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Loop 1ntegrals

* LEGO® blocks of perturbative QFT beyond tree level
* Key 1ngredient of phenomenological predictions

* Rich and interesting mathematical structures
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Not all are linearly

1hdependent!




Reduction to master 1integrals

why?

* Extremely large number of integrals contributing to
an amplitude

* Properties/symmetries of an amplitude manifest only
after the reduction

* Important for the calculation of the integrals

Reduction into a basis of linearly independent
master integrals {G;} c {I}

I= ), G,

{G;} =minimal linearly independent set



Feynman integrals in dimensional regularization obey linear
relations, e.g. Integration By Parts 1identities

Chetyrkin, Tkachov (1981), Laporta (2000)
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Lorentz Invariance 1ids, symmetry relations, ..
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reduction as solution of a large
and sparse system of identities
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Algebraic complexity

Processes with many

give rise to HUGE 1ntermediate expressions

Drawbacks of Laporta procedure

* Very large system — computational bottleneck

* Algebraic structure of FI not manifest



Looking for other ways..

Wishlist:

* Allows for a direct decomposition

* Exploits the vector space structure
obeyed by Feynman integrals

One option:

Intersection theory



Framework

Vector space of n-folds integrals in z = (z,...,2,)

“right” integrals “dual” or “left”integrals

| p) = szl°'°dZnL¢R(Z) () | = szl...dznu(z)¢L(z)
U(Z) o
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With generic exponents
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e @;/pr rational functions u(z) = HB(Z)j ’ {ijolynomials
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Intersection numbers: | |
scalar products between <§0L‘¢R> Mastrolia, Mizera (2018)
left and right integrals

| Vector space:

\* Dimension v

'+ Basis |eY) and dual basis (e _
* Scalar product: intersection number |
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Change of representation

Baikov change of vars

Baikov (1996)

%
j=1 ZJ
1
Zi" . 2"

analytic regulators
# of z; —> () singularities



ITdentifications

@ |p) generic vector !D{IefRB}iﬂbasis vectors
— Feynman integral to reduce - master integrals

decomposition of integrals as
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® similar formulae
for dual 1integrals
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Computation of
1Lntersection numbers




Univariate algorithm

Frellesvig et al. (2019)

——@g(2)

We have 1-fold integrals
) | ) = sz
u(z)

1n the variable ;

univariate intersection numbers

(@rlog) = Z Res. _,(w@g)
PEZ,

w 1S the local solution of
ou
O, +o)y =¢;,, ® =—

around each pe &
P ={z|z1ls a pole ofa)}U{oo}

ansatz around p .

W = Z Ci(Z _p)i + 0<(Z _p)max+1>

I=min

* plug 1n the DE
* solve for the



(@; | pp) = rational

BUT

* Non-rational contributions in intermediate stages
* (Cancellations after sum over all residues

non-rational terms in the poles of w

* Computational bottleneck
* Non-suitable for applications
with finite-fields

® similar for multivariate case



p(z)—adic expansion




p(z)-adic series expansion
Expansion around all the roots of polynomials p(z) at once

max

Z ii + 0 (p()" 1)

I=min ¢

. 4 3 rime
rati Ona]_ { ” (p )
Function "o+ Polynomial
over ()
polynomial coefficients c¢/(z)
deg p—1 . .
c(z) = Z .. 7 Obtained via repeated
l - / polynomial divisions
]:

" % NO irrational operations
* NO knowledge of explicit location




Example: univariate algorithm

Before:

(@r | pr) = Z Res _,(w@g)
peZ,

summing over all pe &

P ={z|z1s a pole ofa)}U{oo}



Example: univariate algorithm

Now:

GF, T. Peraro (2022)

(@ og) = Z (@Ll ¥r)p2)
pPRIER,[Z]

summing over all p(z) € & [7]

= { factors of the denominator ofa)}U{oo}




Example: univariate algorithm

GF, T. Peraro (2022)

(@ og) = :z: (@Ll ¥r)p2)
pPRIER,[Z]

summing over all p(z) € & |7]

P [z] = { factors of the denominator oFa)}U{oo}

* Each addend of the form (¢, |@g),, 1s the sum

p(z
of all contributions to the intersection

number coming from the roots of p(z)

* (@, |pp),, 1S computed as the contribution at
p = oo with the “standard” algorithm

® similar for
multivariate case



to solve (0, +w)y = ¢,
we make an ansatz of the form

max degp— 1

v= ), ), ¢@p@ + 0(p(z>’”'”‘a’““)

i=min j=0

we multiply the solution by @p

—1 degp—1

Wpr = Z Z C;7'p(2) + 0(p(z)°>

i j=0

by the univariate global residue theorem
Weinzierl (2021)
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Dual 1integrals




1
Are needed to regulate ¢; ~ —

5
L= B Hzfgj * otherwise no solution in DE for y
: S % if @~ 1/Z27 (v;>0) then y~ 1/p
]:

Then limit p;, > 0 1in the coefficients of the decomposition

* Additional variables in intermediate
steps
BUT :(  * No block-triangular structure of
decompositions
* More MIs 1n intermediate steps



Dual Integrals..

Remember the right-integrals decomposition:

U 1%
‘ ¢R> — Z Ci(R) ‘ ei(R)>9 Cl-(R) — Z (C_l)ij<ej(L) ‘ ¢R>
=1 j=1

Observation
Coefficients ¢ are independent of the choice of the dual

: (L) | v
basis {(%. {bzl

=>Idea
Exploit the freedom of choice of the dual basis to simplify
the calculation



& how to choose them

Two approaches (different formalism but similar outcomes)

*Dual space of loop integrals [Caron-Huot, Pokraka (2021)]
*Simple choice [GF, T. Peraro (2023)]

Choose dual 1integrals of the form

01 O-b__ |
0, (2) =p (a1—7 p) a,—3 —
Z{ ...z,

*If there’s a denominator factor %ﬁ (with o;> 0), multiply by p;

*Systematically work in the 1imit gj—>0 (only leading terms 1in

a gi—>0 expansion i1n each step)



* No dependance on p; in calculations (work on leading coeff.s of

gi—>0 expansion, never sample or reconstruct p; dependence over FF )

* Simpler intermediate expressions

* Block triangular metric and reduction tables (blocks~sectors)

top sector

W@ subsector 1

0 0

w o O O O O
x O O O O

* Many 1intersection numbers and contributions of poles to them vanish

* Fewer MIs 1n intermediate steps!



Finite fields i1mplementation

‘ MOJ%




Implementation on FiniteFlow of the multivariate
recursive rational algorithm GF, Peraro (2023)

& Input

list of mn-variate intersection {(ea0|q7) <ea3|eaa>}
numbers to compute

® Preliminary step

* <¢L|€(R)>
recursively deduce the intersection *(ﬁ<é“u4)kf&%1
numbers needed for each step x (e@]e®y

[ Jj n—

* (e pp)

& Univariate algorithm @ Multivariate algorithm

1nputs
o * denominator factors pJz)
t t: : : '
analytic input: u(z) *(n— 1)-variate intersection

numbers reconstructed in z, only



@ Dealing with poles
* p=0,00— Laurent expansion

* all other factors — p(z)-adic expansion

our implementation 1is an iteration:
l—forms — n—forms

@®Input for the n- step
X, =1list of (n—1)—variate intersection
numbers and reduction coeff.s

@ Between two steps:

* rational reconstruction of &, only in z,, with
everything else set to a number mod p

* identify denominator factors of X, in z,, fully
reconstruct them from a simple subset of X,



Examples

(X
sl

maximal cut only




Conclus1ions..

* Intersection theory: new mathematical structures,
direct integral reduction

* p(z)-adic expansion: simplify study of functions
close to roots of polynomials

& Outlook

Simplifications/optimizations

Application to different integral representations
(loop-by-loop Baikov, Lee-Pomeransky)
Non-recursive multivariate generalization

(based on Chestnov, Frellesvig, Gasparotto, Mandal,
Mastrolia (2022))

New applications of p(z)-adic expansion



Thank you for
your attention!




