

Gaia Fontana-University of Zürich

Based on arXiv:2304.14336 in collaboration with Tiziano Peraro

Loop integrals

- * LEGO® blocks of perturbative QFT beyond tree level
- * Key ingredient of phenomenological predictions
- * Rich and interesting mathematical structures

$$I_{i}[\alpha_{1},...,\alpha_{n}] = \int_{-\infty}^{+\infty} \left(\prod_{i=1}^{\ell} d^{d}k_{i}\right) \frac{1}{z_{1}^{\alpha_{1}}...z_{n}^{\alpha_{n}}}$$
inverse propagators
$$z_{i} = k_{i}^{2} - m_{i}^{2} + \text{ISPs}$$

Reduction to master integrals why?

- * Extremely large number of integrals contributing to
 an amplitude
- * Properties/symmetries of an amplitude manifest only
 after the reduction
- * Important for the calculation of the integrals

Reduction into a basis of linearly independent master integrals $\{G_j\} \subset \{I_j\}$

$$I_j = \sum c_{jk} G_k$$

 $\{G_i\}$ = minimal linearly independent set

Laporta algorithm

Feynman integrals in dimensional regularization obey linear relations, e.g. Integration By Parts identities

Chetyrkin, Tkachov (1981), Laporta (2000)

$$\int \left(\prod_{i=1}^{\ell} d^d k_i\right) \frac{\partial}{\partial k_i^{\mu}} \left(\frac{v_j^{\mu}}{z_1^{\alpha_1} \dots z_n^{\alpha_n}}\right) = 0, \quad v^{\mu} = \begin{cases} p_i^{\mu} = \text{external} \\ k_i^{\mu} = \text{loop} \end{cases}$$

$$\downarrow \text{ Lorentz Invariance ids, symmetry relations, ...}$$

$$reduction \text{ as solution of a large} \\ \text{and sparse system of identities} \end{cases}$$

Algebraic complexity

Processes with many

give rise to $\ensuremath{\textbf{HUGE}}$ intermediate expressions

Drawbacks of Laporta procedure

- * Very large system \rightarrow computational bottleneck
- * Algebraic structure of FI not manifest

Looking for other ways...

Wishlist:

- * Allows for a direct decomposition
- * Exploits the vector space structure
 obeyed by Feynman integrals

One option:

Intersection theory

Framework

Vector space of *n*-folds integrals in $\mathbf{z} = (z_1, ..., z_n)$

"right" integrals

"dual" or "left" integrals

$$|\varphi_R\rangle = \int dz_1 \dots dz_n \frac{1}{u(\mathbf{z})} \varphi_R(\mathbf{z}) \qquad \langle \varphi_L| = \int dz_1 \dots dz_n u(\mathbf{z}) \varphi_L(\mathbf{z})$$

with

 φ_L / φ_R rational functions $u(\mathbf{z}) = \prod_i B(\mathbf{z})_j^{\gamma_j}, \quad \begin{cases} \gamma_j \text{generic exponents} \\ B_j \text{polynomials} \end{cases}$

Intersection numbers:

scalar products between $\langle \varphi_L | \varphi_R \rangle$ Mastrolia, Mizera (2018) left and right integrals

Vector space:

- Dimension ν
- * Basis $|e_i^{(R)}\rangle$ and dual basis $\langle e_i^{(L)}|$
- * Scalar product: intersection number

Change of representation

$$I[\alpha_1, \dots, \alpha_n] = \int \left(\prod_{i=1}^{\ell} d^d k_i\right) \prod_{j=1}^n \frac{1}{z_j^{\alpha_j}} \to \int dz_1 \dots dz_n B^{\gamma} \prod_{j=1}^n \frac{1}{z_j^{\alpha_j}} = |\varphi_R\rangle$$

Identifications

 $|\varphi\rangle$ generic vector $\{|e_i^{(R)}\rangle\}_{i=1}^{\nu}$ basis vectors \rightarrow Feynman integral to reduce \rightarrow master integrals

decomposition of integrals as

$$|\varphi_{R}\rangle = \sum_{i=1}^{\nu} c_{i}^{(R)} |e_{i}^{(R)}\rangle \quad c_{i}^{(R)} = \sum_{j=1}^{\nu} (\mathbf{C}^{-1})_{ij} \langle e_{j}^{(L)} |\varphi_{R}\rangle$$

where we introduce the metric

$$\mathbf{C}_{ij} = \langle e_i^{(L)} | e_j^{(R)} \rangle$$

• similar formulae for dual integrals

Computation of intersection numbers

Univariate algorithm

We have 1-fold integrals $|\varphi_{\rm R}\rangle$ in the variable z

$$\langle \varphi_R \rangle = \int dz \frac{1}{u(z)} \varphi_R(z)$$
 Frellesvig et al. (2019)

univariate intersection numbers

$$\langle \varphi_L | \varphi_R \rangle = \sum_{p \in \mathscr{P}_\omega} \operatorname{Res}_{z=p}(\psi \varphi_R)$$

 ϕ ψ is the local solution of

$$(\partial_z + \omega)\psi = \varphi_L, \ \omega \equiv \frac{\partial_z u}{u}$$

around each $p \in \mathcal{P}_{\omega}$
$$\mathcal{P}_{\omega} = \{z \mid z \text{ is a pole of } \omega\} \bigcup \{\infty\}$$

• ansatz around p $\psi = \sum_{i=min}^{max} c_i (z-p)^i + O((z-p)^{max+1})$ * plug in the DE

* solve for the c_i

$\langle \varphi_L | \varphi_R \rangle = rational$

BUT

- * Non-rational contributions in intermediate stages
- Cancellations after sum over all residues

non-rational terms in the poles of $\boldsymbol{\omega}$

Computational bottleneck
 Non-suitable for applications with finite-fields

• similar for multivariate case

p(z)-adic series expansion

Expansion around all the roots of polynomials p(z) at once

Example: univariate algorithm

Before:

$$\langle \varphi_L | \varphi_R \rangle = \sum_{p \in \mathscr{P}_\omega} \operatorname{Res}_{z=p}(\psi \varphi_R)$$

summing over all $p\in \mathscr{P}_{\omega}$

 $\mathcal{P}_{\omega} = \{z \mid z \text{ is a pole of } \omega\} \bigcup \{\infty\}$

Example: univariate algorithm

Now:

GF, T. Peraro (2022)

 $\langle \varphi_L | \varphi_R \rangle = \sum \langle \varphi_L | \varphi_R \rangle_{p(z)}$ $p(z) \in \mathscr{P}_{\omega}[z]$

summing over all $p(z) \in \mathscr{P}_{\omega}[z]$

 $\mathscr{P}_{\omega}[z] = \{ \text{factors of the denominator of } \omega \} \bigcup \{\infty\}$

Example: univariate algorithm

GF, T. Peraro (2022)

$$\langle \varphi_L | \varphi_R \rangle = \sum_{p(z) \in \mathscr{P}_{\omega}[z]} \langle \varphi_L | \varphi_R \rangle_{p(z)}$$

summing over all $p(z) \in \mathscr{P}_{\omega}[z]$

 $\mathscr{P}_{\omega}[z] = \{ \text{factors of the denominator of } \omega \} \bigcup \{\infty\}$

- * Each addend of the form $\langle \varphi_L | \varphi_R \rangle_{p(z)}$ is the sum of all contributions to the intersection number coming from the roots of p(z)
- * $\langle \varphi_L | \varphi_R \rangle_{\infty}$ is computed as the contribution at $p = \infty$ with the "standard" algorithm

 similar for multivariate case

In practice:

to solve $(\partial_z + \omega)\psi = \varphi_L$

we make an ansatz of the form

$$\psi = \sum_{i=min}^{max} \sum_{j=0}^{degp-1} c_{ij} z^{j} p(z)^{i} + O\left(p(z)^{max+1}\right)$$

 \ref{model} we multiply the solution by $arphi_R$

$$\psi \varphi_R = \sum_{i}^{-1} \sum_{j=0}^{degp-1} \tilde{c}_{ij} z^j p(z)^i + O\left(p(z)^0\right)$$

by the univariate global residue theorem

Weinzierl (2021)

$$\langle \varphi_L | \varphi_R \rangle = \frac{\tilde{c}_{-1,degp-1}}{l_c}$$

Dual integrals

Analytic regulators: ρ_j

Are needed to regulate $\varphi_L \sim \frac{1}{z_i}$

 $u = B^{-\gamma} \prod_{j=1}^{n} z_{j}^{\rho_{j}} \quad \text{* otherwise no solution in DE for } \psi$ * if $\varphi_{L} \sim 1/z^{\nu_{j}}$ ($\nu_{j} > 0$) then $\psi \sim 1/\rho_{j}$

Then limit $\rho_i \rightarrow 0$ in the coefficients of the decomposition

- Additional variables in intermediate steps
- - * More MIs in intermediate steps

Dual Integrals...

Remember the right-integrals decomposition:

$$|\varphi_{R}\rangle = \sum_{i=1}^{\nu} c_{i}^{(R)} |e_{i}^{(R)}\rangle, \qquad c_{i}^{(R)} = \sum_{j=1}^{\nu} (\mathbf{C}^{-1})_{ij} \langle e_{j}^{(L)} |\varphi_{R}\rangle$$

Observation Coefficients $c_i^{(R)}$ are independent of the choice of the dual basis $\{\langle e_j^{(L)}|\,\}_{j=1}^\nu$

⇒Idea

Exploit the freedom of choice of the dual basis to simplify the calculation

...& how to choose them

Two approaches (different formalism but similar outcomes)

*Dual space of loop integrals [Caron-Huot, Pokraka (2021)]
*Simple choice [GF, T. Peraro (2023)]

Choose dual integrals of the form

$$\varphi_L(\mathbf{z}) = \rho_1^{\Theta(\alpha_1 - \frac{1}{2})} \cdots \rho_n^{\Theta(\alpha_n - \frac{1}{2})} \frac{1}{z_1^{\alpha_1} \cdots z_n^{\alpha_n}}$$

*If there's a denominator factor $z_j^{\alpha_j}$ (with $\alpha_j > 0$), multiply by ρ_j *Systematically work in the limit $\rho_j \to 0$ (only leading terms in a $\rho_j \to 0$ expansion in each step)

:)

- * No dependance on ρ_j in calculations (work on leading coeff.s of $\rho_j \to 0$ expansion, never sample or reconstruct ρ_j dependence over FF)
- * Simpler intermediate expressions
- * Block triangular metric and reduction tables (blocks~sectors)

- * Many intersection numbers and contributions of poles to them vanish
- * Fewer MIs in intermediate steps!

Finite fields implementation

Implementation on FiniteFlow of the multivariate
recursive rational algorithm GF, Peraro (2023)

🌔 Input

list of *n*-variate intersection numbers to compute

$$\{\langle e_j^{(L)} | \varphi_R \rangle, \langle e_j^{(L)} | e_i^{(R)} \rangle\}$$

Preliminary step

recursively deduce the intersection numbers needed for each step

$$\begin{array}{l} * \langle \varphi_L | e_j^{(R)} \rangle_{n-1} \\ * \left(\partial_{z_n} \langle e_j^{(L)} |_{n-1} \right) | e_j^{(R)} \rangle_{n-1} \\ * \langle e_i^{(L)} | e_j^{(R)} \rangle_{n-1} \\ * \langle e_j^{(L)} | \varphi_R \rangle \end{array}$$

Univariate algorithm

analytic input: $u(\mathbf{z})$

Multivariate algorithm

inputs *denominator factors $p_i(z_n)$ *(n-1)-variate intersection

numbers reconstructed in z_n only

Dealing with poles

- * $p = 0, \infty \rightarrow$ Laurent expansion
- * all other factors $\rightarrow p(z)$ -adic expansion

our implementation is an iteration: $1-forms \rightarrow n-forms$

() Input for the n^{th} - step

 $\mathcal{X}_n =$ list of (n-1)-variate intersection numbers and reduction coeff.s

@ Between two steps:

- * rational reconstruction of \mathcal{X}_n only in $z_n,$ with everything else set to a number mod p
- * identify denominator factors of \mathcal{X}_n in z_n , fully reconstruct them from a simple subset of \mathcal{X}_n

Examples

Conclusions...

- * Intersection theory: new mathematical structures, direct integral reduction
- * p(z)-adic expansion: simplify study of functions close to roots of polynomials

...& Outlook

- * Simplifications/optimizations
- Application to different integral representations (loop-by-loop Baikov, Lee-Pomeransky)
- Non-recursive multivariate generalization
 (based on Chestnov, Frellesvig, Gasparotto, Mandal,
 Mastrolia (2022))
- * New applications of p(z)-adic expansion

Thank you for your attention!

