Generalizing Polylogarithms to Riemann Surfaces of Arbitrary Genus

MathemAmplitudes 2023

Martijn Hidding (Uppsala University)

Based on 2306.08644 together with E. D'Hoker and O. Schlotterer

September 26, 2023

Knut and Alice Wallenberg Foundation

Organization of the Talk

- 1. Introduction
- 2. Review of polylogarithms at genus zero and one
- 3. A brief overview of the geometry of higher-genus Riemann surfaces
- 4. Construction of higher-genus polylogarithms
- 5. Conclusion

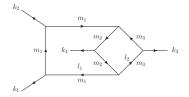
Introduction

Introduction

- Polylogarithms play a significant role in scattering amplitudes for LHC processes, SYM theory, supergravity, and string theory.
- Suitable generalizations of classical polylogarithms are defined by considering iterated integrals on closed Riemann surfaces.
- Much of the literature on polylogarithms has focused on genus zero and genus one Riemann surfaces, with higher-genus surfaces less understood.
 - Proposals for higher-genus polylogarithm function spaces exist, but without explicit formulas for use in physics. [Enriquez, 1112.0864]
 [Enriquez, Zerbini, 2110.09341] [Enriquez, Zerbini, 2212.03119]
- Today, we will explore a new construction of higher-genus polylogarithms.
- Our method includes two key steps:
 - We create a new set of **integration kernels** using **convolutions** of certain functions defined on higher-genus Riemann surfaces.
 - With these kernels, we build a generating function, which helps define our higher-genus polylogarithms which are closed under taking primitives.

Higher genus curves in Feynman integrals

- The appearance of hyperelliptic curves in Feynman integrals has been observed in a number of publications. See for example:
- R. Huang and Y. Zhang, "On Genera of Curves from High-loop Generalized Unitarity Cuts," JHEP 04
 (2013), 080 [arXiv:1302.1023 [hep-ph]].
- A. Georgoudis and Y. Zhang, "Two-loop Integral Reduction from Elliptic and Hyperelliptic Curves," JHEP 12 (2015), 086 [arXiv:1507.06310 [hep-th]].



The maximal cut of this diagram yields a hyperelliptic curve. Figure taken from [1507.06310].

- C. F. Doran, A. Harder, E. Pichon-Pharabod and P. Vanhove, "Motivic geometry of two-loop Feynman integrals," [arXiv:2302.14840 [math.AG]].
- R. Marzucca, A. J. McLeod, B. Page, S. Pögel, S. Weinzierl, "Genus Drop in Hyperelliptic Feynman Integrals," [arXiv:2307.11497 [hep-th]].

String amplitudes motivation

String perturbation theory involves expanding in the string coupling
 constant g_s, which in turn is an expansion based on the genus of the string
 world-sheet.
 [Figure taken from PhD thesis of J. Gerken]

$$\mathcal{A}_{\text{closed}} = g_s^{-2} \int_{\mathcal{M}_{0,4}} \cdots + \int_{\mathcal{M}_{1,4}} \cdots + g_s^2 \int_{\mathcal{M}_{2,4}} \cdots + \cdots + g_s^$$

- Furthermore, typically we also expand in the **inverse string tension** α' , which corresponds to low energy and weak coupling regimes.
- The resulting function space of these expansions is that of polylogarithms, (or single-valued combinations thereof.)

Review of polylogarithms at genus zero and one

Building Polylogarithms as Iterated Integrals

- We want to construct **polylogarithms** in terms of iterated integrals on a **compact Riemann surface,** Σ , with genus h.
- The polylogarithms we construct should have these qualities:
 - 1. **Homotopy Invariance**: The polylogarithms should retain their value when we smoothly change the path of integration, keeping the endpoints constant.
 - Logarithmic Branch-Cuts: The integration kernels should only have simple poles, meaning our integrals should show just logarithmic irregularities at branch points.
 - 3. Closed Under Integration: Our function space should remain intact under integration, and form a basis for all iterated integrals on Σ .

Homotopy-Invariant Iterated Integrals on a Surface

- Let's consider the differential equation: $d\Gamma = \mathcal{J}\Gamma$.
- If we want the equation to be **integrable**, we need $d^2 = 0$. This leads us to the **Maurer-Cartan** equation for the connection \mathcal{J} :

$$d\mathcal{J} - \mathcal{J} \wedge \mathcal{J} = 0$$

• Such a connection is called **flat**. The solution **Γ** to our differential equation can be obtained by the path-ordered exponential (POE):

$$\Gamma(C) = P \exp \int_{C} \mathcal{J}(\cdot) = P \exp \int_{0}^{1} dt J(t)$$

• Let's denote $\mathcal{J} = J(t)dt$, following a path \mathcal{C} where $t \in [0, 1]$, $\mathcal{C}(0) = z_0$, and $\mathcal{C}(1) = z$. Using **physics conventions**, we position J(t) to the **left** of J(t') for t > t':

$$P\exp\int_{\mathcal{C}}\mathcal{J}(\cdot)=1+\int_{0}^{1}dtJ(t)+\int_{0}^{1}dt\int_{0}^{t}dt'J(t)J(t')+\ldots$$

• The flatness \mathcal{J} leads to **homotopy-invariant** integrals over \mathcal{C} , (though results can differ for z_0 and z when the path circles around poles on Σ .)

Genus 0: MPLs and Generating Series

• Multiple polylogarithms (MPLs) are **iterated integrals** of rational forms dz/(z-s) with $z,s \in \mathbb{C}$, on the Riemann sphere \mathbb{CP}^1 .

[A.B. Goncharov, Math. Res. Lett. 5 (1998) 497]

They are defined recursively by:

[A.B. Goncharov, math.AG/0103059]

$$G(s_1, s_2, \dots, s_n; z) = \int_0^z \frac{dt}{t - s_1} G(s_2, \dots, s_n; t)$$

where we have the special case $G(\emptyset; z) = 1$. The integer $n \ge 0$ is referred to as the **transcendental weight**.

- Any integral of a rational function times a multiple polylogarithm (MPL) can be expressed in terms of MPLs.
- This is achieved by partial fractioning the rational function and/or using integration by parts (IBP) identities. For example:

$$\frac{1}{(x-s_1)(x-s_2)} = \frac{1}{(s_1-s_2)} \left(\frac{1}{(x-s_1)} - \frac{1}{(x-s_2)} \right)$$

Generating Series

 A generating series for the polylogarithms can be constructed from the Knizhnik-Zamolodchikov (KZ) connection:

$$\mathcal{J}_{\mathrm{KZ}}(z) = \sum_{i=1}^{m} \frac{dz}{z - s_i} e_i$$

- The elements e_1, \dots, e_m are generators of a free Lie algebra \mathcal{L} associated with the marked points s_1, \dots, s_m .
- Choosing endpoints $z_0 = 0$ and $z_1 = z$, we can **organize** the expansion of the **path-ordered exponential** in terms of the **generators** e_1, \dots, e_m :

$$P \exp \int_{0}^{z} \mathcal{J}_{KZ}(\cdot) = 1 + \sum_{i=1}^{m} e_{i}G(s_{i};z) + \sum_{i=1}^{m} \sum_{j=1}^{m} e_{i}e_{j}G(s_{i}s_{j};z) + \sum_{i=1}^{m} \sum_{j=1}^{m} \sum_{k=1}^{m} e_{i}e_{j}e_{k}G(s_{i}s_{j}s_{k};z) + \cdots$$

Genus 1: Elliptic Multiple Polylogarithms

• Next, consider a compact **genus-one** surface, Σ , with modulus τ , denoted as a lattice by $\Sigma = \mathbb{C}/(\mathbb{Z} + \tau \mathbb{Z})$.

• For a surface with genus $h \ge 1$, there are two key options for constructing a connection: [Brown, Levin, arXiv:1110.6917]

[Broedel, Mafra, Matthes, Schlotterer, arXiv:1412.5535] [Broedel, Duhr, Dulat, Tancredi, arXiv:1712.07089]

- A connection that is single-valued on Σ, but non-meromorphic (due to z̄-dependence), with at most simple poles.
- A meromorphic connection that has at most simple poles, but is not single-valued (and lives on the universal cover of Σ). This can be obtained with a minor tweak of the first construction.
- The Brown-Levin construction opts for the first choice.
- Interestingly, the construction of elliptic multiple polylogarithms at genus 1
 is quite different from the genus 0 case. Notably, there is an infinite set of
 integration kernels at genus one, even for a single marked point z.

The Brown-Levin Construction

- Brown and Levin pioneered a method of homotopy-invariant iterated integrals at genus one. [Brown, Levin, arXiv:1110.6917]
- The key element to their construction is the so-called Kronecker-Eisenstein (KE-) series:

$$\Omega(\mathbf{z}, \alpha | \tau) = \exp\left(2\pi i\alpha \frac{\operatorname{Im} \mathbf{z}}{\operatorname{Im} \tau}\right) \frac{\vartheta_1'(\mathbf{0} | \tau)\vartheta_1(\mathbf{z} + \alpha | \tau)}{\vartheta_1(\mathbf{z} | \tau)\vartheta_1(\alpha | \tau)} = \sum_{n=0}^{\infty} \alpha^{n-1} f^{(n)}(\mathbf{z} | \tau)$$

• The KE-series is **single-valued on the torus**, has a **simple pole at** z = 0 and satisfies the following **differential relation** (for $z \neq 0$):

$$\partial_{\overline{z}}\Omega(z,\alpha|\tau) = -\frac{\pi \alpha}{\operatorname{Im} \tau} \Omega(z,\alpha|\tau)$$

• They then constructed the **flat connection** $\mathcal{J}_{\mathrm{BL}}(\mathbf{z}|\tau)$, which is valued in the Lie algebra \mathcal{L} , generated by elements a,b:

$$\mathcal{J}_{\mathrm{BL}}(z|\tau) = \frac{\pi}{\mathrm{Im}\,\tau} \left(dz - d\bar{z} \right) b + dz \,\mathrm{ad}_b \,\Omega \big(z, \mathrm{ad}_b | \tau \big) \,a$$

• Note that we have put $\alpha \to \mathrm{ad}_b = [b, \circ]$. Flatness can be proven using that $d_z = dz \partial_z + d\bar{z} \partial_{\bar{z}}$, and using the above differential equation.

Homotopy-Invariant Iterated Integrals

• We may write down **homotopy-invariant iterated integrals** on the torus by expanding the path-ordered exponential in terms of words in *a*, *b*:

$$\mathsf{P} \exp \int_0^z \mathcal{J}_{\mathrm{BL}}(\cdot| au) = 1 + a\,\Gamma(a;z| au) + b\,\Gamma(b;z| au) \ + ab\,\Gamma(ab;z| au) + ba\,\Gamma(ba;z| au) + \dots$$

- The resulting coefficient functions $\Gamma(\mathfrak{w}; z|\tau)$ are referred to as **elliptic polylogarithms**.
- While the connection is single-valued on the torus, the integrals are not and have monodromies along the A- and B-cycles.
- Note: In the physics literature we typically see the following functions:

$$\tilde{\Gamma}\left(\begin{smallmatrix} n_1 & n_2 & \cdots & n_r \\ w_1 & w_2 & \cdots & w_r \end{smallmatrix}; z|\tau\right) = \int_0^z dz_1 \, g^{(n_1)}(z_1 - w_1|\tau) \, \tilde{\Gamma}\left(\begin{smallmatrix} n_2 & \cdots & n_r \\ w_2 & \cdots & w_r \end{smallmatrix}; z_1|\tau\right)$$

which are a **meromorphic** variant of the elliptic polylogarithms that were constructed above. For example:

$$\Gamma(ab;z|\tau) = \int_0^z dt \left(2\pi i \frac{\operatorname{Im} t}{\operatorname{Im} \tau} - f^{(1)}(t|\tau)\right) = -\int_0^z dt \, g^{(1)}(t|\tau) = -\tilde{\Gamma}\big(\tfrac{1}{0};z|\tau\big)$$

Closure under integration

- For the MPLs, we saw that partial fraction identities were essential for splitting up a product of integration kernels.
 We need similar identities for the function space to close under integration
- We need similar identities for the function space to close under integration at genus one. For example, we might encounter an integral of the type:

$$\int_0^z dt f^{(n_1)}(t-a_1) f^{(n_2)}(t-a_2)$$

[Broedel, Mafra, Matthes, Schlotterer, arXiv:1412.5535]

 The so-called Fay identities generalize the partial fraction relations. They are generated by:

$$\Omega(z_1, \alpha_1, \tau)\Omega(z_2, \alpha_2, \tau) = \Omega(z_1, \alpha_1 + \alpha_2, \tau)\Omega(z_2 - z_1, \alpha_2, \tau) + \Omega(z_2, \alpha_1 + \alpha_2, \tau)\Omega(z_1 - z_2, \alpha_1, \tau)$$

For example we have that:

$$f^{(1)}(t-x)f^{(1)}(t) = f^{(1)}(t-x)f^{(1)}(x) - f^{(1)}(t)f^{(1)}(x) + f^{(2)}(t) + f^{(2)}(x) + f^{(2)}(t-x)$$

Alternative Construction via Convolutions

• An alternative construction of the functions $f^{(k)}(z|\tau)$ is in terms of the scalar Green function $g(z|\tau)$ on Σ . The Green function is defined by:

$$\partial_{\bar{z}}\partial_z g(z|\tau) = -\pi\delta(z) + \frac{\pi}{\operatorname{Im}\tau}, \quad \int_{\Sigma} d^2z \, g(z|\tau) = 0$$

• It can be expressed in terms of the Jacobi theta function ϑ_1 and the Dedekind eta-function η as follows:

$$g(z|\tau) = -\ln\left|\frac{\vartheta_1(z|\tau)}{\eta(\tau)}\right|^2 - \pi \frac{(z-\overline{z})^2}{2 \operatorname{Im} \tau}$$

• We define the function $f^{(1)}(z|\tau)$ as the derivative of the Green's function:

$$f^{(1)}(z|\tau) = -\partial_z g(z|\tau)$$

 Subsequently, we can define higher dimensional convolutions of f recursively as follows:

$$f^{(k)}(z|\tau) = -\int_{\Sigma} \frac{d^2x}{\operatorname{Im} \tau} \, \partial_x g(x|\tau) f^{(k-1)}(x-z|\tau), \quad k \geq 2$$

 We will see in the following that similar convolutions underlie our higher-genus generalizations of these kernels.

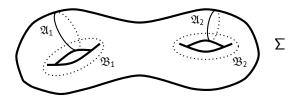
Summary: The Brown-Levin construction

Step	Brown-Levin construction	Higher-genus construction
1. Integration kernels	$f^{(k)}(z \tau) = -\int_{\Sigma} \frac{d^2x}{\operatorname{Im} \tau} \partial_x g(x \tau) f^{(k-1)}(x-z \tau)$	$\begin{split} & \Phi^{l_1 \cdots l_{r_J}}(x) = \\ & \int_{\Sigma} d^2 z \mathcal{G}(x, z) \bar{\omega}^{l_1}(z) \partial_z \Phi^{l_2 \cdots l_{r_J}}(z) (r \ge 2) \\ & \mathcal{G}^{l_1 \cdots l_s}(x, y) = \\ & \int_{\Sigma} d^2 z \mathcal{G}(x, z) \bar{\omega}^{l_1}(z) \partial_z \mathcal{G}^{l_2 \cdots l_s}(z, y) (s \ge 1) \end{split}$
2. Generating series	$\alpha\Omega(z, \alpha \tau) = \sum_{n=0}^{\infty} \alpha^n f^{(n)}(z \tau)$	$\begin{split} & \Psi_J(x,p;B) = \omega_J(x) + \left(\partial_X \Phi^{f_1} J(x) - \partial_X \mathcal{G}(x,p) \delta^{f_1} J\right) B_{f_1} \\ & + \sum_{r=2}^{\infty} \left(\partial_X \Phi^{f_1 f_2 \cdots f_r} J(x) - \partial_X \mathcal{G}^{f_1 f_2 \cdots f_r} - 1(x,p) \delta^{f_r} J\right) \\ & \times B_{f_1} B_{f_2} \cdots B_{f_r} \end{split}$
3. Flat connection $(d\mathcal{J} - \mathcal{J} \wedge \mathcal{J} = 0)$	$\mathcal{J}_{BL}(x \tau) = -d\bar{x}b$ $+ \frac{\pi}{\operatorname{Im} \tau}dxb + dx\operatorname{ad}_b\Omega(x,\operatorname{ad}_b \tau)a$	$\mathcal{J}(x,p) = -\pi d\bar{x} \bar{\omega}^I(x) b_I$ $+ \pi dx \mathcal{H}^I(x;B) b_I + dx \Psi_I(x,p;B) d^I$
4. Path-ordered exponential	$\begin{aligned} & \text{P} \exp \int_0^X \mathcal{J}_{\text{BL}}(\cdot \tau) = \\ & 1 + a \Gamma(a; x \tau) + b \Gamma(b; x \tau) \\ & + ab \Gamma(ab; x \tau) + ba \Gamma(ba; x \tau) + \dots \end{aligned}$	$P \exp \int_{y}^{X} \mathcal{J}(t, \rho) =$ $1 + a^{l} \Gamma_{I}(x, y; \rho) + b_{I} \Gamma^{I}(x, y; \rho)$ $+ a^{l} a^{l} \Gamma_{I}(x, y; \rho) + b_{I} b_{I} \Gamma^{II}(x, y; \rho)$ $+ a^{l} b_{J} \Gamma_{I}^{I}(x, y; \rho) + b_{I} a^{l} \Gamma^{I}_{J}(x, y; \rho) + \cdots$
5. Polylogs	e.g. $\Gamma(ab; x \tau) =$ $\int_0^x dt \left(2\pi i \frac{\text{Im } t}{\text{Im } \tau} - f^{(1)}(t \tau) \right)$	e.g. $\Gamma^{IJ}(x, y; \rho) = \pi \int_{y}^{x} \left(dt \left(\partial_{t} \Phi^{I}_{K}(t) Y^{KJ} - \partial_{t} \Phi^{J}_{K}(t) Y^{KJ} \right) + \pi \left(\omega^{I}(t) - \bar{\omega}^{I}(t) \right) \int_{y}^{t} (\omega^{J} - \bar{\omega}^{J}) \right)$

Brief overview of higher-genus Riemann surfaces

Topology of a Compact Riemann Surface Σ

- The **topology** of a **compact** Riemann surface Σ without boundary is specified by its **genus** h.
- The homology group $H_1(\Sigma, \mathbb{Z})$ is isomorphic to \mathbb{Z}^{2h} and supports an anti-symmetric non-degenerate intersection pairing denoted by \mathfrak{J} .



A choice of canonical homology basis on a compact genus-two Riemann surface Σ .

- A canonical homology basis of cycles \mathfrak{A}_I and \mathfrak{B}_J with $I,J=1,\cdots,h$ has symplectic intersection matrix $\mathfrak{J}(\mathfrak{A}_I,\mathfrak{B}_J)=-\mathfrak{J}(\mathfrak{B}_J,\mathfrak{A}_I)=\delta_{IJ}$, and $\mathfrak{J}(\mathfrak{A}_I,\mathfrak{A}_J)=\mathfrak{J}(\mathfrak{B}_I,\mathfrak{B}_J)=0$.
- A new canonical basis $\tilde{\mathfrak{A}}$ and $\tilde{\mathfrak{B}}$ is obtained by applying a modular transformation $M \in Sp(2h,\mathbb{Z})$, such that $M^t\mathfrak{J}M = \mathfrak{J}$.

Canonical Basis of Holomorphic Abelian Differentials

• A canonical basis of holomorphic Abelian differentials ω_l may be normalized on \mathfrak{A} -cycles:

$$\oint_{\mathfrak{A}_I} \boldsymbol{\omega}_J = \delta_{IJ} \qquad \oint_{\mathfrak{B}_I} \boldsymbol{\omega}_J = \Omega_{IJ}$$

- The complex variables Ω_{IJ} denote the components of the **period matrix** Ω of the surface Σ .
- By the Riemann relations, Ω is symmetric, and has positive definite imaginary part:

$$\Omega^t = \Omega$$
 $Y = \operatorname{Im} \Omega > 0$

• We will use the matrix $Y_{IJ} = \operatorname{Im} \Omega_{IJ}$ and its inverse $Y^{IJ} = ((\operatorname{Im} \Omega)^{-1})^{IJ}$ to raise and lower indices:

$$\omega' = Y^{IJ}\omega_J$$
 $\bar{\omega}' = Y^{IJ}\bar{\omega}_J$ $Y^{IK}Y_{KJ} = \delta_J^I$

The Arakelov Green Function

• The Arakelov Green function $\mathcal{G}(x,y|\Omega)$ on $\Sigma \times \Sigma$ is a single-valued version of the Green function, defined by: [D'Hoker, Green, Pioline, arXiv:1712.06135] [G. Faltings, Ann. Math., 119(2), 1984]

$$\partial_{\bar{x}}\partial_{x}\mathcal{G}(x,y|\Omega) = -\pi\delta(x,y) + \pi\kappa(x), \qquad \int_{\Sigma}\kappa(x)\mathcal{G}(x,y|\Omega) = 0$$

where the **Kähler form** κ is given by:

$$\kappa = \frac{i}{2h}\omega_I \wedge \bar{\omega}^I = \kappa(z) d^2z \qquad \int_{\Sigma} \kappa = 1$$

- ullet In what follows we will drop the explicit dependence on the moduli Ω .
- At genus one the (Arakelov) Green function only depends on a difference of points $\mathcal{G}(x,y)|_{h=1} = \mathcal{G}(x-y)|_{h=1}$.
- However, this **translation invariance** is **absent** on a Riemann surface Σ of genus h > 1.

The Interchange Lemma

• The tensor $\Phi^I{}_J(x)$, introduced by Kawazumi, compensates for the lack of translation invariance at higher genus: [Kawazumi, MCM2016] [Kawazumi, 2017]

$$\Phi'_{J}(x) = \int_{\Sigma} d^{2}z \, \mathcal{G}(x,z) \, \bar{\omega}'(z) \omega_{J}(z)$$

- Note that the **trace** of $\Phi^{I}_{J}(x)$ **vanishes** by the definition of the Arakelov Green function.
- In particular, the so-called interchange lemma provides a substitute for the absence of translation invariance:

$$\partial_{x}\mathcal{G}(x,y)\,\omega_{J}(y) + \partial_{y}\mathcal{G}(x,y)\,\omega_{J}(x) - \partial_{x}\Phi^{I}{}_{J}(x)\,\omega_{I}(y) - \partial_{y}\Phi^{I}{}_{J}(y)\,\omega_{I}(x) = 0$$

[E. D'Hoker et al., arXiv:2008.08687 [hep-th]]

Construction of higher-genus polylogarithms

Higher Convolution of the Arakelov Green Function

• Inspired by the alternative construction of the Kronecker-Eisenstein kernels through convolutions, we define the **tensors** $\Phi^{l_1 \cdots l_r} J(x)$ and $\mathcal{G}^{l_1 \cdots l_s}(x,y)$:

$$\begin{split} &\Phi^{l_1\cdots l_r}{}_J(x) = \int_{\Sigma} d^2z \, \mathcal{G}(x,z) \, \bar{\omega}^{l_1}(z) \, \partial_z \Phi^{l_2\cdots l_r}{}_J(z) \quad (r \geq 2) \\ &\mathcal{G}^{l_1\cdots l_s}(x,y) = \int_{\Sigma} d^2z \, \mathcal{G}(x,z) \, \bar{\omega}^{l_1}(z) \, \partial_z \mathcal{G}^{l_2\cdots l_s}(z,y) \quad (s \geq 1) \end{split}$$

- (We also encounter these tensors while decomposing cyclic products of Szegö kernels, see [D'Hoker, MH, Schlotterer, arXiv:2308.05044]).
- At genus one, the derivatives of the tensor $\mathcal{G}^{l_1 \cdots l_s}$ for $l_1 = \cdots = l_s = 1$ equal the Kronecker-Eisenstein integration kernels $f^{(s+1)}$:

$$\partial_{\mathbf{x}}\mathcal{G}^{l_1\cdots l_s}(\mathbf{x},\mathbf{y})\big|_{h=1} = -f^{(s+1)}(\mathbf{x}-\mathbf{y}|\tau)$$

- The trace $\Phi^{l_1\cdots l_r}_{l_r}=0$ for arbitrary genus implies that Φ -tensors for arbitrary $r\geq 1$ vanish identically for genus one.
- In the next part: we will construct generating functions of our kernels, and combine them into a flat connection.

Generating Functions

- Let us introduce a **non-commutative algebra freely generated by** B_l for $l = 1, \dots, h$ (loosely inspired by the approach of Enriquez and Zerbini arXiv:2110.09341).
- Next, we fix an arbitrary **auxiliary marked point** p on the Riemann surface Σ and introduce the following **generating functions**:

$$\mathcal{H}(x,p;B) = \partial_x \mathcal{G}(x,p) + \sum_{r=1}^{\infty} \partial_x \mathcal{G}^{l_1 l_2 \cdots l_r}(x,p) B_{l_1} B_{l_2} \cdots B_{l_r}$$

$$\mathcal{H}_J(x;B) = \omega_J(x) + \sum_{r=1}^{\infty} \partial_x \Phi^{l_1 l_2 \cdots l_r} J(x) B_{l_1} B_{l_2} \cdots B_{l_r}$$

• By forming the **combination** $\Psi_J(x, p; B) = \mathcal{H}_J(x; B) - \mathcal{H}(x, p; B)B_J$, we obtain a compact antiholomorphic derivative:

$$\partial_{\bar{x}}\Psi_J(x,p;B) = -\pi\bar{\omega}^I(x)B_I\Psi_J(x,p;B)$$

for $x \neq p$, which generalizes the genus-one differential relation for Ω .

The Flat Connection

- Next, we **extend** to a Lie algebra \mathcal{L} **freely generated** by elements a^l and b_l for $l = 1, \dots, h$ and set $B_l = \mathrm{ad}_{b_l} = [b_l, \cdot]$.
- Our connection $\mathcal{J}(x, p)$, on a Riemann surface Σ of arbitrary genus h with a marked point $p \in \Sigma$ and valued in the Lie algebra \mathcal{L} is then given by:

$$\mathcal{J}(x,p) = -\pi \, d\bar{x} \, \bar{\omega}^I(x) \, b_I + \pi \, dx \, \mathcal{H}^I(x;B) \, b_I + dx \, \Psi_I(x,p;B) \, a^I$$

• Working out $d_x = dx \partial_x + d\bar{x} \partial_{\bar{x}}$, we may show that:

$$d_{x}\mathcal{J}(x,p)-\mathcal{J}(x,p)\wedge\mathcal{J}(x,p)=\pi d\bar{x}\wedge dx\,\delta(x,p)\,[b_{l},a^{l}]$$

proving that the connection is **flat** (away from x = p).

• At genus one, $\mathcal{J}(x,p)$ reduces to the Brown-Levin connection, upon relabeling $a^1 = a$ and $b_1 = b$. In particular:

$$\Psi_1(x,p;B)\Big|_{h=1}=\operatorname{ad}_b\Omega(x-p,\operatorname{ad}_b|\tau)$$

Expansion of the Connection

• The connection \mathcal{J} may be **expanded in words** in the basis (a^l, b_l) :

$$\mathcal{J}(x,p) = \pi (dx \,\omega^{l}(x) - d\bar{x} \,\bar{\omega}^{l}(x))b_{l} + \pi \,dx \sum_{r=1}^{\infty} \partial_{x} \Phi^{l_{1}\cdots l_{r}}{}_{J}(x) \,Y^{JK} \,B_{l_{1}}\cdots B_{l_{r}} \,b_{K}$$
$$+ \,dx \sum_{r=1}^{\infty} \left(\partial_{x} \Phi^{l_{1}\cdots l_{r}}{}_{J}(x) - \partial_{x} \mathcal{G}^{l_{1}\cdots l_{r-1}}(x,p) \delta^{l_{r}}_{J}\right) B_{l_{1}}\cdots B_{l_{r}} \,d^{l}$$

• Like before, the flat connection $\mathcal{J}(x,p)$ integrates to a homotopy-invariant path-ordered exponential $\Gamma(x,y;p)$:

$$\Gamma(x, y; p) = P \exp \int_{y}^{x} \mathcal{J}(t, p)$$

• For example, for words with at most two letters in the basis (a^l, b_l) :

$$\Gamma(x, y; p) = 1 + a^{l} \Gamma_{l}(x, y; p) + b_{l} \Gamma^{l}(x, y; p) + a^{l} a^{l} \Gamma_{ll}(x, y; p) + b_{l} b_{l} \Gamma^{ll}(x, y; p) + a^{l} b_{l} \Gamma^{l}(x, y; p) + b_{l} a^{l} \Gamma^{l}_{l}(x, y; p) + \cdots$$

Summary: Construction of higher-genus polylogs

Step	Brown-Levin construction	Higher-genus construction
1. Integration kernels	$f^{(k)}(z \tau) = -\int_{\Sigma} \frac{d^2x}{\operatorname{Im} \tau} \partial x g(x \tau) f^{(k-1)}(x-z \tau)$	$\begin{split} & \Phi^{l_1 \cdots l_r} J(x) = \\ & \int_{\Sigma} d^2 z \mathcal{G}(x, z) \bar{\omega}^{l_1}(z) \partial_z \Phi^{l_2 \cdots l_r} J(z) (r \geq 2) \\ & \mathcal{G}^{l_1 \cdots l_s}(x, y) = \\ & \int_{\Sigma} d^2 z \mathcal{G}(x, z) \bar{\omega}^{l_1}(z) \partial_z \mathcal{G}^{l_2 \cdots l_s}(z, y) (s \geq 1) \end{split}$
2. Generating series	$\alpha\Omega(\mathbf{z}, \alpha \tau) = \sum_{n=0}^{\infty} \alpha^n f^{(n)}(\mathbf{z} \tau)$	$\begin{aligned} & \Psi_{J}(x, \rho; B) = \omega_{J}(x) + \left(\partial_{X} \Phi^{l_{J}}(x) - \partial_{X} \mathcal{G}(x, \rho) \delta^{l_{J}}\right) B_{l_{1}} \\ & + \sum_{r=2}^{\infty} \left(\partial_{X} \Phi^{l_{1}}(x) - \partial_{X} \mathcal{G}^{l_{1}}(x) - \partial_{X} \mathcal{G}^{l$
3. Flat connection	$\mathcal{J}_{BL}(x \tau) = -d\bar{x}b$ $+ \frac{\pi}{\operatorname{Im}\tau}dxb + dx\operatorname{ad}_b\Omega(x,\operatorname{ad}_b \tau)a$	$\mathcal{J}(x, p) = -\pi d\bar{x} \bar{\omega}^I(x) b_I$ $+ \pi dx \mathcal{H}^I(x; B) b_I + dx \Psi_I(x, p; B) a^I$
4. Path-ordered exponential	$\begin{aligned} P \exp \int_0^X \mathcal{J}_{BL}(\cdot \tau) &= \\ 1 + a \Gamma(a; x \tau) + b \Gamma(b; x \tau) \\ &+ ab \Gamma(ab; x \tau) + ba \Gamma(ba; x \tau) + \dots \end{aligned}$	$\begin{aligned} P \exp \int_{y}^{X} \mathcal{J}(t, \rho) &= \\ & 1 + d^{l} \Gamma_{l}(x, y; \rho) + b_{l} \Gamma^{l}(x, y; \rho) \\ &+ a^{l} d^{l} \Gamma_{ll}(x, y; \rho) + b_{l} b_{l} \Gamma^{ll}(x, y; \rho) \\ &+ a^{l} b_{l} \Gamma_{l}^{l}(x, y; \rho) + b_{l} d^{l} \Gamma^{l}_{l}(x, y; \rho) + \cdots \end{aligned}$
5. Polylogs	e.g. $\Gamma(ab; x \tau) =$ $\int_0^x dt \left(2\pi i \frac{\text{Im } t}{\text{Im } \tau} - f^{(1)}(t \tau) \right)$	e.g. $\Gamma^{IJ}(x, y; \rho) = \pi \int_{y}^{x} \left(dt \left(\partial_{t} \Phi^{I}_{K}(t) Y^{KJ} - \partial_{t} \Phi^{J}_{K}(t) Y^{KJ} \right) + \pi \left(\omega^{I}(t) - \bar{\omega}^{I}(t) \right) \int_{y}^{t} (\omega^{J} - \bar{\omega}^{J}) \right)$

Polylogarithms for Words without b_l

• The polylogarithms associated with words $\mathfrak w$ that do not involve any of the letters b_l are given by the following simple formula:

$$\Gamma_{l_1 l_2 \cdots l_r}(x, y; p) = \int_y^x \omega_{l_1}(t_1) \int_y^{t_1} \omega_{l_2}(t_2) \cdots \int_y^{t_{r-1}} \omega_{l_r}(t_r)$$

which we'll refer to as iterated Abelian integrals.

- These polylogarithms are independent of the marked point p.
- They obey the differential equations:

$$\partial_x \Gamma_{I_1 I_2 \cdots I_r}(x, y; p) = \omega_{I_1}(x) \Gamma_{I_2 \cdots I_r}(x, y; p)$$

• For the case h = 1, we simply obtain:

$$\Gamma_{\underbrace{11\cdots 1}_{r}}(x,y;z)\big|_{h=1}=\frac{1}{r!}(x-y)^{r}$$

Low Letter Count Polylogarithms

 Next let us consider some cases involving the letters b_i. For the single-letter word b_i, we obtain:

$$\Gamma'(x,y;p) = \pi \int_{y}^{x} (\omega' - \bar{\omega}')$$

• For double-letter words with at least one letter b_l, we obtain:

$$\Gamma^{IJ}(x,y;p) = \pi \int_{y}^{x} \left(dt \left(\partial_{t} \Phi^{I}_{K}(t) Y^{KJ} - \partial_{t} \Phi^{J}_{K}(t) Y^{KJ} \right) + \pi \left(\omega^{I}(t) - \bar{\omega}^{I}(t) \right) \int_{y}^{t} (\omega^{J} - \bar{\omega}^{J}) \right)$$

$$\Gamma^{J}_{I}(x,y;p) = \int_{y}^{x} \left(dt \partial_{t} \Phi^{J}_{I}(t) - dt \partial_{t} \mathcal{G}(t,p) \delta^{J}_{I} + \pi \left(\omega^{J}(t) - \bar{\omega}^{J}(t) \right) \int_{y}^{t} \omega_{I} \right)$$

$$\Gamma^{J}_{I}(x,y;p) = \int_{y}^{x} \left(-dt \partial_{t} \Phi^{J}_{I}(t) + dt \partial_{t} \mathcal{G}(t,p) \delta^{J}_{I} + \pi \omega_{I}(t) \int_{y}^{t} (\omega^{J} - \bar{\omega}^{J}) \right)$$

Meromorphic Variants of Polylogarithms

- Lastly, let's explore an instance showcasing where the meromorphic variants of polylogarithms live in our function space.
- Consider again the following higher-genus polylogarithm:

$$\Gamma_I^J(x,y;p) = \int_y^x dt \left(-\partial_t \Phi^J_I(t) + \delta_I^J \partial_t \mathcal{G}(t,p) + \pi \omega_I(t) Y^{JK} \left(\Gamma_K(t,y;p) - \overline{\Gamma_K(t,y;p)} \right) \right)$$

- Upon specializing to genus h=1 and setting p=y=0, this reproduces the Brown-Levin polylogarithm $\Gamma(ab;p|\tau)=-\tilde{\Gamma}(\frac{1}{0};p|\tau)$.
- The integrand with respect to t in the equation above can be viewed as a **higher-genus uplift** of the Kronecker-Eisenstein kernel $g^{(1)}(t|\tau)$:

$$g^{I}{}_{I}(t,y;p) = \partial_{t}\Phi^{I}{}_{I}(t) - \delta^{I}{}_{I}\partial_{t}\mathcal{G}(t,p) - 2\pi i\omega_{I}(t)Y^{JK} \operatorname{Im} \int_{y}^{t} \omega_{K}$$

• One may verify that indeed (for $t \neq p$):

$$\partial_{\bar{t}}g^{I}_{l}(t,y;p)=0$$

Conclusion

Conclusion

- We have presented an explicit construction of polylogarithms on higher-genus compact Riemann surfaces.
- Our construction relies on a flat connection whose path-ordered exponential plays the role of a generating series for higher-genus polylogarithms.
- The flat connection takes values in the **freely-generated Lie algebra generated by elements** a^I **and** b_I for $I = 1, \dots, h$, introduced by Enriquez and Zerbini.
- Although we have strong evidence the function space of our polylogarithms is closed under integration, we have not yet proven this conjecture.
- Our construction provides the first explicit proposal for a complete set of integration kernels beyond genus one.

Thank you for listening!

Backup Slides

String amplitudes and special functions

 Different types of special functions emerge depending on whether we are considering open/closed strings, and depending on the genus:

	Open string	Closed string
g = 0	(MPL's)	(sv. MPL's)
g = 1	(eMPL's)	eMGF's (≈ sv. eMPL's)
g = 2, g >= 2	Higher-genus polylogs (this talk)	Single-valued analogues: To be explored

Closure of MPLs Under Integration

- Any integral of a rational function times a multiple polylogarithm (MPL) can be expressed in terms of MPLs.
- This is achieved by partial fractioning the rational function and/or using integration by parts (IBP) identities. For example:

$$\frac{1}{(x-s_1)(x-s_2)} = \frac{1}{(s_1-s_2)} \left(\frac{1}{(x-s_1)} - \frac{1}{(x-s_2)} \right)$$

• After partial fractioning, we distinguish the following cases:

$$\int_0^z dt \, \frac{1}{(t-b)^k} G(\vec{s};t) \,, \qquad \int_0^z dt \, G(\vec{s};t) \,, \qquad \int_0^z dt \, t^k G(\vec{s};t)$$

where $0 < k \neq 1$. We then use **IBP identities** to **iteratively reduce** the value of k. For example:

$$\int_0^z dt \, \frac{1}{(t+1)^2} G(0;t) = \frac{z}{1+z} G(0;z) - G(-1;z)$$

Shuffle Algebra for Multiple Polylogarithms

Multiple polylogarithms satisfy a shuffle algebra, which is expressed as:

$$G(s_1,s_2,...,s_k;z)\cdot G(s_{k+1},...,s_r;z) = \sum_{\text{shuffles }\sigma} G(s_{\sigma(1)},s_{\sigma(2)},...,s_{\sigma(r)};z),$$

where the sum runs over all permutations σ which are **shuffles** of (1, ..., k) and (k + 1, ..., r), **preserving the relative order** of 1, 2, ..., k and of k + 1, ..., r.

A simple example of the shuffle product of two multiple polylogarithms is:

$$G(s_1; z) \cdot G(s_2; z) = G(s_1, s_2; z) + G(s_2, s_1; z).$$

 The proof of the shuffle product formula relies on the integral representation of multiple polylogarithms. In fact, a shuffle algebra structure holds for all the homotopy-invariant iterated integrals which we consider.

Removing Trailing Zeros

- Multiple polylogarithms with trailing zeroes do not have a Taylor expansion in z around z = 0, but logarithmic singularities at z = 0.
- We can use the shuffle product to **remove trailing zeros**, **separating** these logarithmic terms, such that the rest has a regular expansion around z = 0.
- For example, for $G(s_1, 0; z)$ with $s_1 \neq 0$, we have:

$$G(s_1, 0; z) = G(0; z) G(s_1; z) - G(0, s_1; z).$$

• Both $G(s_1; z)$ and $G(0, s_1; z)$ are **free** of trailing zeros. We then define the **special cases**:

$$G(0;z) = \log(z) \qquad \qquad G\left(\vec{0}_n;z\right) = \frac{1}{n!}\log(z)^n,$$

where \vec{O}_n denotes a sequence of n zeros. These definitions follow the tangential basepoint prescription:

$$\int_{0+\varepsilon}^{x} \frac{dt}{t} = \log(x) - \log(\epsilon) \to \log(x)$$

for a prescribed tangent vector (in $\mathbb C$) with $|\varepsilon| \ll 1$.

Meromorphic Variant

• We can define a **meromorphic counterpart** of the doubly-periodic Kronecker-Eisenstein series and its expansion coefficients $g^{(n)}(z|\tau)$:

$$\frac{\vartheta_1'(0|\tau)\vartheta_1(z+\alpha|\tau)}{\vartheta_1(z|\tau)\vartheta_1(\alpha|\tau)} = \sum_{n=0}^\infty \alpha^{n-1} g^{(n)}(z|\tau)$$

- The meromorphic integration kernels $g^{(n)}(z|\tau)$ are multiple-valued on the torus, and actually live on the universal covering space, which is \mathbb{C} .
- Brown-Levin polylogarithms associated with words $\mathfrak{w} \to ab \cdots b$ reduce to a single integral over the meromorphic kernels. For example:

$$\Gamma(ab;z|\tau) = \int_0^z dt \left(2\pi i \frac{\operatorname{Im} t}{\operatorname{Im} \tau} - f^{(1)}(t|\tau) \right) = -\int_0^z dt \, g^{(1)}(t|\tau) = -\tilde{\Gamma}\left(\tfrac{1}{0};z|\tau\right)$$

• More generally, $\Gamma(ab \cdots b; z|\tau)$ can be expressed as:

$$\Gamma(a\underbrace{b\cdots b}_{n};z|\tau)=(-1)^{n}\int_{0}^{z}dt\,g^{(n)}(t|\tau)=(-1)^{n}\widetilde{\Gamma}({n\atop 0};z|\tau)$$

Modular Properties of the Brown-Levin Construction

- Let us consider the modular properties of the Brown-Levin construction.
- We take a modular transformation on the modulus τ , z, and α :

$$\tau \to \tilde{\tau} = \frac{A\tau + B}{C\tau + D}, \quad z \to \tilde{z} = \frac{z}{C\tau + D}, \quad \alpha \to \tilde{\alpha} = \frac{\alpha}{C\tau + D}$$

where $A, B, C, D \in \mathbb{Z}$ with AD - BC = 1.

• The Kronecker-Eisenstein series Ω and the functions $f^{(n)}$ transform as modular forms of weight (1,0) and (n,0), respectively:

$$\Omega(\tilde{\mathbf{z}}, \tilde{\alpha}|\tilde{\tau}) = (C\tau + D)\Omega(\mathbf{z}, \alpha|\tau), \qquad f^{(n)}(\tilde{\mathbf{z}}|\tilde{\tau}) = (C\tau + D)^n f^{(n)}(\mathbf{z}|\tau)$$

• The connection \mathcal{J}_{BL} can be made **modular invariant** by assigning the following transformation to the generators a, b:

$$a
ightharpoonup \tilde{a} = (C\tau + D)a + 2\pi i Cb, \quad b
ightharpoonup \tilde{b} = \frac{b}{C\tau + D}$$

• The **extra contribution** $2\pi iCb$ to \tilde{a} is engineered so that:

$$\frac{\pi \, d\tilde{z}}{\operatorname{Im} \tilde{\tau}} \, \tilde{b} = \frac{C\bar{\tau} + D}{C\tau + D} \, \frac{\pi \, dz}{\operatorname{Im} \tau} \, b$$

Modular Invariance and Hatted Basis

• To investigate modular properties, let us define an **alternative basis** (\hat{a}^l, b_l) of generators of the Lie algebra \mathcal{L} :

$$\hat{a}^I = a^I + \pi Y^{IJ} b_J$$

• In this basis, the connection $\mathcal{J}(x,p)$ takes on a simplified form:

$$\mathcal{J}(x,p) = -\pi \, d\bar{x} \, \bar{\omega}^I(x) \, b_I + dx \, \Psi_I(x,p;B) \, \hat{a}^I$$

• A modular transformation $M \in Sp(2h, \mathbb{Z})$, acts on $\bar{\omega}^l$, B_l , \mathcal{H}_l , and Ψ_l , and on the Lie algebra generators a^l and b_l by:

$$a^I \rightarrow \tilde{a}^I = Q^I{}_J a^J + 2\pi i C^{IJ} b_J$$

 $b_I \rightarrow \tilde{b}_I = b_J R^I{}_I$

Then also

$$\hat{a}^I \rightarrow \tilde{\hat{a}}^I = \mathcal{Q}_I^I \hat{a}^I$$

• The connection $\mathcal{J}(x,p)$ is seen to be **manifestly invariant** under $Sp(2h,\mathbb{Z})$.

Polylogarithms In The Hatted Basis

• In the basis (\hat{a}^l, b_l) , the expansion is given by:

$$\Gamma(x,y;p) = 1 + \hat{a}^I \hat{\Gamma}_I(x,y;p) + b_I \hat{\Gamma}^I(x,y;p)$$

$$+ \hat{a}^I \hat{a}^J \hat{\Gamma}_{IJ}(x,y;p) + b_I b_J \hat{\Gamma}^{IJ}(x,y;p)$$

$$+ \hat{a}^I b_J \hat{\Gamma}_I^J(x,y;p) + b_J \hat{a}^J \hat{\Gamma}^I_J(x,y;p) + \cdots$$

• The polylogarithms $\hat{\Gamma}(x, y; p)$ in the basis (\hat{a}^l, b_l) are **modular tensors** by the $Sp(2h, \mathbb{Z})$ **invariance** of the connection $\mathcal{J}(x, p)$.

$$\tilde{\hat{\Gamma}}_{\cdots l \cdots}(x, y; p) = \cdots R^{l'}_{l} \cdots Q^{l}_{l'} \cdots \hat{\Gamma}_{\cdots l' \cdots}(x, y; p)$$

• Identifying term by term in both expansions gives the relations $\Gamma_I = \hat{\Gamma}_I$ and $\Gamma_{IJ} = \hat{\Gamma}_{IJ}$, as well as the following relations:

$$\begin{split} \hat{\Gamma}^I &= \Gamma^I - \pi Y^{IJ} \Gamma_J \\ \hat{\Gamma}^I{}_J &= \Gamma^I{}_J - \pi Y^{IK} \Gamma_{KJ} \\ \hat{\Gamma}^I{}_J &= \Gamma_I^J - \pi \Gamma_{IK} Y^{KJ} \\ \hat{\Gamma}^{IJ} &= \Gamma^{IJ} - \pi Y^{IK} \Gamma_{K}^J - \pi \Gamma^I{}_K Y^{KJ} + \pi^2 Y^{IK} \Gamma_{KL} Y^{LJ} \end{split}$$

Low Letter Count Polylogarithms in the Hatted Basis

• Let us write the expansion of the generating function $\Psi_I(x, p; B)$ in the following way:

$$\Psi_{J}(x,p;B) = \omega_{J}(x) + \sum_{r=1}^{\infty} B_{l_{1}} \cdots B_{l_{r}} f^{l_{1} \cdots l_{r}} {}_{J}(x,p)$$
$$f^{l_{1} \cdots l_{r}} {}_{J}(x,p) = \partial_{X} \Phi^{l_{1} \cdots l_{r}} {}_{J}(x) - \partial_{X} \mathcal{G}^{l_{1} \cdots l_{r-1}}(x,p) \delta^{l_{r}} {}_{J}(x)$$

• The polylogarithms for one- and two-letter words, starting with b_l , are:

$$\begin{split} \hat{\Gamma}^{I}(x,y;p) &= -\pi \int_{y}^{x} \bar{\boldsymbol{\omega}}^{I} = -\pi Y^{IK} \, \overline{\Gamma_{K}(x,y;p)} \\ \hat{\Gamma}^{IJ}(x,y;p) &= \pi^{2} \int_{y}^{x} \bar{\boldsymbol{\omega}}^{I}(t_{1}) \int_{y}^{t_{1}} \bar{\boldsymbol{\omega}}^{J} = \pi^{2} Y^{IK} Y^{JL} \, \overline{\Gamma_{KL}(x,y;p)} \\ \hat{\Gamma}^{IJ}_{I}(x,y;p) &= -\int_{y}^{x} dt \left(f^{I}_{I}(t,p) + \pi \, \omega_{I}(t) \int_{y}^{t} \bar{\boldsymbol{\omega}}^{J} \right) \\ \hat{\Gamma}^{IJ}_{IJ}(x,y;p) &= \int_{y}^{x} dt \left(f^{I}_{IJ}(t,p) + \pi \, \omega_{J}(t) \int_{y}^{t} \bar{\boldsymbol{\omega}}^{J} \right) - \pi Y^{IK} \, \overline{\Gamma_{K}(x,y;p)} \, \Gamma_{J}(x,y;p) \end{split}$$

The expressions are more compact compared to the previous case.

Simplified Representations

- The polylogarithms with upper indices admit simplified representations in terms of the iterated abelian integrals, their complex conjugates and contractions with Y^{II}.
- For words with a **single letter** b_l we have:

$$\Gamma^{I}(x, y; p) = \pi Y^{II}(\Gamma_{I}(x, y; p) - \overline{\Gamma_{I}(x, y; p)})$$

• For two-letter words that contain at least one b_l , we have:

$$\Gamma_{I}^{J}(x,y;p) = \pi Y^{JK} \Gamma_{IK}(x,y;p) + \int_{y}^{x} dt \left(-\partial_{t} \Phi^{J}{}_{I}(t) + \delta_{I}^{J} \partial_{t} \mathcal{G}(t,p) - \pi \omega_{I}(t) Y^{JK} \overline{\Gamma_{K}(t,y;p)} \right)$$

$$\Gamma^{I}{}_{J}(x,y;p) = \pi Y^{IK} \left(\Gamma_{KJ}(x,y;p) - \Gamma_{J}(x,y;p) \overline{\Gamma_{K}(x,y;p)} \right)$$

$$+ \int_{y}^{x} dt \left(\partial_{t} \Phi^{I}{}_{J}(t) - \delta_{J}^{I} \partial_{t} \mathcal{G}(t,p) + \pi \omega_{J}(t) Y^{IK} \overline{\Gamma_{K}(t,y;p)} \right)$$

$$\Gamma^{IJ}(x,y;p) = \pi^{2} Y^{IK} Y^{JL} \left(\Gamma_{KL}(x,y;p) + \overline{\Gamma_{KL}(x,y;p)} - \overline{\Gamma_{K}(x,y;p)} \Gamma_{L}(x,y;p) \right)$$

$$+ \pi \int_{y}^{x} dt \left(\partial_{t} \Phi^{I}{}_{K}(t) Y^{KJ} - \partial_{t} \Phi^{J}{}_{K}(t) Y^{KJ} \right)$$

$$+ \pi \omega^{J}(t) Y^{IK} \overline{\Gamma_{K}(t,y;p)} - \pi \omega^{J}(t) Y^{JK} \overline{\Gamma_{K}(t,y;p)}$$

The Arakelov Green Function

• The Arakelov Green function $\mathcal{G}(x,y|\Omega)$ on $\Sigma \times \Sigma$ is a single-valued version of the Green function, defined by: [D'Hoker, Green, Pioline, arXiv:1712.06135] [G. Faltings, Ann. Math., 119(2), 1984]

$$\partial_{\bar{x}}\partial_{x}\mathcal{G}(x,y|\Omega) = -\pi\delta(x,y) + \pi\kappa(x), \qquad \int_{\Sigma} \kappa(x)\mathcal{G}(x,y|\Omega) = 0$$

where the **Kähler form** κ is given by:

$$\kappa = \frac{i}{2h}\omega_l \wedge \bar{\omega}^l = \kappa(z) d^2 z \qquad \int_{\Sigma} \kappa = 1$$

• The Arakelov Green function also obeys the following derivatives:

$$\partial_{x}\partial_{y}\mathcal{G}(x,y) = -\partial_{x}\partial_{y}\ln E(x,y) + \pi \,\omega_{l}(x)\,\omega^{l}(y)$$

$$\partial_{x}\partial_{\bar{y}}\mathcal{G}(x,y) = \pi \,\delta(x,y) - \pi \,\omega_{l}(x)\,\bar{\omega}^{l}(y)$$

- The prime form E(x, y) is a unique form that is **holomorphic** in x and y and vanishes linearly as x approaches y.
- ullet In what follows we will not write the explicit dependence on the moduli $\Omega.$

The Arakelov Green Function

• An **explicit formula** for G(x,y) may be given in terms of the non-conformally invariant string Green function G(x,y):

$$G(x,y) = G(x,y) - \gamma(x) - \gamma(y) + \gamma_0$$

• The **string Green function** is given in terms of the **prime form** E(x, y) by:

$$G(x,y) = -\log |E(x,y)|^2 + 2\pi \left(\operatorname{Im} \int_y^x \omega_I\right) \left(\operatorname{Im} \int_y^x \omega^I\right)$$

• The functions $\gamma(x)$ and γ_0 are given by:

$$\gamma(x) = \int_{\Sigma} \kappa(z) G(x, z)$$
 $\gamma_0 = \int_{\Sigma} \kappa \gamma$

- Both κ and $\mathcal{G}(x,y)$ are conformally invariant.
- At genus one the (Arakelov) Green function only depends on a difference of points $\mathcal{G}(x,y)|_{h=1} = \mathcal{G}(x-y)|_{h=1}$.
- However, this **translation invariance** is **absent** on a Riemann surface Σ of genus h > 1.