
1

Adding FUEL to FIRE for Faster IBP

Mao Zeng, Higgs Centre for Theoretical Physics, University of Edinburgh

Talk at MathemAmplitudes 2023: QFT at the Computational Frontier,
University of Padova, 26 Sep 2023

● Kirill Mokrov, Alexander Smirnov, MZ, arXiv:2304.13418
● Alexander Smirnov, MZ, in progress

2

Outline
● Background – IBP reduction

● Rational function simplification in Laporta algorithm

– Choice of computer algebra systems (simplifiers)

– Performance requirements

● Benchmark results

3

Background
● Integration-by-parts (IBP) reduction [Chetyrkin, Tkachov, ’81] is

ubiquitous in modern Feynman integral calculations.

● A family of integrals parametrized by powers of propagators and
irreducible scalar products (ISPs)

● Total derivatives integrate to zero in dimensional regularization
 linear relations between above integrals.⇒

4

Laporta algorithm
● Solves large linear system to express complicated integrals in terms

of simple integrals, under some ordering. [Laporta, ’01]

● Codes: AIR, Reduze, LiteRed, FIRE, Kira, FiniteFlow, Blade, NeatIBP...

● Alternatives: symbolic reduction rules, intersection theory, Groebner
bases, D modules… Or not doing IBP at all (SecDec, LTD, FeynTrop...)

● Optimizations & Variations: ordering / pivoting for equations and
variables, trimming IBP equations by Lie algebra, syzygy equations &
numerical unitairty, finite fields & reconstruction, choosing “improved”
master basis, block triangular form...

5

FIRE
● IBP program developed over many years [A.V. Smirnov, ’08. A.V. Smirnov,

V.A. Smirnov, ’13. A.V, Smirnov, 14. A.V. Smirnov, F.S. Chukharev, ’19]

● Implements Laporta algorithm. Can use symmetry & reduction rules
from LiteRed [R.N. Lee, ’12]. Initially written in Mathematica, available in
C++ since version 5. Supports modular arithmetic, MPI in version 6.

● Trims IBP equations by Lie algebra. [R.N. Lee, ’08] Forward reduction
w/ tail masking [Anastasiou, Lazapoulos, ‘’04], then backward substitution.

● Until our work, uses Fermat via gateToFermat library by M. Tentukov.

● Applied to many cutting-edge loop calculations. Recently used in 4-loop
classical electrodynamics [Bern, Herrmann, Roiban, Ruf, Smirnov, Smirnov, MZ, ’23]

6

Coefficient simplification in FIRE
● During IBP calculation, FIRE (C++ version) needs external help in

simplifying expressions of the form

● FIRE assembles the expression as a string (text blob), sends it to an
external computer algebra system, or simplifier for short.

● The simplifier parses the expression into an internal representation,
simplifies it (GCD computations etc.), and prints out a new string.

Polynomial in Horner form a+x(b+x(c+dx))

or expanded form a+bx+cx2+dx3

7

Choice of computer algebra system
● Combine terms into one simplified fraction.

E.g. Mathematica: Together[r] Maple: normal(r, expanded)

● Default choice in FIRE, Reduze, Kira so far: Fermat by Robert Lewis.
Served our community extremely well, but more actively developed
and funded alternatives now exist…

● Let’s explore options. Our new C++ library FUEL interfaces with
CoCoA, Fermat, FLINT, FORM, GiNaC, Macaulay2, Maple, Maxima,
Nemo, Pari/GP, Symbolica (FORM “successor”), Mathematica.

● Other relevant applications: transforming DEs to caonical form.

Special thank to Ben Ruijl for tirelessly customizing Symbolica for us.

8

FUEL: one interface for all simplifers

● Fractional Universal Evaluation Library. Choose any simplifier, e.g.

[Kirill Mokrov, Alexander Smirnov, MZ, arXiv:2304.13418 + Work in progress]

std::vector<std::string> variables = {“d”, “s”, “t”};
fuel::initialize(variables);
fuel::simplify(“(d-3)*(s-t) + t^2/s”, thread_number);

fuel::setLibrary(“maple”);

● Declare the list of variables, and start simplifying!

● Returned result: “(d*s^2-d*s*t-3*s^2+3*s*t+t^2)/s”

● Technicality: communication via either pipes or C++ library.

9

Best simplifier is not obvious...
● How long does it take to simplify this expression through FUEL?

● Maple 2022: 7.9 s
Fermat 5.17: 98 s
Mathematica 13.0: 169 s

● Naively, Maple is a superb choice (for FIRE etc.), and recent versions
of Mathematica are not far from Fermat?

● The picture is different when we test a different problem.

10

Double box example
● Reduce below integral to 12 master integrals. ~15 s FIRE run sends

~0.5M expressions to simplifier (Femat), average ~30 μs turnaround

11

Double box: forward / backward runs

G[1,{1,1,1,1,1,1,1,-1,-1}] -> (1)/(-(d-4)) G[1,{395,194}]
+ ((((3*d-18)*s^2)*t)/(4*d-20))/(-(d-4)) G[1,{1,1,1,1,1,1,2,0,0}],

G[1,{395,194}] -> (1)/(-(-1)) G[1,{1,1,0,1,1,1,1,0,-1}] +
 (-1)/(-(-1)) G[1,{1,1,0,1,1,1,2,-1,-1}] … +
 (1/(4*s^6))/(-(-1)) G[1,{395,193}]

● Top level

12

Double box: forward / backward runs

G[1,{1,1,1,1,1,1,1,-1,-1}] -> (1)/(-(d-4)) G[1,{395,194}]
+ ((((3*d-18)*s^2)*t)/(4*d-20))/(-(d-4)) G[1,{1,1,1,1,1,1,2,0,0}],

G[1,{395,194}] -> (1)/(-(-1)) G[1,{1,1,0,1,1,1,1,0,-1}] +
 (-1)/(-(-1)) G[1,{1,1,0,1,1,1,2,-1,-1}] … +
 (1/(4*s^6))/(-(-1)) G[1,{395,193}]

● Top level

desired integral “virtual” masked integral

top-level master integral

● RHS integrals reduced by lower-sector runs until bottom sector (sunset).
Then backward substitution from bottom up.

13

Double box: example expressions
● Sent to simplifier (Fermat etc.) near the beginning:

14

Double box: example expressions
● In the middle:

15

Double box: example expressions
● Near the end:

16

Performance for short expressions
● Example FIRE expression during 2-loop double box IBP run:

-((d-5)*s)/(-s)*(d-5)-(s)/(-s)*(d-5)

● Test: simplify 10,000 times via FUEL (above string in, simplified string
out), or within the simplifier (e.g. for loop in Maple). Average time:

via FUEL within simplifier Overhead

Fermat 5.17 14 μs ? ?

Maple 2022 180 μs 7 μs ×25

Mathematica 13.0 550 μs 40 μs ×13

● Overhead in parsing (string to expression) & printing (reverse).

17

What can slow down FIRE?
● Parsing overhead. e.g. Mathematica & Maple parse any statements in their

languages. Dedicated parser for rational function expressions can be much
faster. (e.g. Dijkstra’s shunting yard algorithm)

● Re-evaluation cost. Simplified expression strings (poly1)/(poly2) re-
inserted into further computations by string contcatenation, triggering
redundant polynomial GCD computations.

● Example: Nemo CAS for Julia language, with a top-performing polynomial
GCD engine (FLINT). Initial performance very poor. Achieved top
performance after we implemented a custom parser in Julia, and a custom
print format rat[poly1, poly2] to mark simplified expressions.

● Since initial paper, strategy reused in new backends: Symbolica, FLINT

18

Test: Small to moderately large expressions

* indicates library communication rather than pipes

Nemo / FLINT used with our
custom parser and printer in
Julia / C++.

Note: log scale!
measures parsing + simplifying + printing

3rd test failed

19

Best options for easy IBP problems
Symbolica, FLINT, Fermat, Nemo, GiNaC, or Pari/GP in FUEL / FIRE

20

Linear scale plots for top options

21

Test: huge expression

● Parsing / printing overhead small compared with actual calculation

Simplifier Time taken via FUEL (seconds)

FLINT 5.2

Symbolica 5.2

Nemo 6.9

Maple 7.9

Fermat 98.3

Maxima 112.8

Mathematica 169

22

FUEL in FIRE: easy IBP test
● Private version of FIRE using FUEL, to reduce following integral

23

FUEL in FIRE: easy IBP test

Preliminary result for FLINT: slower than Symbolica, faster than Fermat

24

FUEL in FIRE: easy IBP test

Preliminary result for FLINT: slower than Symbolica, faster than Fermat

backward
substitution more
demanding than
forward elimination

25

FUEL in FIRE: harder IBP test
● Private version of FIRE using FUEL, to reduce following integrals, with

rank ≤ 2 numerator, from massive form factors in N=4 SYM on Coloumb
branch [A.V. Belitsky, L.V. Bork, V.A. Smirnov, in progress]

5 variables including
spacetime dimension d

26

FUEL in FIRE: harder IBP test
● Time to obtain coefficient of bottom-level sunrise master integral, setting

other master integrals to zero. More than 10 times speedup!

Simplifier Time (seconds)

Symbolica 7,700

FLINT 8,400

Nemo 11,300

Fermat 104,000

FLINT / Nemo used with our
custom parser and printer.

(Backward substitution dominates)

27

FUEL in FIRE: harder IBP test
● Time to obtain coefficient of 5-propagator box-bubble master integral,

setting other master integrals to zero.

Simplifier Time (seconds)

FLINT 265

Symbolica 343

Fermat 1820

FLINT wins this one. ~7 times speedup
w.r.t. Fermat

28

Conclusions
● Investigated efficient use of computer algebra systems in IBP.

● Historically, external simplifier (Fermat) used as black box, “string in,
string out”, by C++ IBP programs FIRE, Kira, Reduze.
- Good performance requires fast polynoimal GCD + fast parsing / printing

● There are faster polynomial GCD engines than Fermat – Their use in
FIRE is made practical by writing fast parsers for these engines.
Possiblity: skip string intermediary? (obstructions: database, compression, inter-
process exchange of expressions)

● Vast speedup for multi-scale IBP w/ Symbolica, FLINT, Nemo.

● To do: test more demanding problems; compare with finite field

29

Acknowledgments
● We thank the authors of FLINT, Nemo and FORM for help with our

questions about the software in mailing lists and/or private
communications.

● We especially thank the author of Symbolica, Ben Ruijl, for tirelessly
answering our questions and customizing the software to integrate
with our library.

● The work of Alexander Smirnov was supported by the Russian
Science Foundation under the agreement No. 21-71-30003.

● M.Z.’s work is supported in part by the U.K. Royal Society through
Grant URF\R1\20109.

