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In these days the angel of topology and the devil of abstract algebra fight
for the soul of each individual mathematical domain.

[Weyl “Invariants", 1939}
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Differential Equations around us

o

TEOPETI’I‘IECEASI @UBUKA
111 §36. Motion in a Coulomb field (spherical polar coordinates)
A very important case of motion in a centrally symmetric field is that of
motion in a Coulomb field
U = tafr
(where a is a positive constant). We shall first consider a Coulomb attraction,
and shall therefore write U = —«fr, Tt is evident from general considera-

tions that the spectrum of negative eigenvalues of the energy will be discrete
(with an infinite number of levels), while that of the positive eigenvalues will
be continuous. -
Equation (32.8) for the radial functions has the form
d*R 2dR [(I+1)

dr?2 7 dr r

If we are concerned with the relative motion of two attracting particles, m
must be taken as the reduced mass.

=0. 1
+h E+) 0 @36.1)

{Landau, Lifshitz vol. 3}
Quantum mechanics
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The Schrodinger equation

e The radial part R of the particle's wave function:

2 I(l+1) 2m a
2 _
8T+;6r— 7'2 +FL(E+7’>:|.R(T)_O

» Key idea: study derivatives 0, ® R modulo this equation
See talks tomorrow for a similar game with polynomials

[Giulio} [Gaia}
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The Schrodinger equation

e The radial part R of the particle’s wave function:

(02 = ex(r) x 0, = co(r) x 1] @ R(r) =0

» Key idea: study derivatives 0 @ R modulo this equation
See talks tomorrow for a similar game with polynomials [Giutio] [Gaial

e How many derivatives are independent?

9% = c1(r) X Op + co(r) x 1
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The Schrodinger equation

e The radial part R of the particle’s wave function:

(02 = ex(r) x 0, = co(r) x 1] @ R(r) =0

» Key idea: study derivatives 0 @ R modulo this equation
See talks tomorrow for a similar game with polynomials [Giutio] [Gaial

e How many derivatives are independent?

07 = (4 (r) + 1 (r) + co(r)) x O + (cg(r) + ca(r)eo(r)) x 1
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The Schrodinger equation

e The radial part R of the particle’s wave function:

[6? —c1(r) X 0, — co(r) X 1} e R(r)=0

» Key idea: study derivatives 0 @ R modulo this equation
See talks tomorrow for a similar game with polynomials [Giutio] [Gaia

e So 0, R and R are irreducible = use as a basis for a 1st-order system:
5. e R _ 10 1] | R
" 8TR o co C1 arR

Today: how to generalize this to more variables?
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Differential Equations for Feynman integrals

Integration by Parts: linear relations among Feynman integrals

{Tkachov ’81} [ Chetyrkin } [Kotikov '91] [Remiddi '97] [Laporta 'OO} [ Gehrmann } . [Henn ’13} .

Tkachov '81 Remiddi '00

Decompose any integral in terms of irreducible master integrals
0, :CQ'Q—}—CO')O(—FC;ﬁ' , z=t/s

System of 1lst-order DEs for master integrals

Q1 1001 [D

9. [ X x| =10 » o] X
}j Co Co Oy ]:[

In practice: many scales = systems of 1st-order PDEs

17
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A glimpse of twisted cohomology

 Finite dimensional vector space of integrals with intersection number as metric

[,\m;:::’"las] [FGMMMM '19} [FGLMMMM '20} [’;i‘;f;:g'er;::’°$ele2n2] & talks on Tuesday; [Giulio] [Gaia] [Andrzej] [Federico}

e Many ways to count master integrals r:

1. Laporta algorithm [Laporta '01}
2. Number of critical points dlog(F +U) =0 [Baikov 105 [poree 13 ]
3. Number of independent integration contours [BoTnar Sogaard] [Prame it | [Freflesvig 21
4. Number of independent integrands [y
5. Holonomic rank of GKZ system (volume of A4 polytope) —[dela Cruz '19] [Kiausen 21 [2204.12083]

Cacciatori '21
Conti, Trevisan

Also see nice reviews: |MathemAmpiitudes'19] |
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Next

1. Derive DEs for generalized Feynman integrals using algebra of derivatives

« Integral reduction with matrix multiplication

2. Restrict DEs back to genuine Feynman integrals

» Asymptotic expansion of solutions revisited

17



Differential Equations from GKZ systems



Gelfand Kapranov Zelevinsky (GKZ) Hypergeometric system

A-hypergeometric function: oKz "89]

N

o

Iﬁ(z):/o f(x,z)ﬁoxl_ﬂl---x;ﬁ"d?x, f(:):,z):Zz,-xa", o eZ”, B;eC
i=1

The central object: A-matrix contains all the answers! E.g. rank r = vol(A4)

A:|:Otll alN} (A.zaz—g)olﬁ(z) ig oL3

0fr ) o Ig(2)

» Feynman integrals are A-hypergeometric for restricted values of z's

o, s , Klemm, Nega Feng, Chang } [ s ]
[Nasrollahpoursamaml 16] [de la Cruz 19} [Vanhove 18] [ Safari '19 } [Chen, Zhang '19 Klausen '19
Tellander

) ) Agostini, Fevola Feng, Zhang
[Klausen 21} [Helmer '21] [2204'12983} [Walther 22] {Sattelberger, Telen ’22} [ Chang '22 }

Ananthanarayan, Banik

See also FeynGKZ package with many useful features! — [*"pi=ri=en 20 & after lunch [soui]

7/17
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https://indico.dfa.unipd.it/event/847/contributions/943/

Example: 1-loop bubble diagram

<1
1
o0
_07 = / (12129 4 20092) + 23xtal)Po 62 dz - A=ua|1
F 0 xTo 0

B 2101 + 2202 + 2303 — o
(A’Zaz—/@)O——OFl: 2181-{-2383—51 O——OF,:O
2009 + 2303 — B2

A-hypergeometric function: z1, 2o, z3 are all generic

Feynman integral: keep 23 = —p? generic, restrict z; = 2z = 1

17



Pfaffian system of Differential Equations

* So, a generalized Feynman integral I3 satisfies a GKZ system of higher-order PDEs

(A-20.—f3)elz(z) = 0
pXer ) ¢ 1y(2) = 0

—

e Turn it into a 1st-order Pfaffian system for an r-dimensional basis /(2)

- =

diel(z) = P2)-1(2)

« Pfaffian rational matrices P; € Q"*"(z) satisfy integrability condition

0,P; — P,-P; = 0,P,— P;- P,

Singularities from A-discriminants [Ktausen 21] [[2e73 | & later today [Claudia| [simon] [christoph]

9/17
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How to compute Pfaffian matrices

Weyl algebra of derivaitves Dy = Clz1,...,2n](01,...,0n) , [05,25] = 05

Ideal generated by the GKZ operators
HA(B) = Dy (A-20.— ) + Dy ¥

Irreducible derivatives modulo H4(3) are standard monomials: Std = {8E } ke NN}

3 a fast algorithm to find Std via commutative Grébner basis [ty r]

= know the master integrals I:=stde I

We proposed to use Laporta-like system (Macaulay matrix) to find P, [2204.12983

O = 9Std e Ig=PF;- I mod HA(p)

instead of non-commutative Grobner basis in CAS Asir [4sir on github]

Another example of Dy-module techniques: [ et 2]

Sattelberger, Zoia
10/17
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Application: IBPs with Pfaffian matrices

Derivatives 0, commute with Std

0oStd=Stdod

Acting on I3(z) with derivatives shifts parameters by a column of the A-matrix «;

Oiels(z) = Ip_q,(2)

—

Therefore, P; yields a difference equation for I(3) := Std e I5(2)

— — —

dieI(B) = Pi-1(B) = 1(B—ay)

If 3 is non-resonant, can then define Q;() := P;(B + ;) ™! ~ anti-differentiation

O tely = Qi-I(8) = I(B+ )

= Integral reduction with matrix multiplication by P; and Q; [2204.12983

11/17
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Restriction of Differential Equations



Restricting Differential Equations

o Consider z; — 0 limit of a rank r Pfaffian system

aiI(Z)ZPZ‘<Z)-I(Z), i=1,2

Suppose P;(z) has a pole at z; = 0.

e Observation: the rank r “decreases” at z; — 0 = new relations among [ at z; — 0

« Restriction answers the following questions: [Haraoka '20] [Byeer, K1) [2305 01585 ]
» What is the new rank?

e How to systematically find new linear relations in the limit?

- -

« Given some basis I(z1, 22), how to find a basis J(z3) at z; — 07

What are the restricted Pfaffians?


http://dx.doi.org/10.1007/978-3-030-54663-2
http://arxiv.org/abs/2207.08565
http://arxiv.org/abs/2305.01585

Rank drop

-

» Holomorphic solutions I(z) to

—

0:I(z) = Pi(2) - I(2), i=1,2

expanded in Taylor series look like
— 0 -
I(z) = 3 1™(z9) 27
n=0
 Integrable Pfaffian system can be brought to normal form:

Pl(z) = i Pl’n(ZQ) 2?, PQ(Z) = i Pg,n(ZQ) Z?
n=0

n=-—1

e In the z; — 0 limit

Rank drop: P _1(22) 'f(o)(22) =0

13/17



Solution at z; — 0 remains in the kernel of P_, ;

initial condition I(®(0)

P _1(z2) - TO(z) =0
Span[ P _1(22) ]|

solution 7' (zy)

14 /17



Some details

e To find the restricted Pfaffian take
R := RowReduce [FP_1 1]

and pick any basis B(z2) such that the square matrix is of full rank

o For Feynman integrals can find the IBPs as well as the symmetry relations in the limit

15/17



Application: asymptotic expansion of Feynman integrals

« Given z; (small mass, threshold, collinear ...)

f(zl, 29,...) = Z [ Amm) (z2,...) zf‘+" log™ 21

An,m

o To get the power-and-log expansion at z; — 0:

1. Solve simpler Pfaffian system for f(A’O’O)(Zg, o

2. Get f”’”*"’”(zz, ...) from matrix multiplication

e Doesn't require JordanDecomposition and MatrixExp

16/17



Conclusions

GKZ hypergeometric systems offer new tools to study Feynman integrals

Novel algorithm for computing Pfaffian systems via Macaulay matrices

Knowing the Pfaffians provides IBPs just by matrix multiplication

Restriction of Pfaffian systems brings GKZ to Feynman integrals

Restriction is also suited for power-and-log expansion of generic Feynman integrals

17 /17



	Introduction
	Differential Equations from GKZ systems
	Restriction of Differential Equations
	Conclusions

