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Feynman Integrals

• Momentum space representation:

• Master integrals and canonical differential equations:
Integration-by-parts (IBP) relations

• Letters and alphabet:

Goal: Find alphabet from 

integral representation instead 

of differential equations
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Alphabet and Bootstrap

• Numerical IBP for differential equations:

Integration-by-parts (IBP) relations

• Symbol bootstrap

▪ Canonical basis e.g. from integrand analysis

▪ Used to derive DEs up to ten external legs at one loop

[Abreu, Ita, Moriello, Page, 

Tschernow, Zeng, ‘20]

• Finding canonical basis: INITIAL, CANONICA
[CD, Henn, Yan, ‘20] [Meyer, ‘17]
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Lee-Pomeransky Representation

• Feynman representation:

• Lee-Pomeransky:

• Landau equations:

homogenized LP-polynomial

[Klausen, ‘21]
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Generic one-loop integrals

• Landau equations:

▪ leading Landau singularities (full graph):

• type-I singularity

• type-II singularity

▪ sub-graph singularities:

• type-I singularity

• type-II singularity
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The Landau singular locus at one loop

• Leading type-II singularity:

▪ Solution space: 

degree two

▪ Space of kinematic variables for which there is a solution:

depends only on kinematics
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▪ For the LP-polynomial of generic one-loop integrals:

Cayley

matrix



The modified Cayley matrix

▪ For the LP-polynomial of generic one-loop integrals:

▪ Relation to Gram determinants

• type-II singularity:

• type-I singularity:

Gram 

determinant

Cayley 

determinant

Cayley

matrix



The principal A-determinant at one loop
▪ Subgraphs correspond to diagonal minors:

determinant with 

rows/columns removed
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The principal A-determinant at one loop
▪ Subgraphs correspond to diagonal minors:

determinant with 

rows/columns removed

• type-I singularity:

• type-II singularity:

• type-I sub-singularity:

• type-II sub-singularity:

▪ (reduced) principal A-determinant:
product of Gram and 

Cayley determinant of the 

graph and all subgraphs
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• The factors of the principal A-determinant give all 

symbol letters!
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Example: Bubble

• The factors of the principal A-determinant give all 

symbol letters!

▪ square-root letters?

➢need to re-factorize products:

▪ come from Jacobi identities:
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Jacobi identities

• For odd

• For even

case of Gram and 

Cayley exchanged
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Symbol letters
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▪ only one letter



Symbol letters

• Case of no leg missing: (maximal cut)
▪ no Jacobi identities

▪ only one letter

• Letters not all independent
▪ triangle in even dimensions:



Differential equations:

• For even

• For odd
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Canonical master integrals

• From literature

• Leading singularities Gram determinant

Cayley determinant

dimension of the integral

 DRR to    

[Abreu, Britto, Duhr, Gardi, ’17 /

Chen, Ma, Yang, ‘22]



Comparison with the literature

• Symbol alphabet

• Differential equations

[Abreu, Britto, Duhr, Gardi, ’17]

[Chen, Ma, Yang, ‘22]

1) Diagrammatic coaction:

2) Baikov representation:

only next-to-next-to 

maximal cut needed

explicit match

[Jiang, Yang, ‘23] modified Cayley matrix



Limits to non-generic cases

[Klausen, ‘21]• Consider limits, e.g. 
▪ remove vanishing factors
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Limits to non-generic cases

[Klausen, ‘21]• Consider limits, e.g. 
▪ remove vanishing factors

➢ leading term in Tailor expansion

▪ multivariate limit for individual factors is not unique,

however, limit of principle A-determinant is!

• Limits matches direct computation
▪ expect also to work for symbol alphabet [Abreu, Britto, Duhr, Gardi, ’17]

[Chen, Ma, Yang, ‘22]

(omit vanishing factors also here)
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Higher loops

• Principal A-determinant:

▪ Prime factorization:

faces of Q A-discriminants restriction of      on 

▪ singularities:  type-I  type-II  mixed

vertices on both             and



Slashed box example

• One-mass configuration



Slashed box example

• One-mass configuration

▪ two-dimensional harmonic polylogarithms:



Summary

• Construction of symbol alphabet from the
principal A-determinant
▪ rational letters
▪ square-root letters through re-factorization

• One loop
▪ construction based on principal A-determinant

▪ re-factorization through Jacobi identities

▪ verification through canonical DEs (up to ten legs)

• Unique limits

• Higher loops
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