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COMPUTATIONAL TOOLS FOR 
 AMPLITUDES IN FULL-COLOR QCD



FULL-COLOR MASSLESS QCD AMPLITUDES

go

•

•

 
[Agarwal, Buccioni, AvM, Tancredi ’21] 



[Badger, Brønnum-Hansen, Chicherin, Gehrmann, 
 Hartanto, Henn, Marcoli, Moodie, Peraro, Zoia ’21] 



[Abreu, De Laurentis, Ita, Klinkert, Page, Sotnikov ’23]

qq̄ → γγj

gg → γγj

qq̄ → γγγ

 
[Lee, AvM, Schabinger, Smirnov, Smirnov, Steinhauser ’21] 

 
[Chakraborty, Huber, Lee, AvM, Schabinger, Smirnov, Smirnov, Steinhauser ’21]

qq̄ → γ*, gg → H

bb̄ → H

 
[Caola, AvM, Tancredi ’20] 

 
[Bargiela, Caola, AvM, Tancredi ’21] 

: 
[Caola, Chakraborty, Gambuti, AvM, Tancredi ’21,’21,’22] 

: 
[Bargiela, Chakraborty, Gambuti ’22] 

qq̄ → γγ

gg → γγ

qq̄ → q′￼̄q′￼, gg → gg, qq̄ → gg

qq̄ → γg



INTEGRAL REDUCTIONS



INTEGRATION-BY-PART (IBP) IDENTITIES

• IBP identities in dimensional regularization since integrals over total derivatives vanish: 

 ,    ,    loop or ext. mom.


• Implies linear relations between loop integrals [Chetyrkin, Tkachov ’81]


• Integer indices: linear system of equations, allows for systematic reduction [Laporta '00]


• Only finite number of integrals linearly independent: basis or master integrals

∫ ddk1⋯ddkL
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• Various public reduction codes exists: Fire, Reduze, LiteRed, Kira, FiniteFlow, NeatIBP, 
Blade, … and many private ones


• Calculations at the symbolic level: syzygies, Gröbner bases, …


• Calculations at the linear algebra level: finite fields, …


• Often very powerful in practice: combination of both


• Alternative: intersection theory

talks: Tobias Huber, Xiao Liu, Yan-Qing Ma, 
Mao Zeng, Johann Usovitsch, Yang Zhang

talks: Giulio Crisanti, Gaia Fontana, Andrzej Pokraka



[AvM, Schabinger ’14; Peraro ’16; …], note: parallelizable, multivariate e.g. by iteration

FINITE FIELDS AND RATIONAL RECONSTRUCTION



"""" "" >

by-pass with

finite
traditional

field sampling symbolic algebra
+ rat- recohstr.

manipulations

•   (unreduced integrals )


• IBP reduction


•  (master integrals )


• partial fractioning


•  (partial fractioned )


• analytical integration


•  (transcendental functions ) 

𝒜 = ∑ aiIi Ii

𝒜 = ∑ biMi Mi

𝒜 = ∑ pf(bi)Mi bi

𝒜 = ∑ pf(ci)Pi Pi

REDUCTIONS AND COMPLEXITY

(Illustration idea by V. Sotnikov)



 @ 3 LOOPSgg → γγ
• Master integrals in terms of HPLs: [Henn, Mistlberger, Smirnov, Wasser ’20]


•  helicity amplitudes: [Bargiela, Caola, AvM, Tancredi ’21]

• Symbolic intermediate expressions sizable but allow for easy crossings, simple workflow

• Compact analytical results for amplitudes 

 

gg → γγ





• Reduction of numerators: “no-dot syzygies” 
[Gluza, Kajda, Kosower ‘11; Schabinger ’11; Ita ’15; Larsen, Zhang ’15; Böhm, Georgoudis, Larsen Schulze, 
Zhang ’18; …] 

• Linear algebra approach: set degree restriction for monomials, use linear algebra with finite 
fields to determine syzygies (or intersections of syzygy modules) [Agarwal, Jones, AvM ’20]







SOLVING THE MASTER INTEGRALS



SOLVE INTEGRALS:  DIFFERENTIAL EQUATIONS
• Integration of differential equations [Kotikov ’91, Remiddi ’97]: 

  
where    (analytical or through series expansions)


• Homogeneous solutions for  (leading singularities):


• Rational number, e.g. 


• Rational functions, e.g. 


• Algebraic functions, e.g. 


• Elliptic integrals, e.g. , …


• Basis change involving homogenous solutions may allow to find -form: 

  
[Henn ’13]

∂x ⃗I(x; ϵ) = A(x; ϵ) ⃗I(x; ϵ)

ϵ = (4 − d)/2

ϵ = 0

1/2

1/x

x(x − 4)

K(x) = ∫
1

0

dz

(1 − z2)(1 − xz2)

ϵ
d ⃗m = ϵ dln(la(x)) A(a)(x) ⃗m

talks: William Torres Bobadilla, 
Jacob Bourjaily, Ekta Chaubey, 

Seva Chestnov, Christoph Dlapa, 
Martijn Hidding, Simone Zoia



• General observation 
[Panzer 2014; AvM, Panzer, Schabinger 2014]:

• any divergent loop integral can be 

expressed via finite basis integrals 

• Expand integrands of finite integrals around 


• If linearly reducible: integrate analytically with HyperInt [Panzer 2014]

• Improved numerical evaluations, used for HH [Borowka, Greiner, Heinrich, Jones, Kerner ‘16], Hj 

[Jones, Kerner, Lusioni ‘18], ZH [Chen, Davies, Heinrich, Jones, Kerner, Mishima, Schlenk, Steinhauser ’22] …

ϵ = (4 − d)/2 ≈ 0

SOLVE INTEGRALS:  METHOD OF FINITE INTEGRALS

+…



[Agarwal, AvM, Jones 2020]

GENERALIZED FINITE INTEGRALS

Numerical integration used pySecDec 
[Borowka, Heinrich, Jahn, Jones, Kerner, Schlenk, Zirke  2017] 

talk: Gudrun Heinrich



MULTIVARIATE PARTIAL FRACTIONS



• Univariate partial fraction decomposition separates singularities: 




• Iterated partial fractioning introduces spurious poles in multivariate case: 

 
for example: 




• Our approach to be discussed in the following: MultivariateApart [Heller, AvM ’21] 

• Related work: 
[Pak ’11, Abreu ea ’19, Boehm ea ’20, Bendle ea ’21, De Laurentis ea ’22]]


• Motivation: (non-planar) amplitudes sometimes reduced by factor  in size with 
respect to common denominator representation

O(100)

talks: Giuseppe De Laurentis, 
Yang Zhang



• Leinartas’ decomposition 

 
where denominator factors of each term


i. have common zeros 
(in algebraic closure of coefficient field)


ii. are algebraically independent 
(no polynomial  such that )


• Description (and existing algorithms) not unique: 

 has e.g. these Leinartas decompositions 

 and 

g(y1, …) g(d1(x1, …), …) = 0



• Our wish-list for a good partial fractioning algorithm:


i. It should give a unique answer, independent of input form.


ii. It should not introduce spurious denominators.


iii. It should commute with summation.


iv. It should eliminate spurious denominators if present in input.


• Will solve (i),(ii),(iii). Also (iv) with auxiliary step.



PARTIAL FRACTIONS VIA POLYNOMIAL REDUCTIONS

• Algorithm: write inverse denominators as  and reduce polynomial in  with respect to ideal 




• Here, polynomial reduction means 
 

such that  “smaller” than  for some monomial ordering,  is an arbitrary polynomial and 


• Depending on monomial ordering we can ensure specific features of output form:


• Theorem I: Result is always unique if we consider all  from a Gröbner basis


• Theorem II: Sorting  before  guarantees Leinartas (i) 
(useful since it separates singular behavior) 

• Theorem III: A lexicographic ordering of the  and  (separately) guarantees also Leinartas (ii) 
(a possible choice, but not necessarily needed)

qi = 1/di q1, …, x1, …

p′￼ = p − u ⋅ g
p′￼ p u g ∈ I

g

q1, … x1, …

q1, … x1, …



PROOF OF THEOREM II
• Leinartas’ (i): separation of zeros


• Hilbert’s Nullstellensatz: polynomials  have common zeros if and only if there is 




• We can then write 

 
or, using inverse denominators  




• Assuming the monomial ordering sorts first for the  and then for the , the last equation is a reduction step


• A fully reduced polynomial will therefore separate denominators with common zeros, which proves Theorem II.

di

qi = 1/di

qi xi



PROOF OF THEOREM III
• Leinartas’ (ii): separation of algebraically dependent polynomials


• If a set of denominators is algebraically dependent, there is a polynomial  with 




• We can solve this equation for a term with lowest degree and get 

 where . Division by  gives then 

 
which may or may correspond to a polynomial reduction in general.


• For a lexicographic ordering first for the  we pick the unique  such that  minimal, cancel , and write 

 which gives a reduction. This proves Theorem III.

p

qi β′￼ (qα)β′￼ qidi = 1



PERFORMANCE ORIENTED MONOMIAL ORDERING

• Issue I: lexicographic ordering may lead to high degrees in the 


• Issue 2: lexicographic and total degree Gröbner basis often expensive to compute


• MultivariateApart default ordering: collect  which share the same variables into blocks, 
sort blocks lexicographically, sort by degree within block


• Sort first by spurious denominators, guarantees their elimination


• Good performance in practice, e.g. 5-pt 2-loop example: 

 
solved also multivariate problems with up to degree 4 polynomials

q1, …

qi



EXAMPLE

• Decompose:  


• Ideal:   


• Monomal ordering:   


• Gröbner basis: 



• Reducing polynomial   gives 

r(x, y) =
x − 2y

(x − y)y(x + y)

I = ⟨q1(x − y) − 1, q2y − 1, q3(x + y) − 1⟩

{{q3, q1}, {q2}, {x, y}}

{−1 + q2y, − 1 + q1x − q1y, − 1 + q3x + q3y, − q1q2 + 2q1q3 + q2q3}

r = (x − 2y)q1q2q3

r = −
1
2

q1q2 +
3
2

q2q3 =
1

2(x − y)y
+

3
2y(x + y)



PARTIAL FRACTIONS FOR AMPLITUDES

Note: minimize denominator degrees (  Leinartas)≠

• PFD: significant reduction in size 

• Easy to identify linear relations between 
coefficients


• Easy to generate fast code even for 
complicated amplitudes


• Representation can be tuned for 
numerical stability ! 
see  @ 2-loops 
[Agarwal, Buccioni, AvM, Tancredi ’21]

qq̄ → γγj



AMPLITUDES IN FULL-COLOR QCD



FULL-COLOR MASSLESS QCD AMPLITUDES
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[Agarwal, Buccioni, AvM, Tancredi ’21] 



[Badger, Brønnum-Hansen, Chicherin, Gehrmann, 
 Hartanto, Henn, Marcoli, Moodie, Peraro, Zoia ’21] 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gg → γγj

qq̄ → γγγ

 
[Lee, AvM, Schabinger, Smirnov, Smirnov, Steinhauser ’21] 

 
[Chakraborty, Huber, Lee, AvM, Schabinger, Smirnov, Smirnov, Steinhauser ’21]

qq̄ → γ*, gg → H

bb̄ → H

 
[Caola, AvM, Tancredi ’20] 

 
[Bargiela, Caola, AvM, Tancredi ’21] 

: 
[Caola, Chakraborty, Gambuti, AvM, Tancredi ’21,’21,’22] 

: 
[Bargiela, Chakraborty, Gambuti ’22] 

qq̄ → γγ

gg → γγ

qq̄ → q′￼̄q′￼, gg → gg, qq̄ → gg

qq̄ → γg



ACCURACY OF LEADING COLOR APPROXIMATIONS
Ex.:  @ NNLO: result w/ leading color virtual: [Chawdhry, Czakon, Mitov, Poncelet 2021] 

Public library for master integrals: PentagonFunctions [Chicherin, Sotnikov ’20] 
 

Leading color not always a good approximation: 
e.g. 2-loop finite remainder for  in Catani’s scheme:


  
[Agarwal, Buccioni, AvM, Tancredi PRL ’21]
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IR BEYOND DIPOLES

soft anomalous dimension matrix @ 3 loops 
 [Almelid, Duhr, Gardi ’15] 









confirmed for N=4 four-point amplitude 

 [Henn, Mistlberger ’16] 

 
Our calculations confirm the predicted 

quadrupole structure for QCD in all 
partonic channels 

  
[Caola, Chakraborty, Gambuti, AvM, Tancredi ’21,’21,’22] 

 

qq̄ → q′￼̄q′￼, gg → gg, qq̄ → gg

go

•

•



HIGH ENERGY LIMIT
• Interesting to study high-energy (Regge) limit of amplitudes beyond fixed order

• Regge-cut description to define Regge trajectory beyond 3-loops [Falcioni, Gardi, Maher, Milloy, Vernazza; Nov ’21]  

 


• Our  calculations [Caola, Chakraborty, Gambuti, AvM, Tancredi ’21,’21,’22] 
allowed us to validate the framework and determine missing parameters: 

• We extracted 3-loop gluon Regge trajectory, last building block for single-Reggeon exchanges at NNLL 

: 
indep. extraction:  [Falcioni, Gardi, Maher, Milloy, Vernazza; Dec ’21]


• Gluon Regge trajectory and gluon and quark impact factors extracted from different partonic 3-loop amplitudes 
agree

qq̄ → q′￼̄q′￼, gg → gg, qq̄ → gg

talk: Einan Gardi

go

•

•



TOWARDS ALL-N, FOUR-LOOP DGLAP EVOLUTION



SPLITTING FUNCTIONS
• Factorization of hadronic cross section: 

  with 


• Splitting functions  govern DGLAP evaluations of PDFs: 




• Consistent N3LO cross section requires 4-loop splitting functions, only partially known:


• Large  limit [Gracey ’94,’96; Davies, Vogt, Ruijl, Ueda, Vermageren ’16] 

• Non-singlet  from off-shell OMEs [Moch, Ruijl, Ueda, Vermaseren, Vogt ’17] 

• Singlet  from DIS [Moch, Ruijl, Ueda, Vermaseren, Vogt ’21] 

• Pure-singlet, gluon-quark  from off-shell OMEs [Falcioni, Herzog, Moch, Vogt ’23, ‘23]


• Approximate N3LO PDF fits [McGowan, Cridge, Harland-Lang, Thorne ’22; Hekhorn, Magni ’23] 

• This talk: all-n results for pure-singlet  splitting functions

σ ∼ ∑
k

fk|N(x) ⊗ σk(x) x = −
q2

2P ⋅ q

Pik
dfi|N

d ln μ
= 2∑

k

Pik ⊗ fk|N

nf

n ≤ 16

n ≤ 8

n ≤ 20

n2
f

[Image credit: Tong-Zhi Yang]



SPLITTING FUNCTIONS FROM OPERATORS

• With Mellin transform    ,    

DGLAP becomes  


• The  appear as anomalous dimensions of twist-two operators, 

e.g. flavor non-singlet:  

with multiplicative renormalization     where 


• Poles of (off-shell) operator matrix elements: efficient way to find 

fq(n) = − ∫
1

0
dx xn−1fq(x) γij(n) = − ∫

1

0
dx xn−1Pij(x)

dfi(n, μ)
d ln μ

= − 2∑
j

γij(n) fj(n, μ)

γij(n)

Oq,k =
in−1

2 [ψΔμγμ(Δ ⋅ D)n−1 λk

2
ψ]

OR
q,k = ZnsOB

q,k
dZns

d ln μ
= − 2γnsZns

fq(n)



SINGLET CASE AND OPERATOR MIXING
• Singlet twist-two operators: 

 




• Singlet operators mix under renormalization


• For off-shell OME, also new, unknown gauge-variant operators contribute


• Gauge-variant operators caused confusion in early literature


• Construction of operators for fixed Mellin moment  from generalized BRST: [Falcioni, Herzog ’22]


• Our goal: all-  results


• Our method: directly compute counter term Feynman rules from multi-leg off-shell OMEs 
[Gehrmann, AvM, Yang ‘23]

Oq =
in−1

2 [ψΔμγμ(Δ ⋅ D)n−1ψ]
Og = −

in−2

2 [ΔμGa μ
ν(Δ ⋅ D)n−2

ab ΔκG κν
b ]

n

n



COUNTER TERMS FROM MULTI-LEG OMES

• Renormalization: 


• Take OMEs according to  with  and  additional gluons


• Expand  , determine counter terms from OMEs with extra legs, e.g.:

 
[Gehrmann, AvM, Yang ‘23] 

Oq

Og

OABC

R

=

Zqq Zqg ZqA

Zgq Zgg ZgA

ZAq ZAg ZAA

Oq

Og

OABC

B

+

[ZO]GV
q

[ZO]GV
g

[ZO]GV
A

B

⟨j |O | j + mg⟩ j = q, g, c m

[ZO]GV = ∑
l

[ZO]GV ,(l)αl
s



THREE-LOOP SPLITTING FUNCTIONS
• Operator insertions introduce  dependent powers of scalar products


• Use tracing parameter   to map to standard linear propagators 
[Ablinger, Blümlein, Hasselhuhn, Schneider, Wissbrock ‘12] 

 

allows to use standard IBP technology


• We applied our method to 3-loop splitting functions, computation in general  gauge


• Differential equations in , find  factorized form using Canonica and Libra, boundary val. known


• Complicated counter terms, involve generalized harmonic sums


• Gauge parameter  drops out, full agreement with [Moch, Vermaseren, Vogt ’04, ’04]

n

t

(Δ ⋅ p)n−1 →
∞

∑
n=1

tn(Δ ⋅ p)n−1 =
t

1 − t Δ ⋅ p

Rξ

t ϵ

ξ



FOUR-LOOP PURE SINGLET: , ALL-NN2
f

• Four-loop contributions for quark, with two or three closed fermion loops 
[Gehrmann, AvM, Sotnikov, Yang ’23]  

   
(singlet and non-singlet, also non-planar)


• Use syzygies, compute with linear algebra


• Finred with finite field sampling to derive differential equations, reduction of amplitude


• Simple analytical result for splitting functions in terms of HPLs and powers of x



ALL-N RESULT IMPROVES SMALL X KNOWLEDGE

•  by [Falcioni, Herzog, Moch, Vogt ’23] 

• partial information for : 
[Catani, Hautmann ’94; Davies, Kom, Moch, 
Vogt ’22]


• leading terms for : 
[Soar, Moch, Vermaseren, Vogt ’09] 

• Generate fit similar to [Falcioni, Herzog, 

Moch, Vogt ’23], compare to all-  result:


 
[Gehrmann, AvM, Sotnikov, Yang ’23]

n ≤ 20

x → 0

x → 1

n



CONCLUSIONS
• First complete calculations in full-color, massless QCD:


• 5 points @ 2 loops

• 4 points @ 3 loops

• 3 points @ 4 loops

• First steps towards exact 4-loop splitting functions


• This was possible due to progress with

• IBP reductions

• Solutions of master integrals

• Treatment of rational functions


• Room for improvement for all three parts 

From: Snowmass survey of 53 
recent perturbative calculations 
[Febres-Cordero, AvM, Neumann ’22]


