Function bases for canonical differential equations

European Research Council Established by the European Commission Simone Zoia

MathemAmplitudes 2023, Padova, 27th September 2023

UNIVERSITÀ DEGLI STUDI **DI TORINO**

Based on work with

- Chicherin, Sotnikov (2110.10111)
- Abreu, Chicherin, Ita, Page, Sotnikov, Tschernow (2306.15431)

Application to 2-loop 5-pt integrals with 1 external mass

Outline

$$A_i \operatorname{d} \log W_i(s) \cdot \overrightarrow{F}(s;\epsilon)$$

in an **algorithmic** way such that the solution can be evaluated **efficiently**?

Pushing the high-multiplicity frontier of precision LHC physics

Urgent demand for ~1%-level theoretical predictions: NNLO QCD at least is required

Current frontier: $2 \rightarrow 3$ scattering processes

All massless processes now analysed at NNLO QCD

Next step: adding one mass on the external legs \rightarrow H/W/Z + 2 jet production

Bottleneck: computation of 2-loop 5-pt integrals & amplitudes

Pushing the high-multiplicity frontier of precision LHC physics

Urgent demand for ~1%-level theoretical predictions: NNLO QCD at least is required

Current frontier: $2 \rightarrow 3$ scattering processes

All massless processes now analysed at NNLO QCD

Next step: adding one mass on the external legs \rightarrow H/W/Z + 2 jet production

Bottleneck: computation of 2-loop 5-pt integrals & amplitudes

2-loop 5-pt 1-mass master integrals

[Abreu, Ita, Moriello, Page, Tschernow, Zeng 2020; Canko, Papadopoulos, Syrrakos 2020; Syrrakos 2020; Chicherin, Sotnikov, **SZ** 2021]

[Abreu, Ita, Moriello, Page, Tschernow 2021; Kardos, Papadopoulos, Smirnov, Syrrakos, Wever 2022]

[Abreu, Chicherin, Ita, Page, Sotnikov, Tschernow, **SZ** 2023]

Method of differential equations

[Barucchi, Ponzano '73; Kotikov '91; Bern, Dixon, Kosower '94; Gehrmann, Remiddi 2000]

[Barucchi, Ponzano '73; Kotikov '91; Bern, Dixon, Kosower '94; Gehrmann, Remiddi 2000]

The canonical form:

$$(\epsilon, \epsilon) = \epsilon \, \mathrm{d}\tilde{A}(s) \cdot \overrightarrow{\mathrm{MI}}(s; \epsilon)$$

[Henn 2013]

[Barucchi, Ponzano '73; Kotikov '91; Bern, Dixon, Kosower '94; Gehrmann, Remiddi 2000]

The canonical form:

$$\tilde{A}(s) = \sum_{i} a_{i} \log W_{i}(s)$$

$$Le$$
Constant matrices

$$(\epsilon, \epsilon) = \epsilon \, \mathrm{d}\tilde{A}(s) \cdot \overrightarrow{\mathrm{MI}}(s; \epsilon)$$

[Henn 2013]

etters: algebraic functions of kinematics

[Barucchi, Ponzano '73; Kotikov '91; Bern, Dixon, Kosower '94; Gehrmann, Remiddi 2000]

The canonical form:

$$\tilde{A}(s) = \sum_{i} a_{i} \log W_{i}(s)$$

$$Le$$
Constant matrices

$$= A_{s_{12}}(s;\epsilon) \cdot \overrightarrow{\mathrm{MI}}(s;\epsilon)$$

$$(\epsilon, \epsilon) = \epsilon \, \mathrm{d}\tilde{A}(s) \cdot \overrightarrow{\mathrm{MI}}(s; \epsilon)$$

[Henn 2013]

Very difficult to obtain, but not part of this talk

etters: algebraic functions of kinematics

1-mass pentagon alphabet: 204 letters

[Abreu, Ita, Moriello, Page, Tschernow 2021]

127 rational

6 variables

$$\begin{split} W_{1} &= p_{1}^{2}, \\ \{W_{2}, \dots, W_{5}\} &= \{\sigma\left(s_{12}\right) : \sigma \in S_{4}/S_{3}[3, 4, 5]\}, \\ \{W_{6}, \dots, W_{11}\} &= \{\sigma\left(s_{23}\right) : \sigma \in S_{4}/(S_{2}[2, 3] \times S_{2}[4, 5])\}, \\ \{W_{12}, \dots, W_{15}\} &= \{\sigma\left(2p_{1} \cdot p_{2}\right) : \sigma \in S_{4}/S_{3}[3, 4, 5]\}, \\ \{W_{16}, \dots, W_{27}\} &= \{\sigma\left(2p_{2} \cdot (p_{3} + p_{4})\right) : \sigma \in S_{4}/S_{2}[3, 4]\}, \\ \{W_{16}, \dots, W_{27}\} &= \{\sigma\left(2p_{2} \cdot (p_{3} + p_{4})\right) : \sigma \in S_{4}/S_{2}[3, 4]\}, \end{split}$$

$$\{W_{180}, \dots, W_{194}\} = \left\{\sigma\left(\frac{\tilde{\Omega}^{--}\tilde{\Omega}^{++}}{\tilde{\Omega}^{-+}\tilde{\Omega}^{+-}}\right) : \sigma \in S_{4}/(S_{2}[3, 4] \times S_{2}[2, 5])\right\}, \\ \text{where} \\ \Omega^{\pm\pm} &= s_{12}s_{15} - s_{12}s_{23} - s_{15}s_{45} \pm s_{34}\sqrt{\Delta_{3}^{(1)}} \pm \sqrt{\Delta_{5}}, \\ \tilde{\Omega}^{\pm\pm} &= p_{1}^{2}s_{34} \pm \sqrt{\Delta_{5}} \pm \sqrt{\Sigma_{5}^{(1)}}, \end{split}$$

$$\Sigma_5 = (s_{12}s_{15} - s_{12}s_{23} - s_{12}s_{23}$$

10 Square roots:
$$\Delta_5 = \det G(p_1, p_2, p_3, p_4)$$

= $(s_{12}s_{15} - s_{12}s_{23} - p_1^2s_{34} - s_{15}s_{45} + s_{34}s_{45} + s_{23}s_{34})^2$
 $- 4s_{23}s_{34}s_{45}(p_1^2 - s_{12} - s_{15} + s_{34}).$

Closed under permutations of the massless momenta

77 algebraic

 $(s_{15}s_{45} + s_{34}s_{45} + s_{23}s_{34})^2 - 4s_{23}s_{34}s_{45}(s_{34} - s_{12} - s_{15})^2$

Massless case: 31 letters, 1 square root \rightarrow Escalation \bigodot

How do we solve the DEs?

 $d\vec{F}(s;\epsilon) = \epsilon \ d\tilde{A}(s) \cdot \vec{F}(s;\epsilon)$

How to solve the DEs?

Express MIs in terms of **multiple polylogarithms** 1. $G\left(z_1, \dots, z_n; x\right) = \int_0^x \frac{\mathrm{d}t_1}{t_1 - z}$ Well understood functions, libraries for numerical evaluation Difficult to obtain, functional relations

$$\frac{1}{z_1} \int_0^{t_1} \frac{\mathrm{d}t_2}{t_2 - z_2} \cdots \int_0^{t_{n-1}} \frac{\mathrm{d}t_n}{t_n - z_n}$$

[Canko, Papadopoulos, Syrrakos 2020]

→ talks by Torres Bobadilla, Hidding

How to solve the DEs?

Express MIs in terms of **multiple polylogarithms** $G(z_1, ..., z_n; x) = \int_0^x \frac{dt_1}{t_1 - z}$ Difficult to obtain, functional relations

$$\frac{1}{z_1} \int_0^{t_1} \frac{\mathrm{d}t_2}{t_2 - z_2} \cdots \int_0^{t_{n-1}} \frac{\mathrm{d}t_n}{t_n - z_n}$$

[Canko, Papadopoulos, Syrrakos 2020]

Well understood functions, libraries for numerical evaluation

→ talks by Torres Bobadilla, Hidding

Integrate DEs numerically using generalised series expansions [Moriello 2019]

Consuming, forced to evaluate the MIS

→ talks by Ma, Fael

The "pentagon functions" approach

Very successful for massless 2-loop 5-point amplitudes

[Gehrmann, Henn, Lo Presti 2018; Chicherin, Sotnikov 2020]

Construct a **basis** of algebraically independent special functions: $\vec{f} = \{f_i^{(w)}\}$

Efficient numerical evaluation through one-fold integrals

$$-\epsilon^{3} \left[\frac{1}{4} \left(f_{1}^{(1)} - f_{6}^{(1)} \right) f_{23}^{(2)} + \frac{1}{2} f_{3}^{(3)} - \frac{1}{2} f_{29}^{(3)} \right] + \epsilon^{4} f_{47}^{(4)} + \mathcal{O}\left(\epsilon^{5}\right)$$

1. Algorithmic construction of the function basis

$$\operatorname{Li}_{2}(z) + \frac{1}{2}\log^{2}(-z) + \operatorname{Li}_{2}\left(\frac{1}{z}\right) + \frac{\pi^{2}}{6} = 0$$

Chen iterated integrals

→ talks by Hidding, Pokraka

$$\log w_{i_n}(s') \left[w_{i_1}, \dots, w_{i_{n-1}} \right]_{s_0}(s')$$

n = transcendentalweight

Chen iterated integrals

→ talks by Hidding, Pokraka

$$\log w_{i_n}(s') \left[w_{i_1}, \dots, w_{i_{n-1}} \right]_{s_0}(s')$$

n = transcendentalweight

+
$$\operatorname{Li}_{2}\left(\frac{1}{z}\right) + \frac{\pi^{2}}{6} = 0$$

 $\operatorname{Li}_{2}\left(\frac{1}{z}\right) = [1 - z, z]_{-1} - [z, z]_{-1} + \log 2[z]_{-1} - \frac{\pi^{2}}{12}$

 $\frac{1}{2}\log^2(-z) = [z, z]_{-1}$

Chen iterated integrals

→ talks by Hidding, Pokraka

$$\log w_{i_n}(s') \left[w_{i_1}, \dots, w_{i_{n-1}} \right]_{s_0}(s')$$

n = transcendentalweight

+
$$\operatorname{Li}_{2}\left(\frac{1}{z}\right) + \frac{\pi^{2}}{6} = 0$$

 $\operatorname{Li}_{2}\left(\frac{1}{z}\right) = [1 - z, z]_{-1} - [z, z]_{-1} + \log 2[z]_{-1} - \frac{\pi^{2}}{12}$

 $\frac{1}{2}\log^2(-z) = [z, z]_{-1}$

Chen iterated integrals

→ talks by Hidding, Pokraka

$$\log w_{i_n}(s') \left[w_{i_1}, \dots, w_{i_{n-1}} \right]_{s_0}(s')$$

n = transcendentalweight

+
$$\operatorname{Li}_{2}\left(\frac{1}{z}\right) + \frac{\pi^{2}}{6} = 0$$

 $\operatorname{Li}_{2}\left(\frac{1}{z}\right) = [1 - z, z]_{-1} - [z, z]_{-1} + \log 2[z]_{-1} - \frac{\pi^{2}}{12}$

 $\frac{1}{2}\log^2(-z) = [z, z]_{-1}$

Chen iterated integrals

→ talks by Hidding, Pokraka

$$\log w_{i_n}(s') \left[w_{i_1}, \dots, w_{i_{n-1}} \right]_{s_0}(s')$$

n = transcendentalweight

$$+ \operatorname{Li}_{2}\left(\frac{1}{z}\right) + \frac{\pi^{2}}{6} = 0$$

$$\operatorname{Li}_{2}\left(\frac{1}{z}\right) = \left[1 - z, z\right]_{-1} - \left[z, z\right]_{-1} + \log 2\left[z\right]_{-1} - \frac{\pi^{2}}{12}$$

$$\operatorname{Li}_{2}(-z) = \left[z, z\right]_{-1}$$

Solution in terms of Chen iterated integrals can be read off from canonical DEs!

Chen iterated integrals

→ talks by Hidding, Pokraka

$$\log w_{i_n}(s') \left[w_{i_1}, \dots, w_{i_{n-1}} \right]_{s_0}(s')$$

n = transcendentalweight

$$+ \operatorname{Li}_{2}\left(\frac{1}{z}\right) + \frac{\pi^{2}}{6} = 0$$

$$\operatorname{Li}_{2}\left(\frac{1}{z}\right) = \left[1 - z, z\right]_{-1} - \left[z, z\right]_{-1} + \log 2\left[z\right]_{-1} - \frac{\pi^{2}}{12}$$

$$L^{2}(-z) = \left[z, z\right]_{-1}$$

Important properties of iterated integrals

- No Q-linear relations among iterated integrals with different weight
- Shuffle product:

$$[W_1, W_2]_{s_0} \times [W_3]_{s_0} = [W_1, W_2, W_3]_{s_0} + [W_1, W_3, W_2]_{s_0} + [W_3, W_1, W_2]_{s_0}$$

• $\{W_i(s)\}$ multiplicatively independent $\Rightarrow [W_1, \dots, W_n]$ Q-linearly independent

(weight w_1) X (weight w_2) = Q-linear combination of weight $(w_1 + w_2)$

Extract function basis from MI coefficients

 $\left\{ \mathbf{MI}_{i}^{(1)} \right\} \longrightarrow \left\{ f_{k}^{(1)} \right\}$ $\left\{\mathrm{MI}_{i}^{(2)}\right\} \cup \left\{f_{i}^{(1)} \times f_{i}^{(1)}\right\} \longrightarrow \left\{f_{k}^{(2)}\right\}$ $\left\{\mathrm{MI}_{i}^{(3)}\right\} \cup \left\{f_{i}^{(2)} \times f_{j}^{(1)}\right\} \cup \left\{f_{i}^{(1)} \times f_{i}^{(1)} \times f_{k}^{(1)}\right\} \longrightarrow \left\{f_{k}^{(3)}\right\}$

Written in terms of Chen iterated integrals Ip to required order (here, w = 4)

Need to know relations among boundary values

We only know $\overrightarrow{\mathbf{MI}}^{(w)}(s_0)$ numerically

Previous approach: high-precision evaluation of MPLs + PSLQ algorithm [Ferguson, Bailey '92]

 $MI_1^{(2)}(s_0) = -1.644934067...$ $MI_3^{(2)}(s_0) = 1.436746367...$

- [Chicherin, Sotnikov, SZ 2021])
- Relies on MPL representation

Very heavy from computational point of view (e.g. ~3000-digit precision in

[Abreu, Chicherin, Ita, Page, Sotnikov, Tschernow, SZ 2023]

1. Select MI coefficients for the basis at **symbol** level $\{f_i^{(w)}\}$ [Goncharov, Spradlin, Vergu, Volovich 2010]

Symbol = iterated integral stripped of boundary information → talk by Dixon

$$Li_{2}(z) = -\left[1 - z, z\right]_{-1} - \log 2\left[z\right]_{-1} - \frac{\pi^{2}}{12} \qquad \Longrightarrow \qquad \mathcal{S}\left[Li_{2}(z)\right] = -\left[1 - z, z\right]$$

[Abreu, Chicherin, Ita, Page, Sotnikov, Tschernow, SZ 2023]

1. Select MI coefficients for the basis at **symbol** level $\{f_i^{(w)}\}$

Symbol = iterated integral stripped of boundary information \rightarrow talk by Dixon

$$\operatorname{Li}_{2}(z) = -\left[1 - z, z\right]_{-1} - \log 2\left[z\right]_{-1} - \frac{\pi^{2}}{12} \qquad \longrightarrow \quad \mathscr{S}\left[\operatorname{Li}_{2}(z)\right] = -\left[1 - z, z\right]$$

$$\mathrm{MI}^{(2)} = \sum_{i} \alpha_{i} f_{i}^{(2)} + \sum_{i \leq j} \beta_{ij} f_{i}^{(1)} f_{i}^{(1)} + \gamma \zeta_{2} \qquad \alpha_{i}, \beta_{ij}, \gamma \in \mathbb{Q}$$

[Goncharov, Spradlin, Vergu, Volovich 2010]

2. Ansatz: all MI coefficients are polynomials in $\{f_i^{(w)}\} + \zeta_2$ and ζ_3 (up to weight 4)

[Abreu, Chicherin, Ita, Page, Sotnikov, Tschernow, SZ 2023]

[Goncharov, Spradlin, 1. Select MI coefficients for the basis at **symbol** level $\{f_i^{(w)}\}$ Vergu, Volovich 2010]

Symbol = iterated integral stripped of boundary information → talk by Dixon

$$\text{Li}_{2}(z) = -\left[1 - z, z\right]_{-1} - \log 2\left[z\right]_{-1} - \frac{\pi^{2}}{12} \qquad \longrightarrow \qquad \mathcal{S}\left[\text{Li}_{2}(z)\right] = -\left[1 - z, z\right]$$

$$MI^{(2)} = \sum_{i} \alpha_{i} f_{i}^{(2)} + \sum_{i \leq j} \beta_{ij} f_{i}^{(1)} f_{i}^{(1)} + \gamma \zeta_{2} \qquad \alpha_{i}, \beta_{ij}, \gamma \in \mathbb{Q}$$

Fixed by symbol-level analysis

2. Ansatz: all MI coefficients are polynomials in $\{f_i^{(w)}\} + \zeta_2$ and ζ_3 (up to weight 4)

[Abreu, Chicherin, Ita, Page, Sotnikov, Tschernow, SZ 2023]

1. Select MI coefficients for the basis at **symbol** level $\{f_i^{(w)}\}$

Symbol = iterated integral stripped of boundary information → talk by Dixon

$$\text{Li}_{2}(z) = -\left[1 - z, z\right]_{-1} - \log 2\left[z\right]_{-1} - \frac{\pi^{2}}{12} \qquad \longrightarrow \qquad \mathcal{S}\left[\text{Li}_{2}(z)\right] = -\left[1 - z, z\right]$$

$$\begin{split} \mathrm{MI}^{(2)} &= \sum_{i} \alpha_{i} f_{i}^{(2)} + \sum_{i \leq j} \beta_{ij} f_{i}^{(1)} f_{i}^{(1)} + \gamma \zeta_{2} \qquad \alpha_{i}, \beta_{ij}, \gamma \in \mathbb{Q} \\ \end{split}$$
 Fixed by symbol-level analysis Fixed by evaluation at s_{0} + rationalisation

[Goncharov, Spradlin, Vergu, Volovich 2010]

2. Ansatz: all MI coefficients are polynomials in $\{f_i^{(w)}\} + \zeta_2$ and ζ_3 (up to weight 4)

Summary of the algorithm

- relations among the boundary values **Output:**

• function basis $\{f_i^{(w)}\}$ (written in terms of iterated integrals)

• expression of all MI coefficients as polynomials in $\{f_i^{(w)}\}$ and ζ values

One-mass pentagon functions

All 4! permutations of external massless legs \rightarrow everything that is needed for any amplitude of this kind

All 1-mass 2-loop 5-pt integrals

D	Total
	11
	35
	217
3	1028

Functions chosen to highlight analytic properties

E.g. letters expected to drop out, singularities... are isolated in the minimal number of functions

2. Efficient numerical evaluation

Logs and dilogarithms up to weight 2

Explicit expressions by fitting ansätze

Arguments guessed [Duhr, Gangl, Rhodes 2011] and chosen s.t. functions are well defined in a physical scattering region (s_{45} channel)

$$f_2^{(1)} = \log\left(-s_{34}\right)$$

$$f_2^{(2)} = \text{Li}_2\left(\frac{s_{14}}{p_1^2}\right) + \log\left(-\frac{s_{14}}{p_1^2}\right)\log\left(1 - \frac{s_{14}}{p_1^2}\right) + \frac{1}{2}$$

Can be evaluated numerically straightforwardly

$$\begin{split} f^{(1)} &\sim \log + \tau^{(1)} \\ f^{(2)} &\sim \mathrm{Li}_2 + \log^2 + \tau^{(1)} \log + \tau^{(2)} \end{split}$$

 $i\pi \log (s_{15} - s_{23} + s_{45}) - i\pi \log (p_1^2)$

One-fold integrals at weight 3 and 4

Path $\gamma: [0,1] \rightarrow s$ entirely within the physical region

$$\left[W_{i_1}, W_{i_2}, W_{i_3}\right]_{s_0}(s) = \int_0^1 \mathrm{d}t \, \frac{\mathrm{d}\log W_{i_3}\left(s'(t)\right)}{\mathrm{d}t} \, \left[$$

Through integration by parts [Caron-Huot, Henn 2014]

$$f^{(4)} \sim \int_0^1 \mathrm{d}t \, \log \times \frac{\mathrm{d}\log}{\mathrm{d}t} \times f^{(2)}$$

Numerical integration implemented in C++ library PentagonFunctions++

No analytic continuation required!

New non-planar feature: integrable (and genuine) singularities in the s_{45} channel at $\Sigma_5^{(i)} = 0$

Double accuracy (quadruple and octuple also available)

genuine) Planar subset ~10 times better 0

Pentagon functions and finite fields methods allowed for efficient computation of amplitudes

Massless pentagon functions

[Chicherin, Sotnikov 2020]

1-mass pentagon functions (planar)

[Chicherin, Sotnikov, **SZ** 2021]

- 3*Y*
- $2\gamma + j$
- 3j (planar)
- $\gamma + 21$
- W + bb (planar)
- W + 2i (planar)
- H + bb (planar)
- W + γ + j (planar)

[Abreu, Page, Pascual, Sotnikov 2020; Chawdhry, Czakon, Mitov, Poncelet 2021; Abreu, De Laurentis, Ita, Klinkert, Page, Sotnikov, 2023]

[Agarwal, Buccioni, von Manteuffel, Tancredi 2021; Chawdhry, Czakon, Mitov, Poncelet 2021; Badger, Brönnum-Hansen, Chicherin, Gehrmann, Hartanto, Henn, Marcoli, Moodie, Peraro, **SZ** 2021]

[Abreu, Febres-Cordero, Ita, Page, Sotnikov 2021]

[Badger, Czakon, Bayu Hartanto, Moodie, Peraro, Poncelet, SZ 2023]

[Badger, Bayu Hartanto, SZ 2021; Bayu Hartanto, Poncelet, Popescu, SZ 2022]

[Abreu, Febres Cordero, Ita, Klinkert, Page, Sotnikov 2022]

[Badger, Bayu Hartanto, Kryś, SZ 2021]

[Badger, Bayu Hartanto, Kryś, SZ 2022]

\rightarrow talks by von Manteuffel, de Laurentis

Ready for deployment in NNLO QCD phenomenology

 $\begin{array}{l} \mbox{lphi} \mbox{lphi$

 $pp \rightarrow \gamma + 2j$ [Badger, Czakon, Bayu Hartanto, Moodie, Peraro, Poncelet, SZ 2023]

All massless $2 \rightarrow 3$ processes now analysed at NNLO QCD \checkmark

Conclusions

New algorithm to construct solutions to canonical DEs using numerical boundary values

- Clear analytic structure
- Efficient computation of amplitudes
- Efficient numerical evaluation

All 2-loop 5-pt integrals with 1 external massive leg now available!

Conclusions

New algorithm to construct solutions to canonical DEs using numerical boundary values

- Clear analytic structure
- Efficient computation of amplitudes
- Efficient numerical evaluation

All 2-loop 5-pt integrals with 1 external massive leg now available!

Solving the canonical DEs in terms of iterated integrals is straightforward

$$\begin{cases} d[w_{i_1}, \dots, w_{i_n}]_{s_0}(s) = d \log w_{i_n}(s) [w_{i_1}, \dots, w_{i_{n-1}}]_{s_0}(s) \\ [w_{i_1}, \dots, w_{i_n}]_{s_0}(s_0) = 0 \end{cases}$$
 Chen's iterated integrals

Canonical [

DES
$$\begin{cases} d \overrightarrow{\mathrm{MI}}^{(w)}(s) = \sum_{i} a_{i} d \log w_{i}(s) \ \overrightarrow{\mathrm{MI}}^{(w-1)}(s) \\ \overrightarrow{\mathrm{MI}}^{(w)}(s_{0}) = \overrightarrow{\mathrm{MI}}_{0}^{(w)} \end{cases}$$

Insensitive to square roots!

Integral families

$$D = 4 - 2\epsilon$$

$$I[\vec{a}](s;\epsilon) = \int \frac{d^{D}\ell_{1}}{i\pi^{D/2}} \frac{d^{D}\ell_{2}}{i\pi^{D/2}} \prod_{j=1}^{1} \frac{d^{D}\ell_{2}}{i\pi^{D/2}} \prod_{j=1}^{1} \frac{d^{D}\ell_{2}}{i\pi^{D/2}} \int_{j=1}^{1} \frac{d^{D}\ell_{2}}{i\pi^{D/2}} \frac{d^{D}\ell_{2}}{i\pi^{D/2}} \frac{d^{D}\ell_{2}}{i\pi^{D/2}} \int_{j=1}^{1} \frac{d^{D}\ell_{2}}{i\pi^{D/2}} \frac{d^{D}\ell_{2}}{i\pi^{D}\ell_{2}} \frac{d^{D}\ell_{2}}{i\pi^{D$$

Infinitely many integrals Infinitely many linear relations Integration-by-parts identities (IBPs) $I = \sum c_i \times MI_i$ [Tkachov '81; Chetyrkin, Tkachov '81; Laporta 2000]

Finitely many are linearly independent: the master integrals: MI