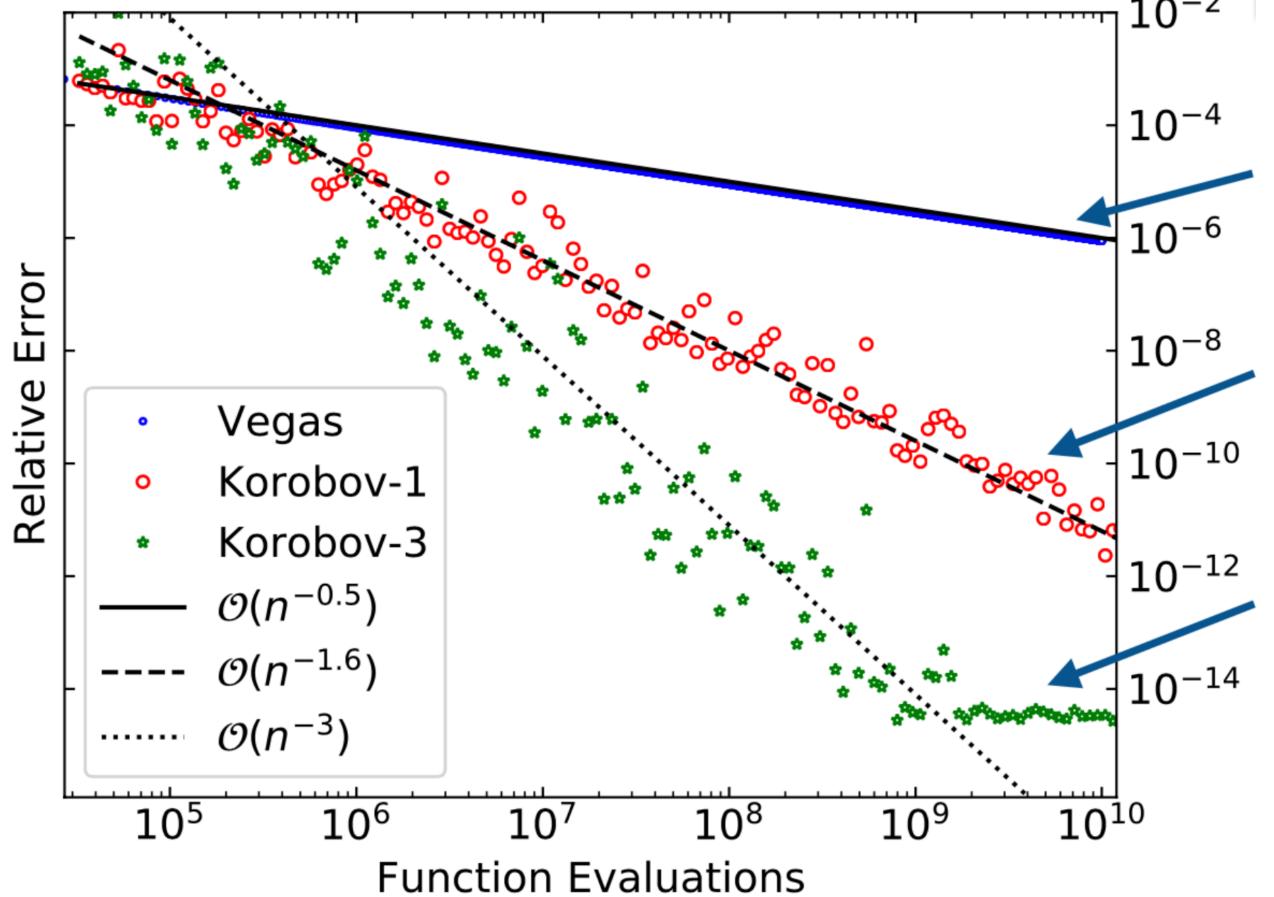
$$I[f] = \int_0^1 d^d \vec{x} f(\vec{x})$$

$$I[f] \approx \bar{Q}_{n,m}[f] \equiv \frac{1}{m} \sum_{k=0}^{m-1} Q_n^{(k)}[f]$$
$$Q_n^{(k)}[f] \equiv \frac{1}{n} \sum_{i=0}^{n-1} f\left(\left\{\frac{i\mathbf{z}}{n} + \boldsymbol{\Delta}_k\right\}\right)$$

n lattice points, m random shifts, $\ \mathbf{z}\in \mathbb{N}^n$ generating vector, $\ \Delta_k$ random shift vector error scaling $\sim 1/n^{lpha}$ if $\,\partial_x^{(lpha)}f(ec x)\,$ is square-integrable and periodic



Error scaling



$$10^{-2}$$

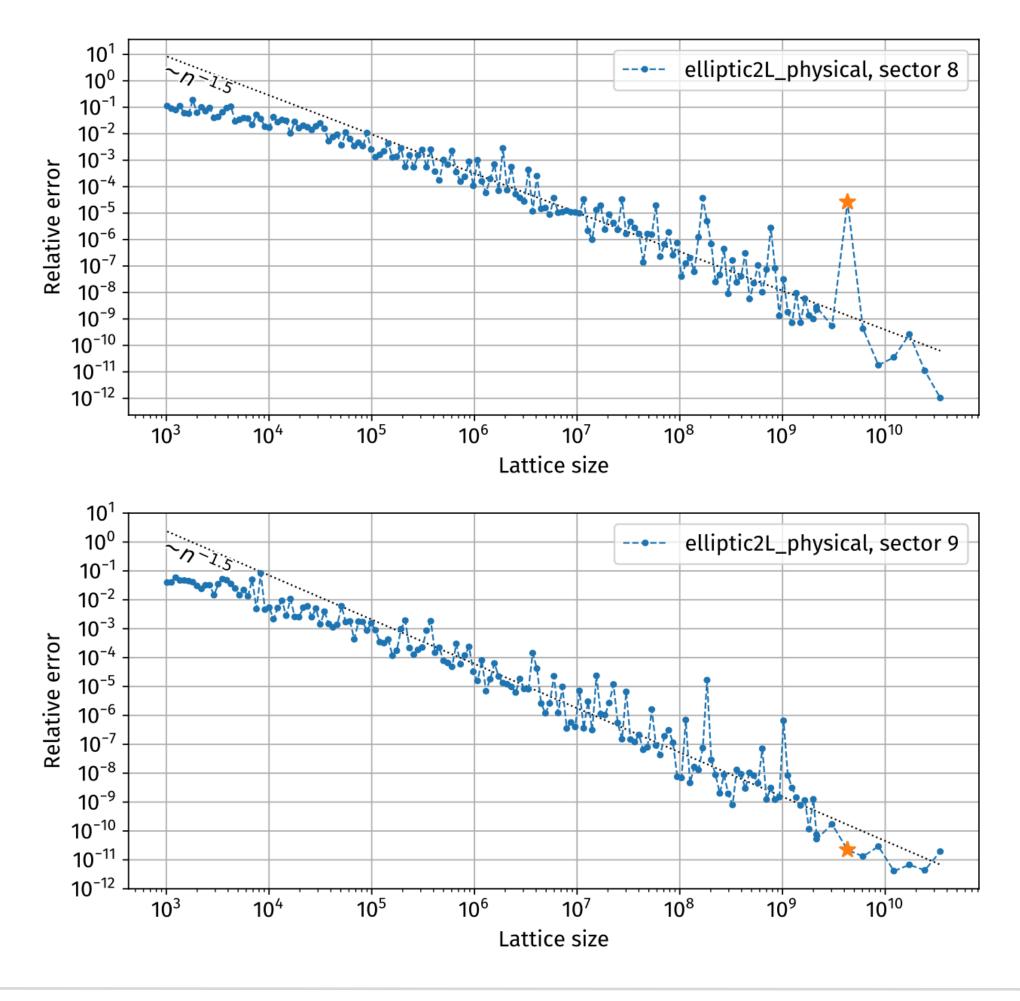
$$10^{-4}$$
Monte Carlo scaling
$$10^{-6}$$
Monte Carlo scaling
$$10^{-6}$$
Better than ``guaranteed'
$$n^{-1}$$
 scaling
$$10^{-10}$$
Limited by machine
precision (double)
$$contains elliptic fu$$

figure: S. Jones, M. Kerner

MathemAmplitudes 2023

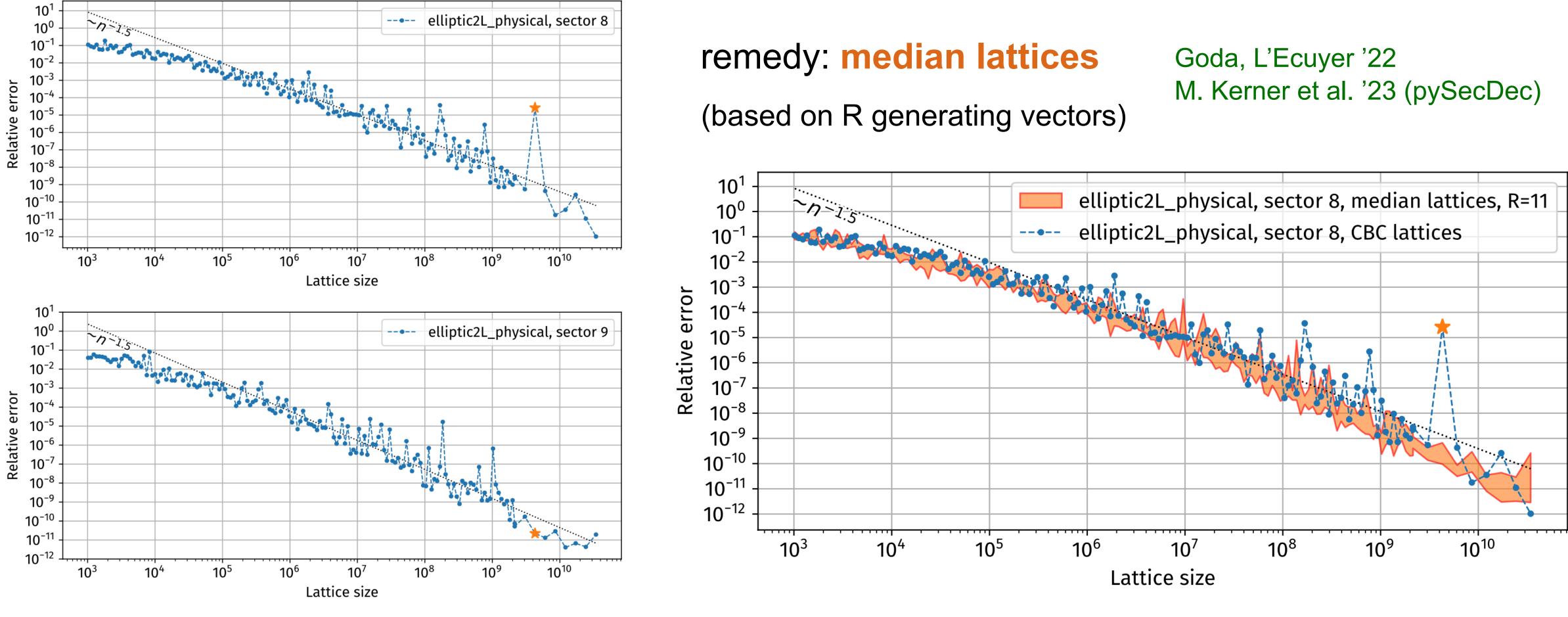
New developments in pySecDec: median QMC

however for some lattices and functions sudden precision drop



New developments in pySecDec: median QMC

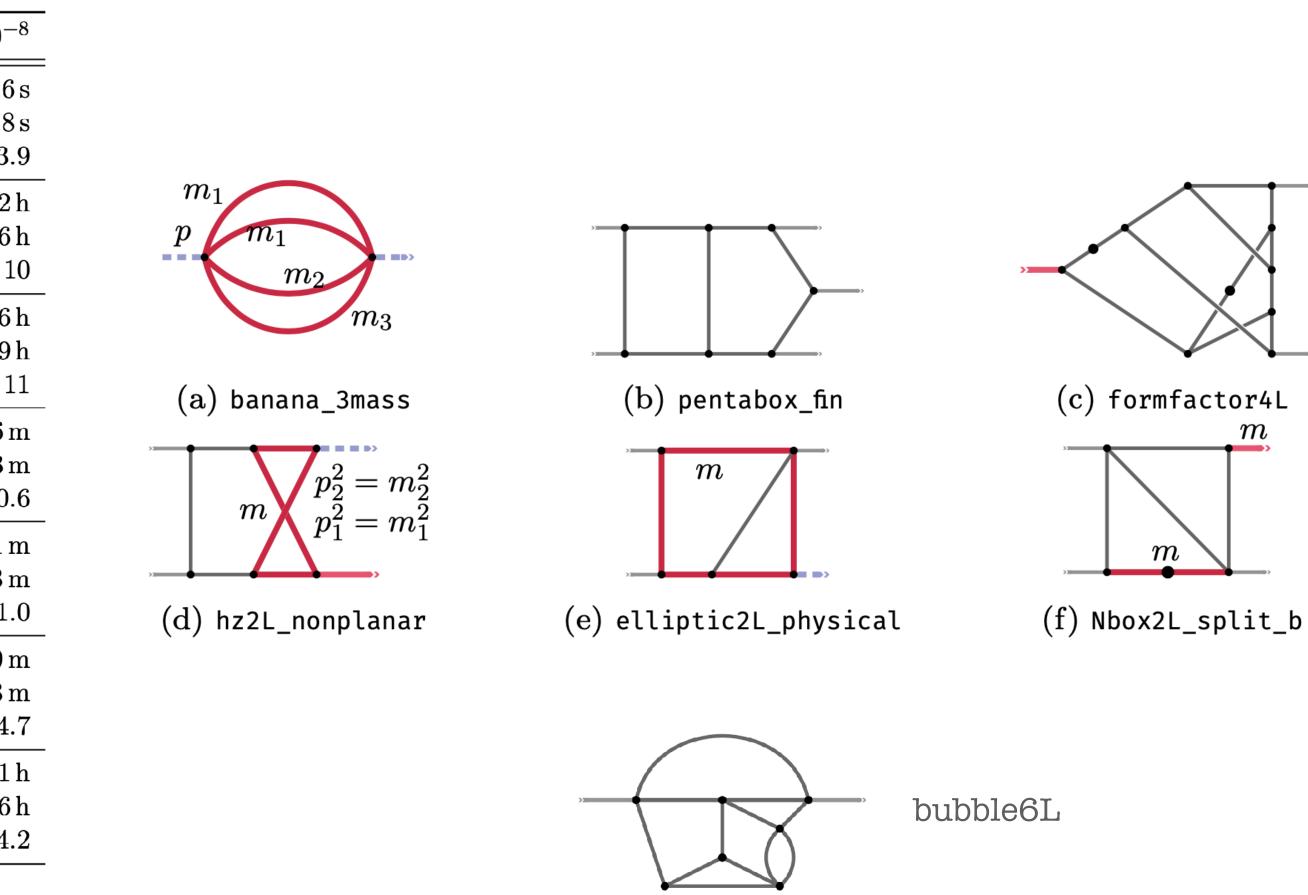
however for some lattices and functions sudden precision drop

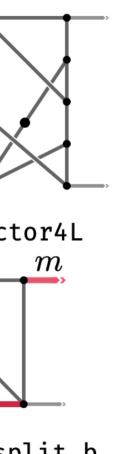


Examples for speed improvements

$\operatorname{Integrator} \setminus \operatorname{Accuracy}$		10^{-2}	10^{-3}	10^{-4}	10^{-5}	10^{-6}	10^{-7}	10^{-3}
banana_3mass	Disteval	$2.1\mathrm{s}$	$2.1\mathrm{s}$	$2.4\mathrm{s}$	$2.6\mathrm{s}$	$2.6\mathrm{s}$	$2.9\mathrm{s}$	3.6
	IntLib	$5.0\mathrm{s}$	$4.9\mathrm{s}$	$6.4\mathrm{s}$	$7.2\mathrm{s}$	$8.5\mathrm{s}$	$8.5\mathrm{s}$	13.8
	Ratio	2.3	2.3	2.7	2.7	3.2	3.0	3.9
bubble6L	Disteval	1.8 m	1.8 m	1.8 m	$2.1\mathrm{m}$	$3.8\mathrm{m}$	$10.2\mathrm{m}$	1.21
	IntLib	$39.5\mathrm{m}$	$38.8\mathrm{m}$	$39.6\mathrm{m}$	$43.8\mathrm{m}$	$85.1\mathrm{m}$	$170.7\mathrm{m}$	11.6l
	Ratio	22	22	22	21	22	17	10
formfactor4L	Disteval	$4.1\mathrm{m}$	4.1 m	4.1 m	4.4 m	$7.7\mathrm{m}$	14.6 m	0.96 ł
	IntLib	$74\mathrm{m}$	$73\mathrm{m}$	$73\mathrm{m}$	$74\mathrm{m}$	$136\mathrm{m}$	$246\mathrm{m}$	10.9 ł
	Ratio	18	18	18	17	18	17	11
elliptic2L_physical	Disteval	$1.6\mathrm{s}$	$1.5\mathrm{s}$	$1.7\mathrm{s}$	$1.9\mathrm{s}$	$4.0\mathrm{s}$	$19\mathrm{s}$	$7.6\mathrm{n}$
	IntLib	$3.1\mathrm{s}$	$4.8\mathrm{s}$	$4.9\mathrm{s}$	$7.3\mathrm{s}$	$13.8\mathrm{s}$	$53\mathrm{s}$	$4.3\mathrm{n}$
	Ratio	1.9	3.1	2.8	3.9	3.4	2.9	0.0
hz2L_nonplanar	Disteval	$2.1\mathrm{s}$	$2.6\mathrm{s}$	$4.6\mathrm{s}$	$30.4\mathrm{s}$	$2.2\mathrm{m}$	$5.1\mathrm{m}$	$27.1\mathrm{n}$
	IntLib	$9\mathrm{s}$	$17\mathrm{s}$	$41\mathrm{s}$	$163\mathrm{s}$	$9.6\mathrm{m}$	$16.0\mathrm{m}$	$27.3\mathrm{n}$
	Ratio	1.8	3.4	4.6	4.4	4.2	3.0	1.0
Nbox2L_split_b	Disteval	$2.7\mathrm{s}$	$9.8\mathrm{s}$	$16.8\mathrm{s}$	$0.58\mathrm{m}$	$2.4\mathrm{m}$	9.1 m	20 n
	IntLib	$24\mathrm{s}$	$73\mathrm{s}$	$223\mathrm{s}$	$6.6\mathrm{m}$	$26\mathrm{m}$	$43\mathrm{m}$	93 n
	Ratio	3.0	4.6	9.7	9.9	10.5	4.8	4.'
pentabox_fin	Disteval	$5\mathrm{s}$	8 s	$11\mathrm{s}$	$0.71\mathrm{m}$	$3.7\mathrm{m}$	$18.5\mathrm{m}$	1.11
	IntLib	$45\mathrm{s}$	$65\mathrm{s}$	$88\mathrm{s}$	$3.2\mathrm{m}$	$11.3\mathrm{m}$	$74.8\mathrm{m}$	4.61
	Ratio	8.6	7.9	7.7	4.5	3.1	4.0	4.2

integration timings on a GPU, Nvidia A100 80G





Summary

- Formulation of Feynman integrals in terms of algebraic geometry leads to very useful insights, e.g. (blue: work in progress)
 - how to avoid infinite recursion in sector decomposition
 - when an extra regulator is needed in expansion by regions
 - finding minimal number of sectors
 - relation to Landau equations
 - Numerics:
 - new integrator in pySecDec: disteval
 - median quasi-Monte-Carlo rules
 - Fruitful interplay between physics and mathematics!

A big Thank You to the organisers

Pierpaolo Mastrolia, Manoj Mandal, Ramona Gröber, Hjalte Frellesvig, Daniel Maitre, Tiziano Peraro

for a very inspiring workshop!

