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Outline
● Background – IBP reduction

● Rational function simplification in Laporta algorithm

– Choice of computer algebra systems (simplifiers)

– Performance requirements

● Benchmark results
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Background
● Integration-by-parts (IBP) reduction [Chetyrkin, Tkachov, ’81] is 

ubiquitous in modern Feynman integral calculations.

● A family of integrals parametrized by powers of propagators and 
irreducible scalar products (ISPs)

● Total derivatives integrate to zero in dimensional regularization 
 linear relations between above integrals.⇒
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Laporta algorithm
● Solves large linear system to express complicated integrals in terms 

of simple integrals, under some ordering. [Laporta, ’01]

● Codes: AIR, Reduze, LiteRed, FIRE, Kira, FiniteFlow, Blade, NeatIBP...

● Alternatives: symbolic reduction rules, intersection theory, Groebner 
bases, D modules… Or not doing IBP at all (SecDec, LTD, FeynTrop...)

● Optimizations & Variations: ordering / pivoting for equations and 
variables, trimming IBP equations by Lie algebra, syzygy equations & 
numerical unitairty, finite fields & reconstruction, choosing “improved” 
master basis, block triangular form...
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FIRE
● IBP program developed over many years [A.V. Smirnov, ’08. A.V. Smirnov, 

V.A. Smirnov, ’13. A.V, Smirnov, 14. A.V. Smirnov, F.S. Chukharev, ’19]

● Implements Laporta algorithm. Can use symmetry & reduction rules 
from LiteRed [R.N. Lee, ’12]. Initially written in Mathematica, available in 
C++ since version 5. Supports modular arithmetic, MPI in version 6.

● Trims IBP equations by Lie algebra. [R.N. Lee, ’08]  Forward reduction 
w/ tail masking [Anastasiou, Lazapoulos, ‘’04], then backward substitution.

● Until our work, uses Fermat via gateToFermat library by M. Tentukov.

● Applied to many cutting-edge loop calculations. Recently used in 4-loop 
classical electrodynamics [Bern, Herrmann, Roiban, Ruf, Smirnov, Smirnov, MZ, ’23]
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Coefficient simplification in FIRE
● During IBP calculation, FIRE (C++ version) needs external help in 

simplifying expressions of the form

● FIRE assembles the expression as a string (text blob), sends it to an 
external computer algebra system, or simplifier for short.

● The simplifier parses the expression into an internal representation, 
simplifies it (GCD computations etc.), and prints out a new string.

Polynomial in Horner form a+x(b+x(c+dx)) 

or expanded form a+bx+cx2+dx3 
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Choice of computer algebra system
● Combine terms into one simplified fraction.

E.g. Mathematica: Together[r] Maple: normal(r, expanded)

● Default choice in FIRE, Reduze, Kira so far: Fermat by Robert Lewis. 
Served our community extremely well, but more actively developed 
and funded alternatives now exist…

● Let’s explore options. Our new C++ library FUEL interfaces with 
CoCoA, Fermat, FLINT, FORM, GiNaC, Macaulay2, Maple, Maxima, 
Nemo, Pari/GP, Symbolica (FORM “successor”), Mathematica.

● Other relevant applications: transforming DEs to caonical form.

Special thank to Ben Ruijl for tirelessly customizing Symbolica for us.
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FUEL: one interface for all simplifers

● Fractional Universal Evaluation Library. Choose any simplifier, e.g.

[Kirill Mokrov, Alexander Smirnov, MZ, arXiv:2304.13418 + Work in progress]

std::vector<std::string> variables = {“d”, “s”, “t”};
fuel::initialize(variables);
fuel::simplify(“(d-3)*(s-t) + t^2/s”, thread_number);

fuel::setLibrary(“maple”);

● Declare the list of variables, and start simplifying!

● Returned result: “(d*s^2-d*s*t-3*s^2+3*s*t+t^2)/s”

● Technicality: communication via either pipes or C++ library.
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Best simplifier is not obvious...
● How long does it take to simplify this expression through FUEL?

● Maple 2022: 7.9 s
Fermat 5.17: 98 s
Mathematica 13.0: 169 s

● Naively, Maple is a superb choice (for FIRE etc.), and recent versions 
of Mathematica are not far from Fermat?

● The picture is different when we test a different problem.
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Double box example
● Reduce below integral to 12 master integrals. ~15 s FIRE run sends 

~0.5M expressions to simplifier (Femat), average ~30 μs turnaround
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Double box: forward / backward runs

G[1,{1,1,1,1,1,1,1,-1,-1}] -> (1)/(-(d-4)) G[1,{395,194}]
+ ((((3*d-18)*s^2)*t)/(4*d-20))/(-(d-4)) G[1,{1,1,1,1,1,1,2,0,0}],

G[1,{395,194}] -> (1)/(-(-1)) G[1,{1,1,0,1,1,1,1,0,-1}] +
                  (-1)/(-(-1)) G[1,{1,1,0,1,1,1,2,-1,-1}] … +
                  (1/(4*s^6))/(-(-1)) G[1,{395,193}]

● Top level
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Double box: forward / backward runs

G[1,{1,1,1,1,1,1,1,-1,-1}] -> (1)/(-(d-4)) G[1,{395,194}]
+ ((((3*d-18)*s^2)*t)/(4*d-20))/(-(d-4)) G[1,{1,1,1,1,1,1,2,0,0}],

G[1,{395,194}] -> (1)/(-(-1)) G[1,{1,1,0,1,1,1,1,0,-1}] +
                  (-1)/(-(-1)) G[1,{1,1,0,1,1,1,2,-1,-1}] … +
                  (1/(4*s^6))/(-(-1)) G[1,{395,193}]

● Top level

desired integral “virtual” masked integral

top-level master integral

● RHS integrals reduced by lower-sector runs until bottom sector (sunset). 
Then backward substitution from bottom up.
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Double box: example expressions
● Sent to simplifier (Fermat etc.) near the beginning:
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Double box: example expressions
● In the middle:
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Double box: example expressions
● Near the end:
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Performance for short expressions
● Example FIRE expression during 2-loop double box IBP run:

-((d-5)*s)/(-s)*(d-5)-(s)/(-s)*(d-5)

● Test: simplify 10,000 times via FUEL (above string in, simplified string 
out), or within the simplifier (e.g. for loop in Maple). Average time:

via FUEL within simplifier Overhead

Fermat 5.17 14 μs ? ?

Maple 2022 180 μs 7 μs ×25

Mathematica 13.0 550 μs 40 μs ×13

● Overhead in parsing (string to expression) & printing (reverse).
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What can slow down FIRE?
● Parsing overhead. e.g. Mathematica & Maple parse any statements in their 

languages. Dedicated parser for rational function expressions can be much 
faster. (e.g. Dijkstra’s shunting yard algorithm)

● Re-evaluation cost. Simplified expression strings (poly1)/(poly2) re-
inserted into further computations by string contcatenation, triggering 
redundant polynomial GCD computations.

● Example: Nemo CAS for Julia language, with a top-performing polynomial 
GCD engine (FLINT). Initial performance very poor. Achieved top 
performance after we implemented a custom parser in Julia, and a custom 
print format rat[poly1, poly2] to mark simplified expressions.

● Since initial paper, strategy reused in new backends: Symbolica, FLINT
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Test: Small to moderately large expressions

* indicates library communication rather than pipes

Nemo / FLINT used with our 
custom parser and printer in 
Julia / C++.

Note: log scale!
measures parsing + simplifying + printing

3rd test failed
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Best options for easy IBP problems
Symbolica, FLINT, Fermat, Nemo, GiNaC, or Pari/GP in FUEL / FIRE
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Linear scale plots for top options
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Test: huge expression

● Parsing / printing overhead small compared with actual calculation

Simplifier Time taken via FUEL (seconds)

FLINT 5.2

Symbolica 5.2

Nemo 6.9

Maple 7.9

Fermat 98.3

Maxima 112.8

Mathematica 169
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FUEL in FIRE: easy IBP test
● Private version of FIRE using FUEL, to reduce following integral
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FUEL in FIRE: easy IBP test

Preliminary result for FLINT: slower than Symbolica, faster than Fermat
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FUEL in FIRE: easy IBP test

Preliminary result for FLINT: slower than Symbolica, faster than Fermat

backward 
substitution more 
demanding than 
forward elimination
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FUEL in FIRE: harder IBP test
● Private version of FIRE using FUEL, to reduce following integrals, with 

rank ≤ 2 numerator, from massive form factors in N=4 SYM on Coloumb 
branch [A.V. Belitsky, L.V. Bork, V.A. Smirnov, in progress]

5 variables including 
spacetime dimension d
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FUEL in FIRE: harder IBP test
● Time to obtain coefficient of bottom-level sunrise master integral, setting 

other master integrals to zero. More than 10 times speedup!

Simplifier Time (seconds)

Symbolica 7,700

FLINT 8,400

Nemo 11,300

Fermat 104,000

FLINT / Nemo used with our 
custom parser and printer.

(Backward substitution dominates)
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FUEL in FIRE: harder IBP test
● Time to obtain coefficient of 5-propagator box-bubble master integral, 

setting other master integrals to zero.

Simplifier Time (seconds)

FLINT 265

Symbolica 343

Fermat 1820

FLINT wins this one. ~7 times speedup 
w.r.t. Fermat
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Conclusions
● Investigated efficient use of computer algebra systems in IBP.

● Historically, external simplifier (Fermat) used as black box, “string in, 
string out”, by C++ IBP programs FIRE, Kira, Reduze.
- Good performance requires fast polynoimal GCD + fast parsing / printing

● There are faster polynomial GCD engines than Fermat – Their use in 
FIRE is made practical by writing fast parsers for these engines. 
Possiblity: skip string intermediary? (obstructions: database, compression, inter-
process exchange of expressions)

● Vast speedup for multi-scale IBP w/ Symbolica, FLINT, Nemo.

● To do: test more demanding problems; compare with finite field
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