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Scattering Amplitudes
» SCATTERING AMPLITUDES for precision physics  

60 orders of magnitudes in Energy scales:  
from quarks and gluons to black-hole binary systems

» one tool: Feynman diagrams  
crucial for Elementary Particles  
and Gravitational Waves Phenomenology:  
form hard scattering cross-sections to astrophysical coalescing systems

» Interdisciplinary competences required

» Impact  
Physics and Mathematics, but also Biology, 
Chemistry, Statistics and Economy

www.nature.com/scientificreports/
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analysis is not restricted to biomolecules, and can be applied to interactions within any polymer-like system of 
chains. Nonetheless, when discussing speci!c applications, we focus on biomolecules, which provide a huge set of 
examples and for which our methods can be particularly useful.


���������������������
Before introducing the genus trace, we recall what the genus is and how it can be used in the analysis of biopol-
ymers. Note that the genus of RNA structures was considered before, e.g. in1–8, or for proteins in9. However in 
those works the genus was computed only for the entire chain length, and taking into account only canonical 
Watson-Crick base pairs in the RNA case. Here we show that much more detailed information is revealed once 
genus is computed for various types of bonds in a given structure, e.g. also for non-canonical base pairs, including 
those involved in helix backbone packing interactions in RNA. Moreover, the genus trace that we introduce in 
what follows captures much more information than solely the genus of the whole chain.

What is genus and how to compute it? Consider a polymer-like chain consisting of a number of resi-
dues, with bonds connecting various pairs of these residues, as in the example in Fig. 1(a). #e structure of such a 
chain can be presented in the form of a chord diagram. A chord diagram consists of b horizontal intervals (called 
backbones) that represent one or more polymer-like chains, and n arcs (chords) representing bonds, which con-
nect pairs of residues, and are drawn as half-circles in the upper-half plane. In this work we consider con!gura-
tions with only one backbone, =b 1. A chord diagram corresponding to the structure in Fig. 1(a) is shown in 
Fig. 1(b). Such diagrams are commonly used to present the structure of RNA chains3,4. A stack of parallel chords 
contributes in the same way as a single chord to the genus, so each set of parallel chords can be replaced by one 
chord, as in Fig. 1(c). Furthermore, to compute the genus it is of advantage to replace all backbones and chords by 
ribbons of !nite width, also as in Fig. 1(c). In this way we obtain a two-dimensional surface with r boundaries, 
which – a$er shrinking a backbone to a small circle – can be drawn in a smooth way on an auxiliary surface of 
genus g (i.e. having g “holes”), as in Fig. 1(d). #e genus of a chord diagram is de!ned as the genus of this auxiliary 
surface. #is genus can be determined from the Euler formula

− = − − .b n g r2 2 (1)

For example, in Fig. 1(c) there is =b 1 backbone, =n 2 chords, and =r 1 boundary (drawn in red). #erefore 
it follows from the Euler formula that the genus =g 1, so that the auxiliary surface is a torus, see Fig. 1(d).

Note that if no chords intersect in a given chord diagram then =g 0; in this case the chord diagram is called 
planar. In particular, a large complicated RNA with a secondary structure having all nested basepairs has genus 

=g 0, so it is quite simple from the point of view of this paper. Furthermore, for a !xed number of chords and 
backbones the genus cannot exceed some maximal value. We also recall that chord diagrams are used by mathe-
maticians to characterize moduli spaces of Riemann surfaces, while physicists reinterpret them as a particular 
class of Feynman diagrams arising in certain quantum !eld theories or matrix models4,7. Certain properties of 
chord diagrams have been also discussed in10.

Types of bonds and bifurcations. To determine the genus, for example using the formula (1), one simply 
considers all bonds in a given chain. However in various contexts, in particular for biomolecules, one can distin-
guish between various types of bonds. In this work we propose to consider such a distinction; as we will see, this 
provides some new information about those di%erent types of bonds. For RNA, an important classi!cation of base 
pairs have been introduced by Leontis and Westhof11,12. #ey noticed that RNA bases can be regarded as triangles 
with three di%erent edges, referred to as: Hoogsteen edge (denoted HG or H), Watson-Crick edge (denoted WC 
or W), and Sugar or Shallow Groove edge (denoted S or SG), see Fig. 2(a). Base pairs are formed by any of these 

Figure 1. How to compute the genus. (a) A chain with several bonds (in blue and orange) connecting various 
pairs of residues (black dots). (b) Chord diagram representing the same structure. (c) Parallel chords replaced 
by a single chord, and then – together with the backbone – replaced by ribbons, whose single boundary is 
shown in red. (d) A$er shrinking the backbone to a small circle, the ribbon diagram can be smoothly drawn on 
a surface of a torus, whose genus is g = 1.
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Scattering Amplitude: Connecting Theory and Experiment
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Computation of the Loop Amplitude

Generation of the Diagrams via QGRAF

Dirac algebra, Color sum, Trace in the numerators 

Reduction to scalar integrals
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i = O(105)
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Integration-By-Parts Identity

Loop and external  
momentaLoop momenta
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Gives relations between different scalar integrals with different exponents

Solve the system symbolically : Recursion relations
Solve for specific integer value of the exponents : Laporta Algorithm

l(l+E) number of equations
LiteRed

Fire, Reduze, Kira,..
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Integration-By-Parts Identity (Example)

Example of IBP Reduction :

I Example : One Loop Bubble

I(a1, a2) =

Z
ddk1

(k2
1)

a1(k1 + p)2)a2

I(a1, a2) =
a1 + a2 � d � 1

p2(a2 � 1)
I(a1, a2 � 1) +

1

p2
I(a1 � 1, a2)

17 / 47

One Loop Massless Bubble
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IBP Identity

One Loop Massless Bubble



8

Loop Amplitude

Reduction of scalar integrals to Master integrals

Compute the Master Integrals

<latexit sha1_base64="ZhsrF1i2BBuv2IeXa+kGwq3LNWc=">AAACB3icbVBNS8NAEN3Ur1q/oh4FWSyCp5IUUS9C0YsIQgXbCk0Im+2mXbq7CbsboYTevPhXvHhQxKt/wZv/xk2bg7Y+GHi8N8PMvDBhVGnH+bZKC4tLyyvl1cra+sbmlr2901ZxKjFp4ZjF8j5EijAqSEtTzch9IgniISOdcHiZ+50HIhWNxZ0eJcTnqC9oRDHSRgrsfY8jPcCIZTdjeA49lfIgo2OIAwqvAxrYVafmTADniVuQKijQDOwvrxfjlBOhMUNKdV0n0X6GpKaYkXHFSxVJEB6iPukaKhAnys8mf4zhoVF6MIqlKaHhRP09kSGu1IiHpjO/Ws16ufif1011dOZnVCSpJgJPF0UpgzqGeSiwRyXBmo0MQVhScyvEAyQR1ia6ignBnX15nrTrNfekVr89rjYuijjKYA8cgCPgglPQAFegCVoAg0fwDF7Bm/VkvVjv1se0tWQVM7vgD6zPHwW/mMQ=</latexit>

M =
X

i

ciJi
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i = O(102)

Number of Master Integrals
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Computation of the Loop Amplitude

Generation of Diagram by FeynArts

Spin sums, Dirac Algebra, Trace by FeynCalc

Adaptive Integrand Decomposition 

IBP Reduction via Reduze and KIRA

Master Integral evaluation

Mathematica Based Package AIDA [Mastrolia, Peraro, Primo, Ronca, Torres Bobadilla (To be Published) ] 
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the whole computation. The interferences of one- and
two-loop bare amplitudes with the Born amplitude read

M
(n)
b =

1

4

X

spins

2Re(A(0)⇤
b A

(n)
b ) , for n = 1, 2 . (4)

Analytic Evaluation – The analytic evaluation of M(1)
b

and M
(2)
b is completely automated, within an in-house

software, which can be applied to generic one- and two-
loop amplitudes. The Mathematica package Fey-

nArts [63] is used to generate Feynman diagrams con-
tributing to the one- and two-loop corrections to the
scattering amplitudes as well as the counter-term dia-
grams required for the renormalization: 6 diagrams and
3 counter-term diagrams at one loop; 69 diagrams (12 of
which vanish because of Furry’s theorem) and 55 counter-
term diagrams at two loops. Representative one- and
two-loop diagrams are shown in the second and third
row of Fig. 1, respectively. The spin sums and the alge-
braic manipulation to simplify the Dirac-� algebra are
carried out by means of the FeynCalc [64–66] package.
Each n-loop graph G (interfered with the Born amplitude)
corresponds to an integrand written in terms of scalar
products between external, p⌫i , and internal, k⌫i , momenta.
Therefore, Eq.(4) can be generically written as,

M
(n)
b = (S✏)

n

Z nY

i=1

ddki
(2⇡)d

X

G

NGQ
�2G D�

, (5)

where: NG = NG(pi, ki) indicates the numerator, and
D� = D�(pi, ki,M) are the denominators corresponding
to the internal lines of G.

Integrands are simplified by employing the adaptive

integrand decomposition method, implemented in the Aida

framework [29]. The intermediate results emerging from
the integrand decomposition can be further simplified
by means of the IBP identities [32, 33]. Our software is
interfaced with the publicly available codes Reduze [67]
and Kira [68], and, for each diagram, it produces the files
for the automated generation of the IBP relations. After
the decomposition phase, the interference terms M

(n)
b

are written as linear combination of a set of independent
integrals, say I(n), called master integrals (MIs),

M
(n)
b = C(n)

· I(n) , (6)

where C(n) is a vector of coefficients, depending on ✏ and
the kinematic variables, s, t,M2. In particular, M(1)

b and
M

(2)
b are conveniently expressed, in terms of 12 and 264

MIs, respectively, analytically computed: two- and three-
point functions have been known since long [69–71], while
planar and non-planar four-point integrals were computed
in [72, 73], using the differential equation method via Mag-
nus exponential, and independently in [55, 56, 74]. The
analytic expressions of M

(n)
b can be written as a Lau-

rent series around d = 4 space-time dimensions (✏ = 0),

with coefficients that contain Generalized Polylogarithms
(GPLs) [75], defined as iterated integrals, through the
recursive formula

G(wn, . . . , w1; ⌧) ⌘

Z ⌧

0

dt

t� wn
G(wn�1, . . . , w1; t) , (7)

with G(w1; t) ⌘ log(1� t/w1). The arguments wi are
known as letters, and their number, corresponding to
the number of nested integrations, is called weight. The
two-loop interference term contains 4063 GPLs with up
to weight four, whose arguments are written in terms
of 18 letters, wi = wi(x, y, z), which depend on the
Mandelstam variables through the relations, �t/M2 = x ,
�s/M2 = (1 � y)2/y , �(u � M2)/(t � M2) = z2/y
(see [72, 73] for more details).

Renormalization – The one- and two-loop diagrams con-
tributing to M

(1)
b and M

(2)
b contain infrared (IR) and

ultraviolet (UV) divergences. To remove the UV diver-
gences, the bare lepton fields ( `, with ` = f, F , for
massless and massive leptons, respectively) and photon
field (Aµ), as well as the bare mass of the massive lepton
are renormalized as follows,

 b =
p

Z2  , Aµ
b =

p
Z3 A

µ, Mb = ZMM , (8)

where, to simplify the notation, the label ` in the lepton
fields is understood and restored when required. The
renormalization of the QED interaction vertex,

Lint = eb  ̄b /Ab  b = eZ1  ̄ /A , (9)

can then be entirely fixed using the QED Ward identity,
that implies Z1 = Z2. In particular, this leads to a
simple relation between the renormalized charge and the
bare charge (obtained by applying Eq. (8) to the bare
interaction term and comparing the two renormalized
expressions) eZ1 = eb Z2

p
Z3, therefore, one has e =

eb
p
Z3. The lepton wave functions and the mass of the

massive lepton are renormalized in the on-shell scheme,
namely, Z2,f = ZOS

2,f , Z2,F = ZOS

2,F , ZM = ZOS

M . The
coupling constant is renormalized in the MS scheme at
the scale µ2,

↵b S✏ = ↵(µ2)µ2✏ ZMS
↵ , (10)

with ZMS
↵ = 1/ZMS

3 . The renormalized amplitude is ob-
tained by multiplying the bare amplitude with a factorp
Z2,` for any external lepton `, hence,

A = Z2,f Z2,F Âb , (11)

where Âb = Ab (↵b = ↵b(↵),Mb = Mb(M)), namely
expressing the bare coupling and mass in terms of
their renormalized counterparts. Let us observe that
A depends on four renormalization constants, namely
ZMS
↵ , ZOS

2,f , Z
OS

2,F , Z
OS

M . To simplify the notation in the
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of 18 letters, wi = wi(x, y, z), which depend on the
Mandelstam variables through the relations, �t/M2 = x ,
�s/M2 = (1 � y)2/y , �(u � M2)/(t � M2) = z2/y
(see [72, 73] for more details).

Renormalization – The one- and two-loop diagrams con-
tributing to M

(1)
b and M

(2)
b contain infrared (IR) and

ultraviolet (UV) divergences. To remove the UV diver-
gences, the bare lepton fields ( `, with ` = f, F , for
massless and massive leptons, respectively) and photon
field (Aµ), as well as the bare mass of the massive lepton
are renormalized as follows,

 b =
p

Z2  , Aµ
b =

p
Z3 A

µ, Mb = ZMM , (8)

where, to simplify the notation, the label ` in the lepton
fields is understood and restored when required. The
renormalization of the QED interaction vertex,

Lint = eb  ̄b /Ab  b = eZ1  ̄ /A , (9)

can then be entirely fixed using the QED Ward identity,
that implies Z1 = Z2. In particular, this leads to a
simple relation between the renormalized charge and the
bare charge (obtained by applying Eq. (8) to the bare
interaction term and comparing the two renormalized
expressions) eZ1 = eb Z2

p
Z3, therefore, one has e =

eb
p
Z3. The lepton wave functions and the mass of the

massive lepton are renormalized in the on-shell scheme,
namely, Z2,f = ZOS

2,f , Z2,F = ZOS

2,F , ZM = ZOS

M . The
coupling constant is renormalized in the MS scheme at
the scale µ2,

↵b S✏ = ↵(µ2)µ2✏ ZMS
↵ , (10)

with ZMS
↵ = 1/ZMS

3 . The renormalized amplitude is ob-
tained by multiplying the bare amplitude with a factorp
Z2,` for any external lepton `, hence,

A = Z2,f Z2,F Âb , (11)

where Âb = Ab (↵b = ↵b(↵),Mb = Mb(M)), namely
expressing the bare coupling and mass in terms of
their renormalized counterparts. Let us observe that
A depends on four renormalization constants, namely
ZMS
↵ , ZOS

2,f , Z
OS

2,F , Z
OS

M . To simplify the notation in the

Master Integrals

Ginac, handyG, FastGPL
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Evaluation of the Amplitude

Amplitude

Analytic computation of MIs Numerical Evaluation of the MIs

PySecDec

FeynTrop

Numerical Solution

DiffExp

SeaSyde

AMFlow

[MKM, Zhao] 

[Borinsky, Munch, Tellander] 

[Liu, Ma] 

[Armadillo, Bonciani, Devoto, Rana, Vicini] 

[Hidding] 

[Borowka, Heinrich, Jahn, Jones, Kerner, Schlenk, Zirke] Feynman parameters
Mellin Barnes Representation
Asymptotic Expansion

Differential Equation

Kotikov; Gehrmann, Remiddi; Henn; Argeri, Mastrolia; Laporta, Remiddi;

Argeri et al; Moriello; Czakon; …
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We present the first fully analytic evaluation of the transition amplitude for the scattering of a massless
into a massive pair of fermions at the two-loop level in quantum electrodynamics. Our result is an essential
ingredient for the determination of the electromagnetic coupling within scattering reactions, beyond the
currently known accuracy, which has a crucial impact on the evaluation of the anomalous magnetic moment
of the muon. It will allow, in particular, for a precise determination of the leading hadronic contribution to
the ðg − 2Þμ in the MUonE experiment at CERN, and therefore can be used to shed light on the current
discrepancy between the standard model prediction and the experimental measurement for this important
physical observable.

DOI: 10.1103/PhysRevLett.128.022002

Introduction.—The Muon g − 2 Collaboration at
Fermilab has recently confirmed [1] that the observed
magnetic activity of the muon is compatible with the
earlier findings obtained at Brookhaven National Lab
[2–4]. The anomalous magnetic moment of the muon,
ðg − 2Þμ, shows a 4.2σ deviation from the prediction of the
standard model of elementary particles (SM) [5]. However,
the theoretical determination of this quantity, obtained via
dispersive techniques, might be affected by the improper
estimation of the hadronic corrections to the muon-photon
interaction, which could be responsible of such a discrep-
ancy. Alternative results obtained through lattice QCD
calculations point towards a possible mitigation of the
tension between theory and experiments [6].
Recently, a novel experiment, MUonE, has been pro-

posed at CERN, with the goal of measuring the running of
the effective electromagnetic coupling at low momentum

transfer in the spacelike region [7]. As proposed in Ref. [8],
this measurement would provide an independent determi-
nation of the leading hadronic contribution to the ðg − 2Þμ.
Such a measurement relies on the precise determination of
the angles of the outgoing particles emerging from the
elastic muon-electron scattering [7,9–11]. To extract the
running of the effective electromagnetic coupling from
the experimental data, the pure perturbative electromag-
netic contribution to the electron-muon cross section must
be controlled at least up to the second order in the fine-
structure constant [12].
The scattering of a muon μ off an electron e in quantum

electrodynamics (QED) is the simplest reaction among
fundamental leptons of different flavors, and represents a
paradigmatic case of charged particles interaction mediated
by a neutral gauge boson. The leading order (LO) process
has been known since the mid 1950s [13], while the next-
to-leading order (NLO) radiative corrections were com-
puted in Refs. [14–20], and more recently studied in
Ref. [21]. The two-loop diagrams contributing to the
next-to-next-to-leading order (NNLO) virtual corrections
were evaluated in Ref. [22] assuming purely massless
fermions. At the energies of the MUonE experiment, the
muon mass plays an important role for the description of
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Abstract: We present the first full analytic evaluation of the scattering amplitude for the
process qq̄ → QQ̄ up-to two loops in Quantum Chromodynamics, for a massless (q) and a
massive (Q) quark flavour. The interference terms of the one- and two-loop amplitudes with
the Born amplitude, decomposed in terms of gauge invariant form factors depending on the
colour and flavour structure, are analytically calculated by keeping complete dependence on
the squared center-of-mass energy, the squared momentum transfer, and the heavy-quark
mass. The results are expressed as Laurent series around four space-time dimensions,
with coefficients given in terms of generalised polylogarithms and transcendental constants
up-to weight four. Our results validate the known, purely numerical calculations of the
squared amplitude, and extend the analytic knowledge, previously limited to a subset of
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the second order corrections in the strong coupling constant.
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GW observations

 

Gravitational Waves Ushered in New Era of AstroPhysics

•Since the discovery in 2015, LIGO-Virgo have observed, 90 GW events; the majority are binary black holes 
(BBH), but also 2 binary neutron stars (BNS) and mixed NSBHs.

Supplement conventional Analysis

Increase Theoretical Precision

Perform Gravity phenomenology

Tasks
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Solving two-body problem in GR

j

ANATOMY OF GRAVITATIONAL WAVE SIGNAL

[Picture: Antelis, Moreno, 1610.03567]

Inspiral Merger Ringdown

Inspiral Post-Newtonian / Post-Minkowskian / EOB
Merger Numerical relativity / EOB resummation

Ringdown Perturbative quasi-normal modes

Antelis, moreno (2016)

Post-Newtonian (PN)

Post-Minkowskian (PM)
Numerical Relativity Perturbation Theory

 

Solving Two-Body Problem in General Relativity 

100 101 102 103 104 105
m1/m2

100

101

102

103

104

r c
2 /G

M

Effective one-body theory

Numerical 
Relativity

Post-Newtonian theory

Perturbation 
theory 

gravitational self-
force

•Einstein’s field equations can be solved: 

•Synergy between analytical and numerical relativity is crucial 
to provide GW detectors with templates to use for searches 
and inference analyses.

-approximately, but analytically (fast way)  

-accurately, but numerically on supercomputers (slow way) 

binary’s mass ratio

bi
na

ry
’s 

se
pa

ra
tio

n

•Effective-one-body (EOB) approach  
combines results from all analytic 
methods, and can be made highly 
accurate via numerical relativity.

•GR is non-linear theory.  

(AB &
 Sathyaprakash 14)

(AB, Damour, … Barausse, Bohé, Cotesta, Khalil, Ossokine, Pan, 
Pompili, Buades-Ramos, Shao, Taracchini, … Nagar, Bernuzzi, 
Agathos, Gamba,  Messina, Rettegno, Riemenschneider,…. Iyer, 
Jaranowski, Schäfer)
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Analytical Approximation Methods

Pirsa: 21110046 Page 4/31

Pirsa: 21110046 Page 4/31

v2

c2
∼

GM
rc2

≪ 1
GM
rc2

≪ 1
m1

m2
≪ 1

Post-Newtonian (PN) Post-Minkowskian (PM) Self-Force (SF)

Pirsa: 21110046 Page 4/31

Effective One-Body (EOB)

Pirsa: 21110046 Page 4/31

m1, a1

m2, a2

μ =
m1m2

M

M = m1 + m2
a = a1 + a2



16

Post-Newtonian Expansion EFT set up

1.4 Dimensionl Recurrence Relations

P (qi · pj , qi · qj) = G(qi, pj) (1.12)

with G = Gram determinant

G(qi, pj) =

��������

q21 . . . (q1 · pe�1)

...
. . .

...

(pe�1 · q1) . . . p2e�1

��������
(1.13)

Dimension-shifted integrals

G-insertion:

F [d]
n,m(x,y) ⌘

Z

q1...q`

fn,m(x,y) , (1.14)

)
Z

q1...q`

G fn,m(x,y) = ⌦(d, pi) F
[d+2]
n,m (x,y) (1.15)

In the case of Master integrals

x̄ = (1, . . . , 1) , ȳ = (0, . . . , 0)

M [d+2]
k = ⌦(d, pi)

�1
Z

q1...q`

G mk(x̄, ȳ)
IBP
=

X

i

ck,i M
[d]
i (1.16)

which can be seen as a Dimensional recurrence relation

In general, n MIs obey a system of Dimensional recurrence relations

M
[d] ⌘

0

BBB@

M [d]
1

...

M [d]
n

1

CCCA
(1.17)

M
[d+2] = C(d) M[d] (1.18)

1.5 Di↵erential Equations

In general, n MIs obey a system of 1st ODE

@zM
[d] = A(d, z) M[d] (1.19)
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M [d+2]
k = ⌦(d, pi)

�1
Z

q1...q`

G mk(x̄, ȳ)
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Advantage of QFT techniques

Use of Feynman diagrams

Dimensional Regularization

Multi-loop Techniques

Why QFT techniques for classical problem?

Motivation

Advantages of EFT/QFT approach for a classical problem:

Feynman diagrams help organize the computation

Dimensional regularization to handle the spurious divergences

Multi-loop techniques : IBP, Di↵erential equations for MI, etc.

= c1 + c2 + c3

Also: double-copy, supersymmetry, etc
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IBP relations

Differential Equations

Better to handle spurious divergences 
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Post-Newtonian Expansion EFT set up

1.4 Dimensionl Recurrence Relations

P (qi · pj , qi · qj) = G(qi, pj) (1.12)

with G = Gram determinant

G(qi, pj) =

��������

q21 . . . (q1 · pe�1)

...
. . .

...

(pe�1 · q1) . . . p2e�1

��������
(1.13)

Dimension-shifted integrals

G-insertion:

F [d]
n,m(x,y) ⌘

Z

q1...q`

fn,m(x,y) , (1.14)

)
Z

q1...q`

G fn,m(x,y) = ⌦(d, pi) F
[d+2]
n,m (x,y) (1.15)

In the case of Master integrals

x̄ = (1, . . . , 1) , ȳ = (0, . . . , 0)

M [d+2]
k = ⌦(d, pi)

�1
Z

q1...q`

G mk(x̄, ȳ)
IBP
=

X

i

ck,i M
[d]
i (1.16)

which can be seen as a Dimensional recurrence relation

In general, n MIs obey a system of Dimensional recurrence relations

M
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0

BBB@

M [d]
1

...

M [d]
n

1

CCCA
(1.17)

M
[d+2] = C(d) M[d] (1.18)

1.5 Di↵erential Equations

In general, n MIs obey a system of 1st ODE

@zM
[d] = A(d, z) M[d] (1.19)
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M [d+2]
k = ⌦(d, pi)

�1
Z

q1...q`

G mk(x̄, ȳ)
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Hierarchy of scales
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Radius of the Binary

Wavelength of the GW
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Post-Newtonian Expansion EFT set up
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Hierarchy of scales

Tower of EFTs

1. One-Particle EFT for Compact Object


2. EFT of Composite Particle for Binary


3. Effective Theory of Dynamical Multipoles
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EFT at the orbital scale: Conservative Dynamics
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CHAPTER�.EFTOFA
COALESCING

BINARYSYSTEM
IN

GENERALRELATIVITY

2.diagramsmayonlycontaininternallinescorrespondingtopropagatorsforthepotentialmodes

H
µ⌫.Diagramscannotcontainexternalpotentialgravitonlines,

3.diagramscanonlycontainexternalh̄µ⌫.Diagramscannotcontainpropagatorscorresponding

tointernalradiationgravitonlines.

Thepointofsplittingtheoriginalgraviton
hµ⌫

intothenew
modes

H
µ⌫,h̄µ⌫

isthatthediagrams

written
in

termsofthesenew
variableshavedefinitepowersoftheexpansion

parameter
v.

The

powercountingrulesfordetermininghow
manypowersofvtoassigntoagivendiagram

follow

simplyfrom
thefactthatthethreemomentum

ofapotentialgravitonscalesask⇠
1/r,sincethisisthe

rangeoftheforceitmediates,andthatthespacetimevariationofaradiationgravitonis�rad⇠
r/v.

W
iththesetwoobservationswecanassignpowersofvtoanyterm

intheaction,andbyextensionto

theFeynmanrules.

Diagrammatically,wecandenotethetwoblackholeworldlineswithhorizontalstraightlines,potential

modeswithdottedlinesandradiativemodeswithwiggledones.

Theconservativedynamicisgivenbythesum
ofdiagramscontainingnoradiationgravitons,as:

=

=

+

+

+
···

(2.97)

Beinginterestedinstudyingprocesseswithoneemittedradiationgraviton,oneshouldconsiderall

diagramscontainingoneradiationfield:

=

=

+

+

+
...,

(2.98)

whereitshouldbenoticedthatradiationgravitonscanbecoupledeithertoworldlinesortopotential

gravitons.
2.6.1

Kol-SmolkinVariables

Tosimplifythediagram
computation

wecan
takeadvantageofthediffeomorphism

invarianceof

GeneralRelativitytoimposeaKaluza-Kleinparametrization[43–46]forthemetrictensor,whichis

basedontheuseoftheKol-Smolkinvariables.

W
ecandecomposethesymmetrictensorgµ⌫intermsofascalarfield

�,ad-dimensionalvectorfield

A
ianda

d⇥
dsymmetrictensorfield

�ijwheretheindicesi,jrunfrom
1to

d:

gµ⌫
=
e
2�/⇤

 �
1

A
j/⇤

A
i/⇤

e
�
cd

�

��ij�
A
iA

j/⇤
2

!,

�ij
=
⇣�ij
+

�ij
⇤

⌘,

(2.99)

where
cd
=
2(

d�
1

d�
2
).In4dimensionsthe10degreesoffreedom

ofgµ⌫aredecomposedas:1forthe

scalarfield
�,3forthethree-vectorfield

A
iand6forthe

3⇥
3symmetrictensor�ij.

W
ecanrewritethepointparticleaction

SppintheKol-Smolkinvariables,firstbyparametrizingthe

BH
worldlinewith

t,timeofanexternalstaticobserver:

Spp
=
�
m
a
Zdt
q�
gµ⌫(xa)ẋ

µ
aẋ

⌫a

w
ith

ẋ
µ=

(1,v
i/c),

(2.100)

thenbysubstitutingthevariables,obtaining:

Spp
=
�
m
a
Zdte

�
⇤

r1�
2viA

i
⇤

�
�ijv

iv
je
�
cd

�
⇤
+

(A
iv

i)
2

⇤
2

.

(2.101)

Similarly,wecanexpressSbulkintermsofKol-Smolkinvariables,andreportingonlythepartneeded

forcalculationsthatwillbeperformedwithinthisthesisweget:

Sbulk
�

Zd
d+

1x
p�
�
(1

4
(~r�)

2�
2(~r�ij)

2�
(�̇

2�
2(�̇ij)

2)
�

cd
�

⇤
�
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2

2

O
ne

ofthe
goals

ofthis
paper

is
to
em
phasize

that
the

sym
m
etric

nature
ofthe

Feynm
an

propagator,w
hich

is
a

consequence
ofthe

scattering
boundary

conditions
em
ployed

in
the

in-out
form

alism
,im

plies
thatit

is
unsuitable

for

self-consistently
and

system
atically

describing
tim

e-asym
m
etric

processesrelated
to
dissipation

and
radiation

reaction

in
com

pactbinaries[59].
W
e
stressthatthisis

nota
system

atic
flaw

orshortcom
ing

ofN
R
G
R
butinstead

arisesfrom

not
im
posing

retarded
boundary

conditions
on

the
radiated

gravitationalperturbations.

To
address

these
and

other
issues

in
N
R
G
R
here

we
instead

im
plem

ent
the

“in-in”
form

alism
to
enforce

retarded

boundary
conditions

in
a
path

integralfram
ework.T

he
in-in

construction
is
an

initialvalue
form

ulation
that

evolves

the
system

in
realtim

e
from

a
given

initialstate
and

allow
sforthe

finalstate
to
be
determ

ined
dynam

ically
given

only

initialdata.
T
his

is
in
contrast

to
the

ab
initio

stipulation
ofthe

finalstate
in
the

in-out
construction

for
scattering

processes.
T
he

in-in
approach

was
first

introduced
by

Schw
inger

[23]as
a
way

ofcom
puting

expectation
values

in
quantum

m
echanicsfrom

a
path

integralform
alism

and
wasfurtherdeveloped

by
othersin

[24,25,26,27,28,29,30,31,32,33].

Since
its

introduction,
the

in-in
form

alism
has

been
extensively

applied
to
problem

s
w
here

an
initial

value
for-

m
ulation

is
crucialfor

describing
a
system

’s
dynam

icalevolution,typically
involving

nonequilibrium
processes,from

an
initialstate

to
an

unknow
n
finalstate.

T
hese

include
sem

i-classicalgravity
and

stochastic
gravity

(see
[34]and

referencestherein),inflationary
cosm

ology,quark-gluon
plasm

as,disoriented
chiralcondensates,therm

alfield
theory,

B
ose-Einstein

condensatesand
quantum

B
row

nian
m
otion,to

nam
e
a
few

.
See

[35]forcorresponding
references.T

he

in-in
form

alism
is
also

usefulfor
addressing

issues
related

to
the

quantum
-to-classicaltransition

(e.g.,decoherence),

m
acroscopiccoherence,quantum

kinetic
theory,noise

and
fluctutationsin

open
quantum

system
s,am

ong
otherthings

[35,36].
In
the

extrem
e
m
ass

ratio
inspiralscenario,the

in-in
form

alism
is
crucialto

guarantee
the

causalevolution
ofthe

binary
in
a
curved

background
spacetim

e
(e.g.,K

err)and
hasbeen

successfully
used

in
[37]to

rederive
the

firstorder

self-force
[38,39]acting

on
the

sm
allcom

pact
object.

In
this

paper
the

in-in
fram

ework
is
used

to
derive,

in
the

context
of
N
R
G
R
,
the

well-know
n
com

pact
object

equations
of
m
otion

w
ith

radiation
reaction

at
2.5PN

order
(first

derived
by

B
urke

and
T
horne

[40,
41,

42])
and

the
quadrupole

gravitationalwaves
em
itted

by
the

binary.
T
he

in-in
form

ulation
ofN

R
G
R
should

also
be

usefulfor

deriving
real-tim

e
quantities

and
the

hereditary
term

s
(e.g.,m

em
ory

and
tailintegrals)

that
appear

in
higher

order

expressions
for

the
m
etric

com
ponents

(the
gravitationalwaveform

)and
the

radiated
power.

In
Section

II
we

provide
a
briefdescription

ofthe
in-out

form
ulation

ofthe
radiation

sector
in
N
R
G
R
.In

Section

III
we

provide
a
pedagogicalpresentation

of
the

in-out
fram

ework
and

discuss
its

shortcom
ings

for
describing

the

real-tim
e
causalpropagation

of
gravitationalwaves.

W
e
also

review
the

in-in
form

alism
.
W
e
then

apply
the

in-in

approach
to
derive

the
well-know

n
results

for
the

2.5PN
radiation

reaction
forces

and
for

the
em
itted

quadrupole

gravitationalradiation
in
Section

IV
.
In

A
ppendix

D
,
we

apply
the

in-in
fram

ework
to

form
ulate

the
equivalent

classicaleffective
field

theory
(C
lEFT

)approach
ofK

oland
Sm

olkin
[43]in

a
form

suitable
to
self-consistently

derive

radiation
reaction

and
other

real-tim
e
quantities.

T
his

provides
an

alternative
derivation

of
the

in-in
approach

to

N
R
G
R
.In

this
paper

we
focus

on
non-spinning

com
pact

objects
and

use
the

sam
e
conventions

as
[7].

II.
T
H
E
IN

-O
U
T
F
O
R
M
U
L
A
T
IO
N
O
F
N
R
G
R

T
he

centralquantity
in
the

N
R
G
R
paradigm

is
the

effective
action,

Seff.
A
t
the

orbitalscale
r
of
the

binary,

the
com

pactobjectscan
effectively

be
treated

aspointparticlesinteracting
w
ith

nearly
instantaneouspotentialsH

µν

and
coupled

to
long

wavelength
(λ
!
r),slow

ly
varying,externalradiation

fields
h̄µν.

In
the

“in-out”
path

integral

form
ulation

the
effective

action
is
given

by

e
iS

ef
f=

∫D
h̄µν

∫D
H
µν

exp
{

iS[η
+
h̄
+
H
]+

i
2

∑

K
=
1

Spp[xK
(t),η

+
h̄
+
H
]

}

(2.1)

w
here

S
is
the

(gauge-fixed)
Einstein-H

ilbert
action,Spp

is
the

point
particle

action
for

each
com

pact
object

in
the

binary
and

the
index

K
labels

each
particle.

Integrating
out

the
potentialgravitons

H
µν

from
the

theory
at
the

orbitalscale
(in

the
Lorenz

gauge
and

on
the

long
wavelength

background
spacetim

e)
schem

atically
gives

for
the

effective
action

e
iS

ef
f=

∫D
h̄µν

exp
{

iS[η
+
h̄]+

+

+

+
···

}

(2.2)

w
here

a
curly

line
denotes

a
radiation

graviton
and

the
double

solid
line

represents
the

com
pact

binary.
W
e
take

the

L(xa
,ẋa

,ẍa
,...Sa

,Ṡa
,S̈a

,...)=

(13)

ZD
H

exp
ni
S
[⌘
+
H
,h
=
0]+

i
Spp

[xK
,⌘
+
H
,h
=
0]

o

(14)

e
iS

ef
f
[x
K
]

(15)
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O
ne

ofthe
goals

ofthis
paper

is
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em
phasize

that
the

sym
m
etric

nature
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Feynm
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propagator,w
hich

is
a

consequence
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scattering
boundary

conditions
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the

in-out
form

alism
,im

plies
thatit
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unsuitable

for

self-consistently
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system
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describing
tim

e-asym
m
etric

processesrelated
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dissipation

and
radiation
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com
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W
e
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R
G
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retarded
boundary

conditions
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address

these
and

other
issues

in
N
R
G
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,ẍa
,...Sa

,Ṡa
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CHAPTER�.EFTOFA
COALESCING

BINARYSYSTEM
IN

GENERALRELATIVITY

theintegration.Proceedinginthesamewayasbefore,wecanrewritethehigh-energyintegralasthe

expandedintegralwithoutacutoffandaremainderwhichdependsonthecutoff:

R
(II)

=
Z
⇤

0
dkk

�
✏

k
k
2(k

2+
M

2)
✓1�

m
2

k
2
+
...

◆

=
Z
⇤

0
dkk

�
✏

k
k
2M

2

✓1�
m

2
k
2
�

k
2

M
2
+
...

◆,

(2.24)

wherewehaveexpandedtheintegrandinboththelimitofsmallm
andalsointhelimitoflarge

M
,

butinoppositeorderasin
R
(I).However,thetwoexpansionscommutesothattheintegrandsofR

(I)

and
R
(II)areidentical.Addingupthetwopieces,wefindthat:

R
=
R
(I)

+
R
(II)

=
Z
1

0
dkk

�
✏

k
k
2M

2

✓1�
m

2
k
2
�

k
2

M
2
+
...

◆.

(2.25)

Thisismanifestlyindependentonthecutoff.Itisalsomanifestlyzero,becauseitisgivenbyaseriesof

scalelessintegrals.Inthecontextofeffectivefieldtheorieswherethemethodofregionisused,suchas

NRGRofSCET,theoverlapcontribution
R

isusuallyreferredasthe"zero-bincontribution"[49].One

canobtainthefulloverlapeitherbyexpandingthehigh-energyintegralI(II)aroundthelow-energy

limit,ortheintegrandofthelow-energyintegralI(I)aroundthehigh-energylimit.Sincetheoverlap

isobtained
byexpandingsingle-scaleintegrals,I(I)or

I(II)itisgivenbyscalelessintegralswhich

vanishindimensionalregularization.W
ewillnow

applythesetechniquesinthecontextofNRGR.

2.2
EFT

foraBinaryCoalescingSystem
inGeneralRelativity

Figure2.1:Hierarchyoflengthscalespresentintheslow
inspiralphaseofacoalescingbinarysystem

Letusfocuson
theslow

inspiralphaseofthedynamicsofabinarycoalescingsystem
in

General

Relativity,thatcorrespondstotheperiodintheevolutionofthebinaryinwhichthesystem
ismoving

atnon-relativisticvelocities
v
⌧

1,and
thebound

orbitisslowlydecayingduetotheemissionof

gravitationalradiation.

Thisproblem
ischaracterizesbymultiplelengthscales:

•
thesizeofthecompactobjectsrs,

•
theorbitaldistance

r,

•
thewavelength

�rad⇡
r

v
oftheemittedradiation.

Theorbitaldistanceismuchgreaterthanthesizeofthecompactobjectrs
⌧

r,M
oreover,from

a

multipoleexpansionoftheradiationfieldcoupledtonon-relativisticsourcesitfollowsthatr⌧
�rad.

Hence,thereisaprecisehierarchyofwidelyseparatedlengthscales:

rs⌧
r⌧

�rad
,

(2.26)

allcontrolledbythesameexpansionparameterv:
rs

r
⇠
v
2

r
�

⇠
v
.

(2.27)

Hμν
hμν

r*

r

λGW
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1.4 Dimensionl Recurrence Relations

P (qi · pj , qi · qj) = G(qi, pj) (1.12)

with G = Gram determinant

G(qi, pj) =

��������

q21 . . . (q1 · pe�1)

...
. . .

...

(pe�1 · q1) . . . p2e�1

��������
(1.13)

Dimension-shifted integrals

G-insertion:

F [d]
n,m(x,y) ⌘

Z

q1...q`

fn,m(x,y) , (1.14)

)
Z

q1...q`

G fn,m(x,y) = ⌦(d, pi) F
[d+2]
n,m (x,y) (1.15)

In the case of Master integrals

x̄ = (1, . . . , 1) , ȳ = (0, . . . , 0)

M [d+2]
k = ⌦(d, pi)

�1
Z

q1...q`

G mk(x̄, ȳ)
IBP
=

X

i

ck,i M
[d]
i (1.16)

which can be seen as a Dimensional recurrence relation

In general, n MIs obey a system of Dimensional recurrence relations

M
[d] ⌘

0

BBB@

M [d]
1

...

M [d]
n

1

CCCA
(1.17)

M
[d+2] = C(d) M[d] (1.18)

1.5 Di↵erential Equations

In general, n MIs obey a system of 1st ODE

@zM
[d] = A(d, z) M[d] (1.19)

1.6

r? << r << �GW (1.20)
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IBP
=

X

i

ck,i M
[d]
i (1.16)

which can be seen as a Dimensional recurrence relation

In general, n MIs obey a system of Dimensional recurrence relations

M
[d] ⌘

0

BBB@

M [d]
1

...

M [d]
n

1

CCCA
(1.17)

M
[d+2] = C(d) M[d] (1.18)

1.5 Di↵erential Equations

In general, n MIs obey a system of 1st ODE

@zM
[d] = A(d, z) M[d] (1.19)

1.6

r? << r << �GW (1.20)

– 3 –

1.4 Dimensionl Recurrence Relations

P (qi · pj , qi · qj) = G(qi, pj) (1.12)

with G = Gram determinant

G(qi, pj) =

��������

q21 . . . (q1 · pe�1)

...
. . .

...

(pe�1 · q1) . . . p2e�1

��������
(1.13)

Dimension-shifted integrals

G-insertion:

F [d]
n,m(x,y) ⌘

Z

q1...q`

fn,m(x,y) , (1.14)

)
Z

q1...q`

G fn,m(x,y) = ⌦(d, pi) F
[d+2]
n,m (x,y) (1.15)

In the case of Master integrals

x̄ = (1, . . . , 1) , ȳ = (0, . . . , 0)
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u
µ

(a) = dx
µ

(a)/d⌧ is the four-velocity and u
2
(a) = gµ⌫u

µ

(a)u
⌫

(a), whereas the proper time ⌧ is related to
the coordinate time t by d⌧ = c dt.

As we will be performing the computation using the techniques of multi-loop Feynman diagrams,
it is necessary to write the gravitational coupling constant in d dimensions as

Gd = GN

⇣p
4⇡e�ER0

⌘d�3
, (2.5)

where, R0 is an arbitrary length scale.

2.2 Post-Newtonian formulation of General Relativity

In the bound state of two compact objects, we have three length scales, namely the length scale
associated with the compact object Rs (Schwarzschild radius), the radius of the orbit r, and the
wavelength of the emitted gravitational wave �. We assume the velocities of the particles to be small
as compared to the velocity of light and the particles are far from each other, hence propagate on a
flat background (gµ⌫ = ⌘µ⌫ + hµ⌫), where the gravitational interaction between the two particles is
governed by the gravitons hµ⌫ . Then we have a hierarchy of length scales

� � r � Rs . (2.6)

As we are only interested in the long-distance physics at the scales of �, we first decompose the
graviton fields in short distance modes - potential gravitons Hµ⌫ with scaling (k0,k) ⇠ (v/r, 1/r) and
long-distance modes - radiation gravitons h̄µ⌫ with scaling (k0,k) ⇠ (v/r, v/r) [40].

Noting that v
2 ⇠ 1/r for bound orbits due to the virial theorem (or the third Kepler law), the

dimensionless expansion parameter can be taken as v2/c2 ⇠ GNM/rc
2, which formally scales as 1/c2.

Hence, following the majority of the PN literature, we equivalently adopt a formal expansion in 1/c
with one PN order corresponding to 1/c2. For the spin variables, it holds S(a) = Gm

2
(a)�(a)/c where

the dimensionless spins �(a) are at most O(1) for black holes and (realistic) neutron stars, so that
S(a) ⇠ 1/c. Henceforth we rescale the spins as S(a) ! S(a)/c in order to make the PN counting in 1/c
manifest.

Now to compute the conservative binding potential of the two-body system, we ignore the radiation
modes and decompose the potential modes in the Kaluza-Klein (KK) parameterization [124, 125]. In
this, the di↵erent components of metric gµ⌫ (= ⌘µ⌫ +Hµ⌫) are encoded in three fields, a scalar �, a
3-dimensional vector Ai and a 3-dimensional symmetric rank two tensor �ij . The decomposition is
given by,

gµ⌫ =

 
e
2�/c

2 �e
2�/c

2 Aj

c2

�e
2�/c

2 Ai
c2

�e
�2�/c

2

�ij + e
2�/c

2 Ai
c2

Aj

c2

!
,

where, �ij = �ij + �ij/c
2.

The 2-body e↵ective action is then given by integrating out the gravitational degrees of freedom
from the above derived actions as

exp
h
i

Z
dt Le↵

i
=

Z
D�DAiD�ij e

i(SEH+Spp) , (2.7)

where, Le↵ is the e↵ective Lagrangian further decomposed as

Le↵ = Ke↵ � Ve↵ , (2.8)

where, Ke↵ is the kinetic term and Ve↵ is the e↵ective contribution due to gravitational interactions
between the two objects.
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2. diagrams may only contain internal lines corresponding to propagators for the potential modes
Hµ⌫ . Diagrams cannot contain external potential graviton lines,

3. diagrams can only contain external h̄µ⌫ . Diagrams cannot contain propagators corresponding
to internal radiation graviton lines.

The point of splitting the original graviton hµ⌫ into the new modes Hµ⌫ , h̄µ⌫ is that the diagrams
written in terms of these new variables have definite powers of the expansion parameter v. The
power counting rules for determining how many powers of v to assign to a given diagram follow
simply from the fact that the three momentum of a potential graviton scales ask ⇠ 1/r, since this is the
range of the force it mediates, and that the spacetime variation of a radiation graviton is �rad ⇠ r/v.
With these two observations we can assign powers of v to any term in the action, and by extension to
the Feynman rules.
Diagrammatically, we can denote the two black hole worldlines with horizontal straight lines, potential
modes with dotted lines and radiative modes with wiggled ones.
The conservative dynamic is given by the sum of diagrams containing no radiation gravitons, as:

= = + + + · · ·

(2.97)
Being interested in studying processes with one emitted radiation graviton, one should consider all
diagrams containing one radiation field:

= = + + + . . . , (2.98)

where it should be noticed that radiation gravitons can be coupled either to worldlines or to potential
gravitons.

2.6.1 Kol-Smolkin Variables

To simplify the diagram computation we can take advantage of the diffeomorphism invariance of
General Relativity to impose a Kaluza-Klein parametrization [43–46] for the metric tensor, which is
based on the use of the Kol-Smolkin variables.
We can decompose the symmetric tensor gµ⌫ in terms of a scalar field �, a d-dimensional vector field
Ai and a d⇥ d symmetric tensor field �ij where the indices i, j run from 1 to d:

gµ⌫ = e2�/⇤
 

�1 Aj/⇤

Ai/⇤ e�cd
�

� �ij �AiAj/⇤2

!
, �ij =

⇣
�ij +

�ij
⇤

⌘
, (2.99)

where cd = 2(d�1
d�2). In 4 dimensions the 10 degrees of freedom of gµ⌫ are decomposed as: 1 for the

scalar field �, 3 for the three-vector field Ai and 6 for the 3⇥ 3 symmetric tensor �ij .
We can rewrite the point particle action Spp in the Kol-Smolkin variables, first by parametrizing the
BH worldline with t, time of an external static observer:

Spp = �ma

Z
dt
q
�gµ⌫(xa)ẋ

µ
a ẋ⌫a with ẋµ = (1, vi/c) , (2.100)

then by substituting the variables, obtaining:

Spp = �ma

Z
dte

�

⇤

r
1� 2viAi

⇤
� �ijvivje

�cd
�

⇤ +
(Aivi)2

⇤2
. (2.101)

Similarly, we can express Sbulk in terms of Kol-Smolkin variables, and reporting only the part needed
for calculations that will be performed within this thesis we get:

Sbulk �
Z

dd+1x
p
��

(
1

4


(~r�)2 � 2(~r�ij)

2 � (�̇2 � 2(�̇ij)
2)�

c
d
�

⇤

�
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where cd = 2(d�1
d�2). In 4 dimensions the 10 degrees of freedom of gµ⌫ are decomposed as: 1 for the

scalar field �, 3 for the three-vector field Ai and 6 for the 3⇥ 3 symmetric tensor �ij .
We can rewrite the point particle action Spp in the Kol-Smolkin variables, first by parametrizing the
BH worldline with t, time of an external static observer:
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Z
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µ
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Similarly, we can express Sbulk in terms of Kol-Smolkin variables, and reporting only the part needed
for calculations that will be performed within this thesis we get:
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One of the goals of this paper is to emphasize that the symmetric nature of the Feynman propagator, which is a
consequence of the scattering boundary conditions employed in the in-out formalism, implies that it is unsuitable for
self-consistently and systematically describing time-asymmetric processes related to dissipation and radiation reaction
in compact binaries [59]. We stress that this is not a systematic flaw or shortcoming of NRGR but instead arises from
not imposing retarded boundary conditions on the radiated gravitational perturbations.
To address these and other issues in NRGR here we instead implement the “in-in” formalism to enforce retarded

boundary conditions in a path integral framework. The in-in construction is an initial value formulation that evolves
the system in real time from a given initial state and allows for the final state to be determined dynamically given only
initial data. This is in contrast to the ab initio stipulation of the final state in the in-out construction for scattering
processes.
The in-in approach was first introduced by Schwinger [23] as a way of computing expectation values in quantum

mechanics from a path integral formalism and was further developed by others in [24, 25, 26, 27, 28, 29, 30, 31, 32, 33].
Since its introduction, the in-in formalism has been extensively applied to problems where an initial value for-

mulation is crucial for describing a system’s dynamical evolution, typically involving nonequilibrium processes, from
an initial state to an unknown final state. These include semi-classical gravity and stochastic gravity (see [34] and
references therein), inflationary cosmology, quark-gluon plasmas, disoriented chiral condensates, thermal field theory,
Bose-Einstein condensates and quantum Brownian motion, to name a few. See [35] for corresponding references. The
in-in formalism is also useful for addressing issues related to the quantum-to-classical transition (e.g., decoherence),
macroscopic coherence, quantum kinetic theory, noise and fluctutations in open quantum systems, among other things
[35, 36].
In the extreme mass ratio inspiral scenario, the in-in formalism is crucial to guarantee the causal evolution of the

binary in a curved background spacetime (e.g., Kerr) and has been successfully used in [37] to rederive the first order
self-force [38, 39] acting on the small compact object.
In this paper the in-in framework is used to derive, in the context of NRGR, the well-known compact object

equations of motion with radiation reaction at 2.5PN order (first derived by Burke and Thorne [40, 41, 42]) and
the quadrupole gravitational waves emitted by the binary. The in-in formulation of NRGR should also be useful for
deriving real-time quantities and the hereditary terms (e.g., memory and tail integrals) that appear in higher order
expressions for the metric components (the gravitational waveform) and the radiated power.
In Section II we provide a brief description of the in-out formulation of the radiation sector in NRGR. In Section

III we provide a pedagogical presentation of the in-out framework and discuss its shortcomings for describing the
real-time causal propagation of gravitational waves. We also review the in-in formalism. We then apply the in-in
approach to derive the well-known results for the 2.5PN radiation reaction forces and for the emitted quadrupole
gravitational radiation in Section IV. In Appendix D, we apply the in-in framework to formulate the equivalent
classical effective field theory (ClEFT) approach of Kol and Smolkin [43] in a form suitable to self-consistently derive
radiation reaction and other real-time quantities. This provides an alternative derivation of the in-in approach to
NRGR. In this paper we focus on non-spinning compact objects and use the same conventions as [7].

II. THE IN-OUT FORMULATION OF NRGR

The central quantity in the NRGR paradigm is the effective action, Seff . At the orbital scale r of the binary,
the compact objects can effectively be treated as point particles interacting with nearly instantaneous potentials Hµν

and coupled to long wavelength (λ ! r), slowly varying, external radiation fields h̄µν . In the “in-out” path integral
formulation the effective action is given by

eiSeff =

∫

Dh̄µν

∫

DHµν exp

{

iS[η + h̄+H ] + i
2

∑

K=1

Spp[xK(t), η + h̄+H ]

}

(2.1)

where S is the (gauge-fixed) Einstein-Hilbert action, Spp is the point particle action for each compact object in the
binary and the index K labels each particle.
Integrating out the potential gravitons Hµν from the theory at the orbital scale (in the Lorenz gauge and on the

long wavelength background spacetime) schematically gives for the effective action

eiSeff =

∫

Dh̄µν exp

{

iS[η + h̄] + + + + · · ·

}

(2.2)

where a curly line denotes a radiation graviton and the double solid line represents the compact binary. We take the
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the integration. Proceeding in the same way as before, we can rewrite the high-energy integral as the
expanded integral without a cutoff and a remainder which depends on the cutoff:

R(II) =

Z ⇤

0
dkk�✏ k

k2(k2 +M2)

✓
1� m2

k2
+ . . .

◆

=

Z ⇤

0
dkk�✏ k

k2M2

✓
1� m2

k2
� k2

M2
+ . . .

◆
, (2.24)

where we have expanded the integrand in both the limit of small m and also in the limit of large M ,
but in opposite order as in R(I). However, the two expansions commute so that the integrands of R(I)

and R(II) are identical. Adding up the two pieces, we find that:

R = R(I) +R(II) =

Z 1

0
dkk�✏ k

k2M2

✓
1� m2

k2
� k2

M2
+ . . .

◆
. (2.25)

This is manifestly independent on the cutoff. It is also manifestly zero, because it is given by a series of
scaleless integrals. In the context of effective field theories where the method of region is used, such as
NRGR of SCET, the overlap contribution R is usually referred as the "zero-bin contribution" [49]. One
can obtain the full overlap either by expanding the high-energy integral I(II) around the low-energy
limit, or the integrand of the low-energy integral I(I) around the high-energy limit. Since the overlap
is obtained by expanding single-scale integrals, I(I) or I(II) it is given by scaleless integrals which
vanish in dimensional regularization. We will now apply these techniques in the context of NRGR.

2.2 EFT for a Binary Coalescing System in General Relativity

Figure 2.1: Hierarchy of length scales present in the slow inspiral phase of a coalescing binary system

Let us focus on the slow inspiral phase of the dynamics of a binary coalescing system in General
Relativity, that corresponds to the period in the evolution of the binary in which the system is moving
at non-relativistic velocities v ⌧ 1, and the bound orbit is slowly decaying due to the emission of
gravitational radiation.
This problem is characterizes by multiple length scales:

• the size of the compact objects rs,

• the orbital distance r,

• the wavelength �rad ⇡ r
v of the emitted radiation.

The orbital distance is much greater than the size of the compact object rs ⌧ r, Moreover, from a
multipole expansion of the radiation field coupled to non-relativistic sources it follows that r ⌧ �rad.
Hence, there is a precise hierarchy of widely separated length scales:

rs ⌧ r ⌧ �rad , (2.26)

all controlled by the same expansion parameter v:

rs
r

⇠ v2
r

�
⇠ v . (2.27)

Hμν

hμν
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Figure 2. Four-loop 2-point topologies corresponding to the diagrams in fig.1.

3 Amplitudes and Feynman Integrals

In general, within the EFT approach, since the sources (black lines) are static and do not
propagate, any gravity-amplitude of order G`

N
can be mapped into an (`� 1)-loop 2-point

function with massless internal lines and external momentum p, where p2 ⌘ s 6= 0,

= . (3.1)

Accordingly, the 50 diagrams in fig.1 can be mapped onto the 29 topologies of fig.2, where
the sets T1 = {1, 2, 3, 4, 5, 6}, T2 = {7, 8, 10, 11, 14, 16, 17, 20, 21, 25}, T3 = {9, 12, 13, 22},
T4 = {15, 18, 19, 23, 24}, collect the diagrams that share the same topology. For instance,
the diagrams 1 to 6 of fig.1 correspond to integrals which have the same five denominators
of the graph indicated by T1 in fig.2, but different numerators, due to the different terms
associated to 1,2,3 or 4 � emission or absorption from the massive particle.

The representation of the gravity-amplitudes as 4-loop 2-point integrals yields the pos-
sibility of evaluating the latter by means of by-now standard multi-loop techniques based
on integration-by-parts identities (IBPs) [27, 28].

Accordingly, we collect the 50 amplitudes of fig.1 in two sets, AI = {1 : 28, 31, 32, 35 :

37, 39, 41, 45 : 47} and AII = {29, 30, 33, 34, 38, 40, 42, 43, 44, 48, 49, 50}, and address their
computation separately.
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Key Observation

The e↵ective potential can be represented in the form of connected, classical, 1 particle irreducible
(1PI) scattering amplitudes as

Ve↵ = i lim
d!3

Z

p
e
ip·(x(1)�x(2))

(2)

(1)

, (2.9)

where p is the momentum transfer between the two particles and the box diagram in the above equation
refers to all possible Feynman diagrams with gravitons (�, Ai, and �ij) mediating the gravitational
interaction between the two point particle represented by the two solid black lines.

Our aim in this article is to compute the spin-orbit e↵ective potential up to N3LO . For this, we
further decompose the kinetic and potential terms as Ke↵ = Kpp +Kspin and Ve↵ = Vpp +Vspin where
Kpp and Vpp represent the kinetic and potential terms for center of mass degrees of freedom for the
point particle and Kspin and Vspin represent the kinetic and potential terms for the spin degrees of
freedom. The expression for the kinetic terms are given by

Kpp =
X

a=1,2

m(a)
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2
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+
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8
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✓
1
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128
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◆
, (2.10)
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35
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◆)
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and the decomposition of the potential terms is defined as follows

Vpp = VN +

✓
1

c2

◆
V1PN +

✓
1

c4

◆
V2PN +

✓
1

c6

◆
V3PN +O

✓
1

c8

◆
, (2.12)

Vspin =

✓
1

c3

◆
VSO

LO +

✓
1

c2

◆
VSO

NLO +

✓
1

c4

◆
VSO

N2LO +

✓
1

c6

◆
VSO

N3LO

�
+O

✓
1

c11

◆
, (2.13)

where, VN stands for the Newtonian potential and Vj with j = {1PN, 2PN, 3PN} refers to the corre-
sponding PN correction for the non-spinning part of the potential. The VSO

j
with j = {LO, NLO, N2LO,

N3LO} refers to the corresponding correction to the spin-orbit coupling of the binary system. Then our
aim in this article would be to compute the Vj and VSO

j
using the techniques of multi-loop scattering

amplitude, as further described in the next sections.

3 Computational Algorithm

To obtain the e↵ective potential from the diagrammatic approach as shown in equation (2.9), we begin
by generating all the relevant generic topologies contributing at di↵erent orders of GN . It could be
easily seen from the virial theorem that NnLO has contributions from terms proportional to G

l

N
where

l = 1, 2, ..., n+ 1, and we consider all the topologies at l� 1 loops contributing to the specific order l.
So, for the computation of the N3LO spin-orbit potential, we generate all the topologies till the order
G

4
N

(3-loop) using QGRAF [120]. There is 1 topology at order GN (tree-level), 2 topologies at order
G

2
N

(one-loop), 9 topologies at G3
N

(two-loop), and 32 topologies at order G4
N

(three-loop). Then we
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Computational Algorithm : Towards Automation
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Figure 2: Flowchart of the computational algorithm

The computation of the e↵ective potential starting from the generation of the required Feynman
diagrams, expressing them in multi-loop integrands, performing IBP reduction, and then applying
the Fourier transformations have been automated through an in-house code, elaborating on some of
the ideas implemented in EFTofPNG [123], and using xTensor [121] for tensor algebra manipulations
as well as successful interface to LiteRed [122], Reduze [126], KIRA [127] for the IBP reduction. A
flow chart for the complete computational algorithm for the e↵ective potential as implemented in our
in-house code is shown in Fig. 2.

4 Processing the e↵ective Lagrangian

The e↵ective potential obtained in this way usually contains higher-order time derivatives of the
position (a(a), ȧ(a), ä(a),· · · ) and the spin (Ṡ(a), S̈(a),· · · ). In our computation of the N3LO spin-orbit
potential, we have 6th order time derivative of position and 3rd order of time derivative in spin. We
need to eliminate these higher-order time derivatives from the potential to facilitate the computation of
the Hamiltonian, to obtain gauge-invariant quantities as well as to pave the way for the implementation
within the e↵ective one-body formalism. Additionally, the potential in the non-spinning sector at 3PN
and the N3LO spin-orbit potential contains poles in the dimensional regularization parameter ✏ and
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Diagrams for Spinning Binaries
Order Diagrams Loops Diagrams

0PN 1 0 1

1PN 4
1 1
0 3

2PN 21
2 5
1 10
0 6

3PN 130

3 8
2 75
1 38
0 9

(a) Non-spinning sector

Order Diagrams Loops Diagrams

LO 2 0 2

NLO 13
1 8
0 5

N2LO 100
2 56
1 36
0 8

N3LO 894

3 288
2 495
1 100
0 11

(b) Spin-orbit sector

Table 1: Number of Feynman diagrams contributing di↵erent sectors.

dress these topologies with the KK field and Feynman rules derived from the action of PN1 expansion
of GR given in (2.1) and (2.4), to obtain all the Feynman diagrams that contribute to the given order
of GN and v depending on the specific perturbation order. The number of diagrams that contribute
at particular order in 1/c and of particular loop topology are given in table 1a and 1b2.

Gravity

Diagrams
 !

⌘

Multi-loop

Diagrams

Figure 1

Within the EFT framework, the sources remain static and as a result the generated Feynman
diagrams are mapped to two-point multi-loop Feynman diagrams with mass-less internal lines and
an external momentum (the momentum transferred between two sources) as shown in figure 1. We
translate these Feynman diagrams to their corresponding Feynman amplitudes after performing the
tensor algebra using xTensor [121]. The generic form of the e↵ective potential corresponding to any

1
The Feynman rules obtained from the actions in equation (2.1) and (2.4) after the KK parameterization are provided

in an ancillary file Feynman Rules.m with this article.

2
While considering the spin e↵ects, we count only the representative Feynman diagrams, where the spin can contribute

from any of the world-line graviton interaction vertex present in the diagram. Additionally, the diagrams, which can be

obtained from the change in the label 1 $ 2, are not counted as separate diagrams.
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Within the EFT framework, the sources remain static and as a result the generated Feynman
diagrams are mapped to two-point multi-loop Feynman diagrams with mass-less internal lines and
an external momentum (the momentum transferred between two sources) as shown in figure 1. We
translate these Feynman diagrams to their corresponding Feynman amplitudes after performing the
tensor algebra using xTensor [121]. The generic form of the e↵ective potential corresponding to any

1
The Feynman rules obtained from the actions in equation (2.1) and (2.4) after the KK parameterization are provided

in an ancillary file Feynman Rules.m with this article.

2
While considering the spin e↵ects, we count only the representative Feynman diagrams, where the spin can contribute

from any of the world-line graviton interaction vertex present in the diagram. Additionally, the diagrams, which can be

obtained from the change in the label 1 $ 2, are not counted as separate diagrams.
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3 Computational Algorithm

We employ a Feynman diagrammatic approach following equation (2.16) to compute the e↵ective
potential. First, we generate all the relevant topologies contributing at di↵erent orders of GN . The
virial theorem implies that contributions at NnLO constitute all the terms proportional to G

l
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where

l = 1, 2, ..., n + 1, and consequently, we take into account all the topologies at l � 1 loops for the
contributions at specific order l. So, for the evaluation of the N3LO quadratic-in-spin potential, we
generate all the relevant topologies till the order G4

N
(3-loop) employing QGRAF [71]. There is 1 topology

at order GN (tree-level), 2 topologies at order G2
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(one-loop), 9 topologies at G3
N

(two-loop), and 32
topologies at order G

4
N

(three-loop). The topologies are dressed with the KK field and we use the
Feynman rules, obtained from the e↵ective action of the PN expansion, to acquire all the Feynman
diagrams contributing to the given order ofGN and v, depending on the specific perturbation order. We
provide the relevant Feynman rules after the KK parameterization in an ancillary file Feynman Rules.m

with this article. The number of diagrams corresponding to the particular sector of quadratic-in-spin
potential at a particular order in 1/c and of particular loop topology are shown in table 11 The
diagrams contributing to the non-spinning and spin-orbit sector are provided in [65].
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The e↵ective potential can be represented in the form of connected, classical, 1 particle irreducible
(1PI) scattering amplitudes as

Ve↵ = i lim
d!3

Z

p
e
ip·(x(1)�x(2))

(2)

(1)

, (2.9)

where p is the momentum transfer between the two particles and the box diagram in the above equation
refers to all possible Feynman diagrams with gravitons (�, Ai, and �ij) mediating the gravitational
interaction between the two point particle represented by the two solid black lines.

Our aim in this article is to compute the spin-orbit e↵ective potential up to N3LO . For this, we
further decompose the kinetic and potential terms as Ke↵ = Kpp +Kspin and Ve↵ = Vpp +Vspin where
Kpp and Vpp represent the kinetic and potential terms for center of mass degrees of freedom for the
point particle and Kspin and Vspin represent the kinetic and potential terms for the spin degrees of
freedom. The expression for the kinetic terms are given by
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and the decomposition of the potential terms is defined as follows

Vpp = VN +

✓
1

c2

◆
V1PN +

✓
1

c4

◆
V2PN +

✓
1

c6

◆
V3PN +O

✓
1

c8

◆
, (2.12)

Vspin =

✓
1

c3

◆
VSO

LO +

✓
1

c2

◆
VSO

NLO +

✓
1

c4

◆
VSO

N2LO +

✓
1

c6

◆
VSO

N3LO

�
+O

✓
1

c11

◆
, (2.13)

where, VN stands for the Newtonian potential and Vj with j = {1PN, 2PN, 3PN} refers to the corre-
sponding PN correction for the non-spinning part of the potential. The VSO

j
with j = {LO, NLO, N2LO,

N3LO} refers to the corresponding correction to the spin-orbit coupling of the binary system. Then our
aim in this article would be to compute the Vj and VSO

j
using the techniques of multi-loop scattering

amplitude, as further described in the next sections.

3 Computational Algorithm

To obtain the e↵ective potential from the diagrammatic approach as shown in equation (2.9), we begin
by generating all the relevant generic topologies contributing at di↵erent orders of GN . It could be
easily seen from the virial theorem that NnLO has contributions from terms proportional to G

l

N
where

l = 1, 2, ..., n+ 1, and we consider all the topologies at l� 1 loops contributing to the specific order l.
So, for the computation of the N3LO spin-orbit potential, we generate all the topologies till the order
G

4
N

(3-loop) using QGRAF [120]. There is 1 topology at order GN (tree-level), 2 topologies at order
G

2
N

(one-loop), 9 topologies at G3
N

(two-loop), and 32 topologies at order G4
N

(three-loop). Then we
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Order Diagrams Loops Diagrams

0PN 1 0 1

1PN 4
1 1
0 3

2PN 21
2 5
1 10
0 6

3PN 130

3 8
2 75
1 38
0 9

(a) Non-spinning sector

Order Diagrams Loops Diagrams

LO 2 0 2

NLO 13
1 8
0 5

N2LO 100
2 56
1 36
0 8

N3LO 894

3 288
2 495
1 100
0 11

(b) Spin-orbit sector

Table 1: Number of Feynman diagrams contributing di↵erent sectors.

dress these topologies with the KK field and Feynman rules derived from the action of PN1 expansion
of GR given in (2.1) and (2.4), to obtain all the Feynman diagrams that contribute to the given order
of GN and v depending on the specific perturbation order. The number of diagrams that contribute
at particular order in 1/c and of particular loop topology are given in table 1a and 1b2.
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Within the EFT framework, the sources remain static and as a result the generated Feynman
diagrams are mapped to two-point multi-loop Feynman diagrams with mass-less internal lines and
an external momentum (the momentum transferred between two sources) as shown in figure 1. We
translate these Feynman diagrams to their corresponding Feynman amplitudes after performing the
tensor algebra using xTensor [121]. The generic form of the e↵ective potential corresponding to any

1
The Feynman rules obtained from the actions in equation (2.1) and (2.4) after the KK parameterization are provided

in an ancillary file Feynman Rules.m with this article.

2
While considering the spin e↵ects, we count only the representative Feynman diagrams, where the spin can contribute

from any of the world-line graviton interaction vertex present in the diagram. Additionally, the diagrams, which can be

obtained from the change in the label 1 $ 2, are not counted as separate diagrams.
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L(xa, ẋa, ẍa, . . . Sa, Ṡa, S̈a, . . .) = (13)

1

IBP Decomposition

MKM, Mastrolia, Patil, Steinhoff (2022)

MKM, Mastrolia, Patil, Steinhoff (2022)
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Outlook

Potentials

Radiation Reaction 

Potentials

Power Loss / Flux

Waveforms

Spin effects

Tidal Effects

Gravitational Wave 

Physics

Mass effects for 4 / 5 point amplitudes at LHC

Mixed QCD-Electroweak Corrections

Collider Applications

Electron-Muon Scattering at MuonE
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Conclusion

Applications to GW phenomenology

progress in understanding spin effects / tidal effects for the compact binaries

A number of observables e.g binding energy, scattering angle has been computed to high precision 

muon-electron scattering at NNLO has been obtained

top-pair production from quark annihilation has been computed analytically

Applications to Collider Physics
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