

Karlsruhe Institute of Technology

Collaborative Research Center TRR 257

Particle Physics Phenomenology after the Higgs Discovery

New facets of pySecDec

Gudrun Heinrich

Institute for Theoretical Physics, Karlsruhe Institute of Technology

MathemAmplitudes Padova, Sep 27, 2023

based on work in collaboration with

Stephen Jones, Matthias Kerner, Vitaly Magerya, Anton Olsson, Johannes Schlenk, et al.

[https://arxiv.org/abs/2108.10807](https://arxiv.org/abs/2204.13045)

[https://arxiv.org/abs/2305.19768](http://www.apple.com/uk)

<https://secdec.readthedocs.io>

also (not my work): <https://arxiv.org/abs/2211.14845>

pySecDec Collaboration 2023

Motivation

• The interplay between mathematics and physics was often fruitful in the history of science

• The story is ongoing, insights gained with scattering amplitudes are a prime example

• However, pySecDec is just number crunching ... isn't it?

MathemAmplitudes 2023 Gudrun Heinrich

Geometric formulation of sector decomposition

Feynman integral in the Lee-Pomeransky representation in D space-time dimensions:

structure:
$$
I \sim \int_{\mathbb{R}_{>0}^N} \frac{d\mathbf{x}}{\mathbf{x}} \mathbf{x}^{\nu} \left[\sum_{i=1}^m c_i \mathbf{x}^{\mathbf{p}_i} \right]
$$

integral over a polynomial to some power, $\mathbf{x}^a = \prod x_i^{a_j}$

important object:

Newton polytope

defined by exponent vectors \mathbf{p}_i

 ν_i

$$
I(\nu_1 \dots \nu_N) = \frac{(-1)^{N_{\nu}} \Gamma(D/2)}{\Gamma((L+1)D/2 - N_{\nu}) \prod_j \Gamma(\nu_j)} \int_0^{\infty} \left(\prod_{j=1}^N dz_j z_j^{\nu_j - 1} \right) (\mathcal{U} + \mathcal{F})^{-D/2}
$$

$$
\mathcal{U}(\vec{x}) = \sum_{T \in \mathcal{T}_1} \left[\prod_{j \in \mathcal{C}(T)} x_j \right], \quad \mathcal{F}_0(\vec{x}) = \sum_{\hat{T} \in \mathcal{T}_2} \left[\prod_{j \in \mathcal{C}(\hat{T})} x_j \right] (-s_{\hat{T}}), \quad \mathcal{F}(\vec{x}) = \mathcal{F}_0(\vec{x}) + \mathcal{U}(\vec{x}) \sum_{j=1}^N x_j m_j^2 \quad , \quad N_{\nu} = \sum_{i=1}^N \mathcal{U}(\vec{x})
$$

Geometric formulation of sector decomposition

Feynman integral in the Lee-Pomeransky representation in D space-time dimensions:

structure:
$$
I \sim \int_{\mathbb{R}_{>0}^N} \frac{d\mathbf{x}}{\mathbf{x}} \mathbf{x}^{\nu} \left[\sum_{i=1}^m c_i \mathbf{x}^{\mathbf{p}_i} \right]
$$

integral over a polynomial to some power, $\mathbf{x}^a = \prod x_i^{a_j}$

important object:

Newton polytope

$$
I(\nu_1 \dots \nu_N) = \frac{(-1)^{N_{\nu}} \Gamma(D/2)}{\Gamma((L+1)D/2 - N_{\nu}) \prod_j \Gamma(\nu_j)} \int_0^{\infty} \left(\prod_{j=1}^N dz_j z_j^{\nu_j - 1} \right) (\mathcal{U} + \mathcal{F})^{-D/2}
$$

$$
\mathcal{U}(\vec{x}) = \sum_{T \in \mathcal{T}_1} \left[\prod_{j \in \mathcal{C}(T)} x_j \right], \quad \mathcal{F}_0(\vec{x}) = \sum_{\hat{T} \in \mathcal{T}_2} \left[\prod_{j \in \mathcal{C}(\hat{T})} x_j \right] (-s_{\hat{T}}), \quad \mathcal{F}(\vec{x}) = \mathcal{F}_0(\vec{x}) + \mathcal{U}(\vec{x}) \sum_{j=1}^N x_j m_j^2, \quad N_{\nu} = \sum_{i=1}^N \mathcal{U}(\vec{x})
$$

see talks by Felix Tellander, Claudia Fevola, Simon Telen

defined by exponent vectors \mathbf{p}_i

Geometric formulation of sector decomposition

Newton polytope:

$$
\mathcal{N}(I) = \text{convHull}\left(\mathbf{p}_1, \mathbf{p}_2, \dots\right) = \left\{ \sum_j \alpha_j \mathbf{p}_j \mid \alpha_j \ge 0 \land \sum_j \alpha_j = 1 \right\}
$$

can be written as intersection of hyperplanes

$$
\mathcal{N}(I) = \bigcap_{f \in F} \{ \mathbf{m} \in \mathbb{R}^{N+1} \mid \langle \mathbf{m}, \mathbf{n}_f \rangle \mid
$$

F : set of polytope facets with inward-pointing normal vectors, \mathbf{n}_f : normal vectors

$+ a_f \geq 0 \} \quad a_f \in \mathbb{Z}$

MathemAmplitudes 2023 Gudrun Heinrich

Geometric formulation of sector decomposition

• cones are simplicial if their extreme rays are linearly independent, otherwise a triangulation should be performed

• the normal vectors define local coordinates on each facet of the simplicial cones $x_i = \prod y_f^{\langle \mathbf{n}_f, \mathbf{e}_i \rangle}$ $f \in \sigma$

$$
\Bigg|\left[\sum_i c_i \prod_{f \in \sigma} y_f^{\langle \mathbf{n}_f, \mathbf{p}_i \rangle + a_f}\right]^{-\frac{D}{2}}
$$

- $\sigma = \bigcap\,\big\{ \mathbf{m} \in \mathbb{R} \big\}$ \cdot a cone σ is defined as $f \in F$
-
- the set of simplicial cones forms the basis for the sector functions
-
- this transformation leads to the decomposed form

$$
I \sim \sum_{\sigma \in \Delta_{\mathcal{N}}^T(f), \dim \sigma = N} \left(\prod_{f \in \sigma} \int_0^1 \frac{dy_f}{y_f} y_f^{\langle \mathbf{n}_f, \nu \rangle + a_f \frac{D}{2}} \right)
$$

$$
\Re^{N+1} \mid \langle {\bf m}, {\bf n}_f \rangle \geq 0 \big\}
$$

Bogner, Weinzierl 2007 Kaneko, Ueda 2009 Schlenk 2016

Geometric formulation of sector decomposition

Example:

Johannes Schenk '16

$$
\mathbf{p}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ \mathbf{p}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \ \mathbf{p}_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \ ; \quad \mathbf{n}_1 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}, \ \mathbf{n}_2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}, \ \mathbf{n}_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}
$$

maximal cones are defined by $\{\mathbf{n}_3, \mathbf{n}_1\}, \{\mathbf{n}_1, \mathbf{n}_2\}, \{\mathbf{n}_2, \mathbf{n}_3\}$

incident to vertices p_1, p_2, p_3

$$
I = \frac{(-1)^{\nu} \Gamma(\nu - LD)^{\prime}}{(m^2)^{\nu - LD/2} \prod_i \Gamma(i)}
$$

define variable transformations, e.g. $\mathbf{p}_1 : x_1 = y_1^{-1}y_3^1, x_2 = y_1^0y_3^1$ $\frac{(2)}{\nu_i)}$ $\frac{dy_1 dy_2 dy_3}{\sqrt{y_1}} y_1^{-\nu_1+\frac{D}{2}} y_2^{-\nu_2+\frac{D}{2}} y_3^{\nu_1+\nu_2-\frac{D}{2}}$ $(y_1+y_2+y_3)^{-\frac{D}{2}}[\delta(1-y_2)+\delta(1-y_3)+\delta(1-y_1)]$

$$
I = \sum_{k=1}^{m} \sum_{j=1}^{m} \frac{(-1)^{\nu} \Gamma(\nu - LD/2)}{(m^2)^{\nu - LD/2} \prod_{i} \Gamma(\nu_i)} \int_0^{\infty} \frac{dx_1 dx_2}{x_1 x_2} x_1^{\nu_1} x_2^{\nu_2} \left(x_1^1 x_2^0 + x_1^1 x_2^1 + x_1^0 x_2^1 \right)^{-\frac{D}{2}}
$$

Expansion by regions

pioneered by Beneke, Smirnov '97; see also Pak, Smirnov '10; Jantzen '11

idea:

- exploit hierarchies between kinematic scales
- expand integrand in small parameter, e.g. m^2/p^2
	- integrals easier to evaluate

under certain conditions:

integrating expanded integrands over full integration range and summing over all regions gives **full result**

Expansion by regions in momentum space Example $I_2 = \mu^{2\epsilon} \int d\kappa \frac{1}{(k+p)^2 (k^2 - m^2)^2}$ $\left(\begin{array}{c} m \\ \sim \end{array}\right)$

two regions: hard: $|k^2| \gg m^2$ soft: $|k^2|, |k \cdot p| \ll p^2$

$$
\begin{array}{ll} (h): & \frac{1}{(k+p)^2(k^2-m^2)^2} \rightarrow \frac{1}{(k+p)^2(k^2)^2} \left(1+2\frac{m^2}{k^2}+\ldots\right) \\\\ (s): & \frac{1}{(k+p)^2(k^2-m^2)^2} \rightarrow \frac{1}{p^2(k^2-m^2)^2} \left(1-\frac{k^2+2p\cdot k}{p^2}+\ldots\right) \end{array}
$$

$$
(s): \quad \frac{1}{(k+p)^2(k^2-m^2)^2} \to \frac{1}{p^2(k^2-n)}
$$

 $d\kappa=d^Dk/i\pi^{\frac{D}{2}}$

polynomials contain additional "smallness parameter" t , e.g. m^2/s in small mass expansion

$$
\equiv \big(p_{\bm{i},0},\mathbf{p}_{\bm{i}}\big)
$$

Geometric formulation of expansion by regions

$$
P(\mathbf{x}, t) = \sum_{i=1}^{m} c_i t^{p_{i,0}} x_1^{p_{i,1}} \dots x_N^{p_{i,N}} \qquad c_i \ge 0
$$

$$
I = \int_0^\infty \frac{d\mathbf{x}}{\mathbf{x}} t^{\nu_0} \mathbf{x}^\nu
$$

Newton polytope Δ' of the polynomial:

 $\mathbf{p}_i' \equiv$ convex hull of exponent vectors

Expansion by regions in parameter space

- **procedure:** find regions
	- expand in smallness parameter *t*
	- sum over regions and integrate

- two ways to do the expansion: (a) t -
	- \bm{t} (b) $\mathbf{v}=(1,v_1,\ldots,v_N)$ region vector

Taylor expand in z, then set z=1

$$
\to t\ ,\ x_j\to t^{v_j}x_j
$$

automated in FIESTA *A.V. Smirnov et al. Ananthanarayan et al. '18* ASPIRE and

> and **pySecDec 2108.10807**

$$
\rightarrow z t\ ,\ x_j\rightarrow z^{v_j}x_j
$$

-
-
- **region vectors are given by vectors in** F' (method of regions projects onto facets of Δ')

Expansion by regions geometrically

write Newton polytope Δ' as convex hull of exponent vectors $\mathbf{p}'_i \equiv (p_{i,0}, \mathbf{p}_i)$

 $F^+=\{f\in F\mid (\mathbf{n}_f)_0>0\}$ facets with normal vectors pointing into positive t-direction

change variables
$$
t \to z_f^{(\mathbf{n}_f)_0}t
$$
, $x_i \to z_f^{(\mathbf{n}_f)_i}x_i$, $f \in F^+$
example:

$$
P(x,t) = t + x + x^2
$$

 $v_1 = (1,1), v_2 = (1,0)$
 v_2

 $(1,0)$

Method of regions and pySecDec

for individual integrals occurring in the expansion by regions, a_j can be zero

local coordinates on each facet lead to form

$$
I_f \sim \left(\prod_{j \in f} \int_0^1 \frac{\mathrm{d}y_j}{y_j} y_j^{\langle \mathbf{n}_j, \nu \rangle + a_j \frac{D}{2}}\right) \left[\sum_i c_i \prod_{j \in f} y_j^{\langle \mathbf{r}_j \rangle} \right]
$$

results of expansion in ,

after rescaling with "smallness parameter":

$$
I = \left(\prod_{f \in F^+} z_f^{\langle \mathbf{n}_f, \nu' \rangle + \frac{D}{2} a_f} \right) \int_0^\infty \frac{d\mathbf{x}}{\mathbf{x}} \mathbf{x}^\nu t^{\nu_0} \left[\sum_i c_i \mathbf{x}^{\mathbf{p}_i} t^{p_{i,0}} \prod_{f \in F^+} z_f^{\langle \mathbf{n}_f, \mathbf{p}_i' \rangle + a_f} \right]^{-\frac{D}{2}}
$$

- method of regions can lead to integrals which are **not regulated by dim. reg.**
- •these integrals need an additional regulator that cancels when summing over regions
- since pySecDec version 1.6:

Method of regions and pySecDec

NEW: pySecDec version 1.6, 2305.19768

✴ detects automatically if extra regulators are needed ✴ tells the user which of the Feynman parameters need an extra regulator

example 1-loop box in high energy expansion $m_H, m_t \ll s, |t|$

extra_{regulator_constraints()}:

\n
$$
v_2 - v_4 \neq 0, \quad v_1 - v_3 \neq 0
$$
\nsuggested_extra_regularator_exponent()

\n
$$
\{\delta \nu_1, \delta \nu_2, \delta \nu_3, \delta \nu_4\} = \{0, 0, \eta, -\eta\}
$$

Landau equations and on-shell expansion

see also Arkani-Hamed, Hillmann, Mizera '22, Mizera, Telen '21, Dlapa, Helmer, Papathanasiou, Tellander '23

Gardi, Herzog, Jones, Ma, Schlenk '22

- consider **regions** of Feynman integrals with massless propagators and on-shell expansion of external momenta
- identify each region with a solution of Landau equations, or as a **facet of the Newton polytope**
- leads to necessary and sufficient conditions to classify infrared regions
- allows to identify infrared regions at the Feynman graph level
- •valid to all orders in the power expansion

New developments in pySecDec: disteval

Time to integrate

Vitaly Margerya, RADCOR 2023

• v1.5: weighted sampling of sums

to 7 digits of precision with pySECDEC:

• v1.6: new quasi-Monte-Carlo integrator **disteval** (more distributed evaluation, performance improvements)

Quasi-Monte-Carlo method

$$
I[f] = \int_0^1 d^d\vec{x} f(\vec{x})
$$

$$
I[f] \approx \bar{Q}_{n,m}[f] \equiv \frac{1}{m} \sum_{k=0}^{m-1} Q_n^{(k)}[f]
$$

$$
Q_n^{(k)}[f] \equiv \frac{1}{n} \sum_{i=0}^{n-1} f\left(\left\{\frac{i\mathbf{z}}{n} + \Delta_k\right\}\right)
$$

n lattice points, m random shifts, $\mathbf{z} \in \mathbb{N}^n$ generating vector, Δ_k random shift vector error scaling $\sim 1/n^{\alpha}$ if $\partial_x^{(\alpha)} f(\vec{x})$ is square-integrable and periodic

$$
\begin{array}{c}\n10^{-2} \\
10^{-4} \\
\hline\n10^{-6}\n\end{array}
$$
\nMonte Carlo scaling

\n
$$
\begin{array}{c}\n10^{-6} \\
10^{-8} \\
n^{-1} \\
\hline\n\end{array}
$$
\nButer than "guaranteed

\n
$$
\begin{array}{c}\n10^{-8} \\
\hline\n10^{-10}\n\end{array}
$$

$$
\frac{10000}{10000}
$$

 \mathbf{I}

figure: S. Jones, M. Kerner

Error scaling

contains elliptic functions

New developments in pySecDec: median QMC

however for some lattices and functions sudden precision drop

New developments in pySecDec: median QMC

however for some lattices and functions sudden precision drop

Examples for speed improvements

integration timings on a GPU, Nvidia A100 80G

Summary

- Formulation of Feynman integrals in terms of algebraic geometry leads to very useful insights, e.g. (blue: work in progress)
	- how to avoid infinite recursion in sector decomposition
	- when an extra regulator is needed in expansion by regions
	- finding minimal number of sectors
	- relation to Landau equations
	- Numerics:
		- new integrator in pySecDec: **disteval**
		- **median** quasi-Monte-Carlo rules
	- Fruitful interplay between physics and mathematics!

A big **Thank You** to the organisers

for a very inspiring workshop!

Pierpaolo Mastrolia, Manoj Mandal, Ramona Gröber, Hjalte Frellesvig, Daniel Maitre, Tiziano Peraro