Top-quark loops for precision Higgs physics

Marco Vitti - Padova University & INFN, Padova

Jul 10 2023

1.Precision Higgs Physics at the LHC 2.Example: $gg \rightarrow XY$ @ NLO QCD 3.pT expansion

Work in collaboration with L. Alasfar, L. Bellafronte, G. Degrassi, P.P. Giardino, R. Gröber, X. Zhao

Higgs Physics at the LHC

Does the discovered Higgs boson behave as the SM predicts?

```
What we know after Run2 (139 \, \text{fb}^{-1})
```

- CP-even scalar
- Mass measured with permille precision
- Production and decay channels all compatible with SM predictions
- Experimental uncertainties in the 10-20% range

[ATLAS-2207.00092]

What next? Projections for High-Luminsoity LHC

• Systematic uncertainties will play important role

[Cepeda et al. - 1902.00134]

• Theory uncertainties need to be reduced \Rightarrow Improve accuracy of SM predictions

GOAL : percent precision

Theory uncertainties

- Parametric uncertainties
- PDF determination
- Matching with parton showers
- Missing higher orders (MHO) in perturbative calculations [THIS TALK] Conventionally estimated by varying renormalization and factorization scales

Compute (multi-)loop Feynman diagrams \Rightarrow Reduce MHO uncertainties

$$\sigma = \sum_{ij} \int dx_1 dx_2 \ f_i(x_1, \mu_F) f_j(x_2, \mu_F) \ \hat{\sigma}_{ij}(x_1, x_2, Q, \mu_F, \mu_R) + \mathcal{O}\left(\Lambda_{QCD}/Q\right)$$
$$\hat{\sigma}_{ij}(\mu_F, \mu_R) = \alpha_S^k(\mu_R) \sum_{m=0}^n \hat{\sigma}_{ij}^{(m)}(\mu_F, \mu_R) \alpha_S^m(\mu_R)$$

Where to look for improvements?

• Les Houches precision wishlist [Huss et al. - 2207.02122]

Table 1. Precision wish list: Higgs boson final states. $N^{x}LO_{QCD}^{(VBF*)}$ means a calculation using the structure function approximation. V = W, Z.

Process	Known	Desired
pp ightarrow H	$\begin{array}{l} N^{3}LO_{HTL} \\ NNLO \ _{QCD}^{(\prime)} \\ N^{(1,1)}LO^{(HTL)}_{QCD\otimes EW} \\ NLO_{QCD} \end{array}$	$N^{4}LO_{HTL}$ (incl.) NNLO $_{QCD}^{(b,c)}$
$pp \rightarrow H + j$	$\begin{array}{l} NNLO_{HTL} \\ NLO_{QCD} \\ N^{(1,1)}LO_{QCD\otimes EW} \end{array}$	$NNLO_{HTL} \otimes NLO_{QCD} + NLO_{EW}$
$pp \rightarrow H + 2j$	$\begin{array}{c} NLO_{HTL} \otimes LO_{QCD} \\ N^{3}LO \begin{array}{c} {}^{(VBF^{*})}_{QCD} \ (incl.) \\ NNLO \begin{array}{c} {}^{(VBF^{*})}_{QCI} \\ O(D) \\ NLO \begin{array}{c} {}^{(VBF)}_{EW} \end{array} \end{array}$	$\frac{\text{NNLO}_{\text{HTL}}}{\text{N}^{3}\text{LO}} \frac{(\text{VBF}^{*})}{(\text{CD})} + \frac{(\text{VBF}^{*})}{(\text{CD})}$ $\frac{(\text{VBF}^{*})}{(\text{NNLO}} \frac{(\text{VBF}^{*})}{(\text{CD})}$
$pp \rightarrow H + 3j$	NLO _{HTL} NLO ^(VBF) _{QCD}	$\rm NLO_{QCD} + \rm NLO_{EW}$
$pp \rightarrow VH$	$\frac{\text{NNLO}_{\text{QCD}} + \text{NLO}_{\text{EW}}}{\text{NLO}_{gg \rightarrow HZ}^{(l,b)}}$	
$pp \rightarrow VH + j$	NNLO _{QCD} NLO _{QCD} + NLO _{EW}	$NNLO_{QCD} + NLO_{EW}$
$pp \rightarrow HH$	N ³ LO _{HTL} ⊗ NLO _{QCD}	NLO _{EW}
****	VRF*) / IS	

Table 3. Precision wish list: vector boson final states. V = W, Z and V', V'' = W, Z, γ . Full leptonic decays are understood if not stated otherwise.

Process	Known	Desired	
$pp \rightarrow V$	N ³ LO _{QCD} N ^(1,1) LO _{QCD⊗EW} NLO _{EW}	$\begin{array}{l} N^{3}LO_{QCD}+N^{(1,1)}LO_{QCD\otimes EW}\\ N^{2}LO_{EW} \end{array}$	
pp ightarrow VV'	$NNLO_{QCD} + NLO_{EW}$ + NLO_{QCD} (gg channel)	NLO_{QCD} (gg channel, w/ massive loops) $N^{(1,1)}LO_{QCD\otimes EW}$	
$pp \rightarrow V + j$	$NNLO_{QCD} + NLO_{EW}$	hadronic decays	
$pp \rightarrow V + 2j$	$\label{eq:loss} \begin{array}{l} NLO_{QCD} + NLO_{EW} \left(QCD \right. \\ component \right) \\ NLO_{QCD} + NLO_{EW} \left(EW \right. \\ component \right) \end{array}$	NNLO _{QCD}	

Where to look for improvements?

• Les Houches precision wishlist [Huss et al. - 2207.02122]

Table 1. Precision wish list: Higgs boson final states. $N^{x}LO_{QCD}^{(VBF*)}$ means a calculation using the structure function approximation. V = W, Z.

Process	Known	Desired
pp ightarrow H	$\begin{array}{l} N^{3}LO_{HTL} \\ NNLO \ _{QCD}^{(\prime)} \\ N^{(1,1)}LO^{(HTL)}_{QCD\otimes EW} \\ NLO_{QCD} \end{array}$	N ⁴ LO _{HTL} (incl.) NNLO ^(b,c) _{QCD}
$pp \rightarrow H + j$	$\begin{array}{l} NNLO_{HTL} \\ NLO_{QCD} \\ N^{(1,1)}LO_{QCD\otimes EW} \end{array}$	$NNLO_{HTL} \otimes NLO_{QCD} + NLO_{EW}$
$pp \rightarrow H + 2j$	$\begin{array}{l} \text{NLO}_{\text{HTL}} \otimes \text{LO}_{\text{QCD}} \\ \text{N}^3 \text{LO} \stackrel{(\text{VBF*})}{Q^{\text{CD}}} (\text{incl.}) \\ \text{NNLO} \stackrel{(\text{VBF*})}{Q^{\text{CD}}} \\ \text{NLO} \stackrel{(\text{VBF})}{W^{\text{BF}}} \end{array}$	$\begin{array}{l} \text{NNLO}_{\text{HTL}} \otimes \text{NLO}_{\text{QCD}} + \text{NLO}_{\text{EW}} \\ \text{N}^3 \text{LO} \begin{array}{c} {}^{(\text{VBF}^{ss})}_{\text{QCD}} \\ \text{NNLO} \begin{array}{c} {}^{(\text{VBF})}_{\text{QCD}} \end{array} \end{array}$
$pp \rightarrow H + 3j$	NLO _{HTL} NLO ^(VBF) OCD	$\mathrm{NLO}_{\mathrm{QCD}} + \mathrm{NLO}_{\mathrm{EW}}$
$pp \rightarrow VH$	$\frac{\text{NNLO}_{\text{QCD}} + \text{NLO}_{\text{EW}}}{\text{NLO}_{gg \rightarrow HZ}^{(l,b)}}$	
$pp \rightarrow VH + j$	NNLOgen NLOgen + NLOgy	NNLO _{QUE} + NLO _{LW}
$pp \rightarrow HH$	N ³ LO _{HTL} NLO _{QCD}	NLO _{EW}

Table 3. Precision wish list: vector boson final states. V = W, Z and V', V'' = W, Z, γ . Full leptonic decays are understood if not stated otherwise.

Process	Known	Desired
$pp \rightarrow V$	N ³ LO _{QCD} N ^(1,1) LO _{QCD⊗EW} NLO _{EW}	$\begin{array}{l} N^{3}LO_{QCD}+N^{(1,1)}LO_{QCD\otimes EW}\\ N^{2}LO_{EW} \end{array}$
$pp \rightarrow VV'$	$NNLO_{QCD} + NLO_{FW}$ + NLO_{QCD} (gg channel)	NLO_{QCD} (gg channel, w/ massive loops) $N^{(1,D)}LO_{QCD\otimes EW}$
pp /Vij	NILC _{QCD} NLO _{EW}	hadronic decays
$pp \rightarrow V + 2j$	$\label{eq:states} \begin{array}{l} NLO_{QCD} + NLO_{EW} \left(QCD \right. \\ component \right) \\ NLO_{QCD} + NLO_{EW} \left(EW \right. \\ component \right) \end{array}$	NNLO _{QCD}

Where to look for improvements?

Gluon-initiated 2 → 2 processes Two-loop diagrams with massive internal lines $\begin{array}{l} \mbox{Main problem in the NLO calculation} \\ \mbox{Multi-scale } (m_{_Z}, m_{_H}, m_{_t}, s, t) \mbox{ two-loop integrals} \\ \mbox{ No full analytic results} \end{array}$

Solutions

Numerical Evaluation [Chen, Heinrich, Jones, Kerner, Klappert, Schlenk - 2011.12325]

- Exact results
- Demanding in terms of computing resources and time
- Issues with flexibility

Analytic Approximations

- Reduce the number of scales in the integrals by exploiting hierarchies of masses/kinematic • Restricted to specific phase space regions invariants
 - Proliferation of integrals

- Limit $m_t \rightarrow \infty$ [Altenkamp, Dittmaier, Harlander, Rzehak, Zirke - 1211.50]
- Large mass expansion: add finite top-mass effects [Hasselhuhn, Luthe, Steinhauser - 1611.05881]
- High-energy expansion: $m_Z^2, m_H^2 \ll m_t^2 \ll \hat{s}, \hat{t}$ • [Davies, Mishima, Steinhauser - 2011.12314]
- Small-mass expansion: $m_Z, m_H \rightarrow 0$ [Wang, Xu, Xu, Yang - 2107.08206]
- pT expansion: $m_Z^2, m_H^2, p_T^2 \ll m_t^2, \hat{s}$ [Alasfar, Degrassi, Giardino Groeber, MV – 2103.06225] [Bonciani, Degrassi, Giardino, Groeber - 1806.11564]

pT Expansion: calculation overview

Steps implemented in Mathematica code on a desktop machine

(1) Generation of Feynman diagrams contributing to the amplitude O(100 diags) (FeynArts [Hahn - 0012260])

(2) Lorentz decomposition of the amplitude: **projectors** and **scalar form factors** (FeynCalc [Mertig et al. ('91); Shtabovenko et al. - 1601.01167]): contractions, Dirac traces...

$$\mathcal{A}_{\mu\nu\rho} = \sum_{i=1}^{6} \mathcal{P}^{(i)}_{\mu\nu\rho} F^{(i)} \qquad \qquad F^{(i)} = \sum_{i=1}^{n} C^{(i)} I^{(i)}(\hat{s}, \hat{t}, m_Z^2, m_H^2, m_t^2)$$

(3) Expansion of the form factors in the limit of small pT

- (4) Decomposition of scalar integrals using integration-by-parts (IBP) identities (LiteRed [Lee - 1310.1145])
- (5) Evaluation of master integrals [see talks by Henrik, Manoj, Giulio, Giacomo...]

pT Expansion

• We assume the limit of a forward kinematics

$$(p_1 + p_3)^2 \to 0 \Leftrightarrow \hat{t} \to 0 \Rightarrow p_T \to 0$$

• Then Taylor-expand the form factors in the ratios

$$\frac{n_H^2}{\hat{s}}, \frac{m_Z^2}{\hat{s}}, \frac{p_T^2}{\hat{s}} \ll 1$$
 $\frac{p_T^2}{4m_t^2} \ll 1$

• After the expansion, scalar loop integrals depend on fewer scales

$$I(\hat{s}, \hat{t}, m_Z^2, m_H^2, m_t^2) \to I'(\hat{s}, \hat{t}, m_t^2)$$

- The new scalar integrals are decomposed in MIs using IBP relations
- The MIs depend on the ratio $\hat{s}/m_t^2 \Rightarrow$ only one scale

$$I(\hat{s}, \hat{t}, m_Z^2, m_H^2, m_t^2) \to I'(\hat{s}, \hat{t}, m_t^2) \to MI(\hat{s}/m_t^2)$$

pT Expansion

• We assume the limit of a forward kinematics

$$(p_1 + p_3)^2 \to 0 \Leftrightarrow \hat{t} \to 0 \Rightarrow p_T \to 0$$

• Then Taylor-expand the form factors in the ratios

$$\frac{m_H^2}{\hat{s}}, \frac{m_Z^2}{\hat{s}}, \frac{p_T^2}{\hat{s}} \ll 1$$

$$\frac{p_T^2}{m_t^2} \ll 1$$

• After the expansion, scalar loop integrals depend on fewer scales

$$I(\hat{s}, \hat{t}, m_Z^2, m_H^2, m_t^2) \to I'(\hat{s}, \hat{t}, m_t^2)$$

- The new scalar integrals are decomposed in MIs using IBP relations
- The MIs depend on the ratio $\hat{s}/m_t^2 \Rightarrow$ only one scale

$$I(\hat{s}, \hat{t}, m_Z^2, m_H^2, m_t^2) \to I'(\hat{s}, \hat{t}, m_t^2) \to \mathrm{MI}(\hat{s}/m_t^2)$$

pT Expansion

• We assume the limit of a forward kinematics

$$(p_1 + p_3)^2 \to 0 \Leftrightarrow \hat{t} \to 0 \Rightarrow p_T \to 0$$

• Then Taylor-expand the form factors in the ratios

$$\frac{m_H^2}{\hat{s}}, \frac{m_Z^2}{\hat{s}}, \frac{p_T^2}{\hat{s}} \ll 1$$

$$g(p_1)$$
 000000000
 $g(p_2)$ 000000000
 $H(p_4)$

$$\frac{p_T^2}{4m_t^2} \ll 1$$

• After the expansion, scalar loop integrals depend on fewer scales

$$I(\hat{s}, \hat{t}, m_Z^2, m_H^2, m_t^2) \to I'(\hat{s}, \hat{t}, m_t^2)$$

- The new scalar integrals are decomposed in MIs using IBP relations
- The MIs depend on the ratio $\hat{s}/m_t^2 \Rightarrow$ only one scale

$$I(\hat{s}, \hat{t}, m_Z^2, m_H^2, m_t^2) \to I'(\hat{s}, \hat{t}, m_t^2) \to \mathrm{MI}(\hat{s}/m_t^2)$$

IBP Reduction

Major bottleneck in the computation

For first **three orders** in pT expansion (good for % accuracy)

- Search for the IBP reduction rules \rightarrow O(week)
- Very large intermediate expressions \rightarrow O(10 GB)
- Few MIs but huge coefficients \rightarrow O(GB)
- Massaging and series expanding in ϵ O(week) (D= 4-2 ϵ)

Still, size of the final results \rightarrow O(100 kB)

Master Integrals

52 MIs already known in the literature SAME MIs FOR $gg \,{\to}\, HH$, $gg \,{\to}\, ZH\,,\, gg \,{\to}\, ZZ$

• 50 MIs expressed in terms of Generalized Polylogarithms (GPLs)

[Bonciani, Mastrolia, Remiddi ('03) - Aglietti et al. ('06) - Anastasiou et al. ('06) - Caron-Huot, Henn ('14) - Becchetti, Bonciani ('17) - Bonciani, Degrassi, Vicini ('10)]

• Two elliptic integrals [von Manteuffel, Tancredi ('17)]

Semi-analytical evaluation implemented in FORTRAN routine

[Bonciani, Degrassi, Giardino, Gröber ('18)]

Comparing Validity Ranges

Comparing Validity Ranges

Comparing Validity Ranges

The two expansions can be combined!!

Evaluation time for a phase-space point below 0.1 s \Rightarrow suitable for Monte Carlo

$gg \rightarrow ZH$ @NLO QCD - Top mass schemes

- Take deviations of MS scheme wrt OS result as top • mass scheme uncertainty
- Analytic results \rightarrow change of top mass scheme is straightforward

$$F_i^{NLO,\overline{\rm MS}} = F_i^{NLO,\rm OS} - \frac{1}{4} \frac{\partial F_i^{LO}}{\partial m_t^2} \Delta_{m_t^2} \qquad \Delta_{m_t^2} = 2m_t^2 C_F \left[-4 + 3\log\left(\frac{m_t^2}{\mu^2}\right) \right]$$

Same method already used for HH production [Baglio et al. - 1811.05692, 2003.03227]

	Bin Width [GeV]	LO	NLO
	1	$64.01^{+15.6\%}_{-35.9\%}$	$118.6^{+17.2\%}_{-27.0\%}$
Avoid overestimate of	5	$64.01^{+15.3\%}_{-35.6\%}$	$118.6^{+14.7\%}_{-24.9\%}$
mt uncertainty	25	$64.01^{+14.0\%}_{-33.1\%}$	$118.6^{+10.9\%}_{-20.8\%}$
	100	$64.01^{+2.0\%}_{-25.3\%}$	$118.6^{+0.6\%}_{-13.7\%}$
		$64.01^{+0\%}_{-23.1\%}$	$118.6^{+0\%}_{-12.9\%}$

[Degrassi, Gröber, MV, Zhao - 2205.02769]

p_T expansion for $gg \rightarrow ZZ$

- More involved Lorentz structure \rightarrow 16 form factors
- More involved intermediate expressions
- ~ 750.000 scalar integrals per form factor
- IBP leads to same 52 MIs as HH and ZH
- Permille accuracy at LO with three orders

Helicity amplitudes at NLO

Conclusions & outlook

- Higgs precision measurements call for improved theoretical predictions
- $2 \rightarrow 2$ processes with **massive** loops are hard
- Analytic approximations are useful for flexibility and efficiency
- Found a way to combine pT and high-energy expansions see also [Davies, Mishima, Schönwald, Steinhauser 2302.01356]

- Is NLO QCD sufficient for $gg \rightarrow ZH$? (is **3-loop** feasible?)
- $gg \rightarrow WW$? How to deal with both heavy and light quarks running in the loops
- EW corrections to $2 \rightarrow 2$ processes? Possibly different master integrals

We're gonna need New Ideas and Lots of RAM

Backup

What next? Projections for High-Luminsoity LHC

• Systematic uncertainties will begin to dominate

- Scenario 1: systematics as in Run2 (conservative)
- Scenario 2: exp sys corrected; theo sys halved

VH Production

$pp \rightarrow VH$ is the most sensitive process to $H \rightarrow b\overline{b}$ [ATLAS-2007.02873, CMS-1808.08242]

- Two partonic channels in *pp->ZH*: $q\overline{q} \rightarrow ZH$ - dominant contribution
- $gg \rightarrow ZH$ about 6% of $\sigma(pp \rightarrow ZH)$

 $gg \rightarrow ZH$: LO accuracy \rightarrow Large scale uncertainties

Production mode	$\Delta_y^{\langle VH \rangle}$	
WH	±0.7%	(No gg-channel for WF
$q\bar{q} \rightarrow ZH$	±0.6%	
$gg \rightarrow ZH$	±25%	

[CERN Yellow Report 4]

If we really want to improve the theory prediction we need to go beyond LO in $gg \rightarrow ZH$

ZZ Production

- $pp \rightarrow ZZ$ provides access to **single-Higgs** production via gluon fusion •
- $q\bar{q} \rightarrow ZZ$ gives dominant contribution to hadronic cross section •
- $qq \rightarrow ZZ$ is about 10% of $\sigma(pp \rightarrow ZZ)$ dơ/dm₄₁ [fb/GeV ATLAS Simulation $a\bar{a} \rightarrow 4l$ √s=13 TeV qq→ 4l (inclusive) $aa \rightarrow H \rightarrow 4l$ g_{ULL} g Jeee 10-1 $VH/t\bar{t}H/VBF H \rightarrow 4$ H 10^{-2} g $\overline{}$ $\overline{}$ \overline{} $\overline{}$ \overline{} \overline{} \overline{} $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ \overline{} \overline $g \longrightarrow 0$ 10^{-3} (Higgs-mediated) (continuum) Irreducible background 200 300 400 80 100 1000 m₄ [GeV]
- Knowledge of the background is important for **Higgs width** determination . via off-shell measurements

[ATLAS - 1902.05892]

$gg \to ZH$

Why $gg \rightarrow ZH$? VH Production at the LHC

 $pp \rightarrow VH$ is the most sensitive process to $H \rightarrow b\overline{b}$ [ATLAS-2007.02873, CMS-1808.08242] (work in progress on $H \rightarrow c\overline{c}$ [ATLAS-2201.11428, CMS-2205.05550])

- O(pb) cross sections
- $W \rightarrow \ell \nu$ $Z \rightarrow \ell \ell$ and $Z \rightarrow \nu \nu$
- VH theory uncertainties [Cepeda et al. 1902.00134]

	\sqrt{s} [TeV]	$\sigma_{\rm NNLO \; QCD\otimes NLO \; EW} \; [pb]$	$\Delta_{\rm scale}$ [%]	$\Delta_{\mathrm{PDF}\ominuslpha_{\mathrm{s}}}$ [%]
$m \rightarrow W^+ H$	13	0.831	$+0.74 \\ -0.73 \\ +0.64$	1.79
$pp \rightarrow W + \Pi$	$\frac{14}{27}$	$0.913 \\ 1.995$	$^{+0.04}_{-0.76}$ $^{+0.43}_{-1.04}$	$\begin{array}{c} 1.78 \\ 1.84 \end{array}$
-		5 1 1		A [07]
-	\sqrt{s} [lev]	$\sigma_{\rm NNLO~QCD\otimes NLO~EW}$ [pb]	Δ_{scale} [%]	$\Delta_{\text{PDF}\oplus\alpha_s}$ [%]
. 77.17	13	0.880	$^{+3.50}_{-2.68}$	1.65
$nn \rightarrow Z H$			+3.61	1.00
pp / Z_{11}	14	0.981	-2.94	1.90

Why $gg \rightarrow ZH$? VH Production at the LHC

 $pp \rightarrow VH$ is the most sensitive process to $H \rightarrow b\overline{b}$ [ATLAS-2007.02873, CMS-1808.08242] (work in progress on $H \rightarrow c\overline{c}$ [ATLAS-2201.11428, CMS-2205.05550])

- O(pb) cross sections
- $W \rightarrow \ell \nu$ $Z \rightarrow \ell \ell$ and $Z \rightarrow \nu \nu$
- VH theory uncertainties [Cepeda et al. 1902.00134]

 $pp \to W^+ H$

 $pp \to ZH$

Why $gg \rightarrow ZH$? VH Production at the LHC

 $pp \rightarrow VH$ is the most sensitive process to $H \rightarrow b\overline{b}$ [ATLAS-2007.02873, CMS-1808.08242] (work in progress on $H \rightarrow c\overline{c}$ [ATLAS-2201.11428, CMS-2205.05550])

- O(pb) cross sections
- $W \rightarrow \ell \nu$ $Z \rightarrow \ell \ell$ and $Z \rightarrow \nu \nu$
- VH theory uncertainties [Cepeda et al. 1902.00134]

 $pp \to W^+ H$

 $pp \to ZH$

Theoretical predictions for $pp \rightarrow ZH$

LO: quark-initiated tree-level contribution

QCD Effects: mainly due to Drell-Yan (DY) production followed by $Z^* \rightarrow ZH$ decay

• Drell-Yan:

Known through NNLO (O(α_s^2))

(+30% wrt LO) [Han, Willenbrock ('91) ; Hamberg, van Neerven, Matsuura ('92) ; Brein, Djouadi, Harlander -0307206] • Non Drell-Yan:

Quark-initiated O(1%) wrt LO [Brein, Harlander, Wiesemann, Zirke - 1111.0761]

Gluon-initiated

• EW corrections: known through NLO (-(5-10%) wrt LO) [Dittmaier et al. - 1211.5015]

Lorentz Structure and Projectors

• General expression for the $gg \rightarrow ZH$ amplitude

$$\mathcal{M} = i\sqrt{2}m_Z G_F \frac{\alpha_s(\mu_R)}{\pi} \delta^{ab} \mathcal{A}_{\mu\nu\rho}(p_1, p_2, p_3) \epsilon^{\mu}(p_1) \epsilon^{\nu}(p_2) \epsilon^{*\rho}(p_3)$$

• Lorentz tensor $A_{\mu\nu\rho}$ decomposed using six projector multiplying scalar form factors

$$\mathcal{A}_{\mu\nu\rho} = \sum_{i=1}^{6} \mathcal{P}_{\mu\nu\rho}^{(i)} F^{(i)}$$

Form factors are linear combinations of scalar loop integrals

$$F^{(i)} = \sum_{i=1}^{n} C^{(i)} I^{(i)}(\hat{s}, \hat{t}, m_Z^2, m_H^2, m_t^2)$$

$gg \rightarrow ZH @ LO$

- Third generation gives dominant contribution [Kniehl ('90) Dicus, Kao ('88)]
- $\mathcal{O}(\alpha_s^2)$ correction to $pp \rightarrow ZH$ cross section
- NNLO suppression wrt to $q\bar{q} \rightarrow ZH$ but gluon luminosity higher at LHC
- Contributes to about 6% of $\sigma(pp \rightarrow ZH)$ for $\sqrt{s} = 14$ TeV
- Only LO included in MC \rightarrow scale variation leads to **25%** relative uncertainties
- NLO corrections expected to be large in *gg* processes (e.g. *H*, *HH*)

[Cepeda et al. - 1902.00134]

 $\Delta_{\text{PDF}\oplus\alpha_{n}}$ [%]

4.37

7.47

5.85

 Δ_{scale} [%]

-18.8+24.3

-19.6 + 25.3

-18.5

 \sqrt{s} [TeV]

13

14

27

 $\sigma_{\rm NNLO \ QCD\otimes NLO \ EW}$ [pb]

0.123

0.145

0.526

$gg \rightarrow ZH @$ NLO QCD: Virtual Corrections

• Double-triangle \rightarrow standard Passarino-Veltman technique

• 1PI triangle \rightarrow known [Spira et al. - 9504378 ; Aglietti et al. - 0611266 ; Altenkamp et al. - 1211.5015]

• Two-loop boxes \rightarrow very hard

 $\begin{array}{l} \mbox{Main problem in the NLO calculation} \\ \mbox{Multi-scale } (m_{\rm Z}, m_{\rm H}, m_{\rm t}, s, t) \mbox{ two-loop integrals} \\ \mbox{ No full analytic results} \end{array}$

LO Validation

- Three orders sufficient for very good accuracy
- Reliable results for $M_{ZH} \lesssim 700 \text{ GeV}$
- For $M_{ZH} \gtrsim 700 \text{ GeV}$ the assumption

$$p_T^2 \ll 4m_t^2$$

can be violated \Rightarrow the p_T expansion **diverges** (but wait a few slides...)

$gg \rightarrow ZH$ @ NLO in QCD: all ingredients

Virtual corrections ($2 \rightarrow 2$, two loops): merging pt+HE expansions

Real emission ($2 \rightarrow 3$, one loop): automated evaluation (RECOLA2, MadGraph5)

We included all diagrams that:

• give $O(\alpha_s^3)$ contribution to the cross section *pp->ZH*

[Alwall et al. - 1405.0301]

[Denner, Lang, Uccirati - 1711.07388]

feature a closed fermion loop

 $gg \rightarrow ZHg$

qg → ZHq

Full NLO QCD Results

Inclusive cross section

Top-mass scheme	LO [fb]	$\sigma_{LO}/\sigma_{LO}^{OS}$	NLO [fb]	$\sigma_{NLO}/\sigma_{NLO}^{OS}$	$K\!=\!\sigma_{NLO}/\sigma_{LO}$
On-Shell	$64.01^{+27.2\%}_{-20.3\%}$	_	$118.6^{+16.7\%}_{-14.1\%}$		1.85
$\overline{\mathrm{MS}}, \mu_t = M_{ZH}/4$	$59.40^{+27.1\%}_{-20.2\%}$	0.928	$113.3^{+17.4\%}_{-14.5\%}$	0.955	1.91
$\overline{\mathrm{MS}}, \mu_t = m_t^{\overline{\mathrm{MS}}}(m_t^{\overline{\mathrm{MS}}})$	$57.95^{+26.9\%}_{-20.1\%}$	0.905	$111.7^{+17.7\%}_{-14.6\%}$	0.942	1.93
$\overline{\mathrm{MS}}, \mu_t = M_{ZH}/2$	$54.22^{+26.8\%}_{-20.0\%}$	0.847	$107.9^{+18.4\%}_{-15.0\%}$	0.910	1.99
$\overline{\mathrm{MS}}, \mu_t = M_{ZH}$	$49.23^{+26.6\%}_{-19.9\%}$	0.769	$103.3^{+19.6\%}_{-15.6\%}$	0.871	2.10

- Top mass renormalized both in OS and MS scheme
- NLO corrections are the same size as LO (K~2)
- Scale uncertainties reduced by 2/3 wrt LO
- Agreement with independent calculations [Wang et al. - 2107.08206] [Chen et al. - 2204.05225]

M_{ZH} distribution

- K-factor is not flat over M_{ZH} range
- Large NLO enhancement in the high-energy tail (M_{ZH} >1 TeV)

[Degrassi, Gröber, MV, Zhao - 2205.02769]

Full NLO QCD Results

Inclusive cross section

Top-mass scheme	LO [fb]	$\sigma_{LO}/\sigma_{LO}^{OS}$	NLO [fb]	$\sigma_{NLO}/\sigma_{NLO}^{OS}$	$K\!=\!\sigma_{NLO}/\sigma_{LO}$
On-Shell	$64.01^{+27.2\%}_{-20.3\%}$	_	$118.6^{+16.7\%}_{-14.1\%}$	_	1.85
$\overline{\mathrm{MS}}, \mu_t = M_{ZH}/4$	$59.40^{+27.1\%}_{-20.2\%}$	0.928	$113.3^{+17.4\%}_{-14.5\%}$	0.955	1.91
$\overline{\mathrm{MS}}, \mu_t = m_t^{\overline{\mathrm{MS}}}(m_t^{\overline{\mathrm{MS}}})$	$57.95^{+26.9\%}_{-20.1\%}$	0.905	$111.7^{+17.7\%}_{-14.6\%}$	0.942	1.93
$\overline{\mathrm{MS}}, \mu_t = M_{ZH}/2$	$54.22^{+26.8\%}_{-20.0\%}$	0.847	$107.9^{+18.4\%}_{-15.0\%}$	0.910	1.99
$\overline{\mathrm{MS}}, \mu_t = M_{ZH}$	$49.23^{+26.6\%}_{-19.9\%}$	0.769	$103.3^{+19.6\%}_{-15.6\%}$	0.871	2.10

- Top mass renormalized both in OS and MS scheme
- NLO corrections are the same size as LO (K~2)
- Scale uncertainties reduced by 2/3 wrt LO
- Agreement with independent calculations [Wang et al. - 2107.08206] [Chen et al. - 2204.05225]

Z-radiated diagrams

[Degrassi, Gröber, MV, Zhao - 2205.02769]

$gg \rightarrow ZH$ @ NLO: comparing with Drell-Yan contribution

- $gg \rightarrow ZH$ is almost 50% of DY near $M_{ZH} \sim 2 m_t$
- Because of Z -radiated diagrams the gg contribution falls off as rapidly as the DY one (ratio constant at ~ 2%)
- DY obtained using vh@nnlo [Harlander et al - 1802.04817]

[Degrassi, Gröber, MV, Zhao - 2205.02769]

The impact of $gg \rightarrow ZH$

Table 10: Cross-section for the process $pp \rightarrow ZH$. The predictions for the $gg \rightarrow ZH$ channel are computed at LO, rescaled by the NLO K-factor in the $m_t \rightarrow \infty$ limit, and supplemented by the NLL_{soft} resummation. The photon contribution is omitted. Results are given for a Higgs boson mass $m_H = 125.09$ GeV.

\sqrt{s} [TeV]	$\sigma_{\rm NNLO~QCD\otimes NLO~EW}~[\rm pb]$	$\Delta_{\rm scale}$ [%]	$\Delta_{\mathrm{PDF}\oplus\alpha_{\mathrm{s}}}$ [%]
13	0.880	$^{+3.50}_{-2.68}$	1.65
14	0.981	$^{+3.61}_{-2.94}$	1.90
27	2.463	$^{+5.42}_{-4.00}$	2.24

Table 11: Cross-section for the process $pp \to ZH$. The photon and $gg \to ZH$ contributions are omitted. Results are given for a Higgs boson mass $m_H = 125.09$ GeV.

\sqrt{s} [TeV]	$\sigma_{ m NNLO~QCD\otimes NLO~EW}$ [pb]	$\Delta_{\rm scale}$ [%]	$\Delta_{\mathrm{PDF}\opluslpha_{\mathrm{s}}}$ [%]
13 14	0.758 0.836	$^{+0.49}_{-0.61}$ $^{+0.51}_{-0.62}$ $^{+0.56}_{+0.56}$	1.78 1.82
27	1.937	-0.74	2.37

Table 12: Cross-section for the process $gg \to ZH$. Predictions are computed at LO, rescaled by the NLO K-factor in the $m_t \to \infty$ limit, and supplemented by the NLL_{soft} resummation. Results are given for a Higgs boson mass $m_H = 125.09$ GeV.

\sqrt{s} [TeV]	$\sigma_{ m NNLO~QCD\otimes NLO~EW}$ [pb]	$\Delta_{\rm scale}$ [%]	$\Delta_{\mathrm{PDF}\oplus \alpha_{\mathrm{s}}}$ [%]
13	0.123	$^{+24.9}_{-18.8}$	4.37
14	0.145	$^{+24.3}_{-19.6}$	7.47
27	0.526	$^{+25.3}_{-18.5}$	5.85

$\gamma^{\scriptscriptstyle 5}$ in Dimensional Regularization

• When $D \neq 4$ cannot have both $\{\gamma^{\mu}, \gamma^{5}\} = 0$ and cyclicity of Dirac trace

Larin scheme

- γ^5 always on the right inside traces
- Substitute $\gamma^{\mu}\gamma^{5} \rightarrow -i/6 \varepsilon^{\mu\alpha\beta\rho}\gamma^{\alpha}\gamma^{\beta}\gamma^{\rho}$
- Contractions of $\varepsilon^{\mu\alpha\beta\rho}$ are taken in *D* dimensions
- Finite renormalization needed to restore Ward Identities for axial-vector current

For $gg \rightarrow ZH$

$$\mathcal{A}_i^{\mathrm{NLO}} = \mathcal{A}_i^{\mathrm{NLO, ndr}} - \frac{\alpha_s}{\pi} C_F \mathcal{A}_i^{\mathrm{LO}}$$

Consistency check by comparing the LME results in **DimReg** and **Pauli-Villars**

The effect of Z-radiated diagrams

In the high-energy tail (M_{ZH} > 1 TeV)

- $qg \rightarrow ZHq$ channel
 - Z-radiated diagrams dominate
 - Non-negligible contribution (up to 2% wrt DY)
- $q\overline{q} \rightarrow ZHg$ channel
 - Z-radiated diagrams dominate
 - Negligible (PDF suppression)

[Degrassi, Gröber, MV, Zhao - 2205.02769]

Comparing validity ranges

Merging pT and HE expansions at NLO

Improve the convergence of a series expansion by matching the coefficients of the **Pade approximant** [m/n] [e.g. Fleisher, Tarasov ('94)]

$$f(x) \stackrel{x \to 0}{\simeq} c_0 + c_1 x + \dots + c_q x^q \qquad f(x) \simeq [m/n](x) = \frac{a_0 + a_1 x + \dots + a_m x^m}{1 + b_1 x + \dots + b_n x^n} \quad (q = m + n)$$

[Bellafronte, Degrassi, Giardino, Gröber, MV -2103.06225]

- For each FF we merged the following results
 - pT exp improved by [1/1] Padé
 - HE exp improved by [6/6] Padé
- Padé results are stable and comparable in the region $|\hat{t}| \sim 4 m_t^2 \rightarrow \text{can switch without loss of}$ accuracy (% level or below)
- Evaluation time for a phase-space point below 0.1 s \Rightarrow suitable for Monte Carlo

Integration-by-Parts Reduction

Express a scalar integral as a function of denominator exponents

$$I(n_1,\ldots,n_N) = \int d^D k_1 \cdots d^D k_L \frac{1}{D_1^{n_1} \cdots D_N^{n_N}} \qquad (n_i \in \mathbb{Z})$$

Recurrence relations connecting scalar integrals with different n_i from differentiation

$$\int d^D k_1 \cdots d^D k_L \frac{\partial}{\partial k_i^{\mu}} \frac{q_j^{\mu}}{D_1^{n_1} \cdots D_N^{n_N}} = 0$$

The process can be **iterated** \Rightarrow each scalar integral in the amplitude can be decomposed along a basis of master integrals

$$I(n_1, \dots, n_N) = \sum_j C^{(j)} M I^{(j)}(\mathbf{z_1}, \dots, \mathbf{z_N}) \qquad z_i \in \{0, 1, 2\}$$

- For $gg \rightarrow ZH$ @ NLO: from ~200.000 scalar integrals to 52 MIs
- First simplification with pT expansion \Rightarrow simpler IBP \Rightarrow simpler MIs

pT expansion: example

1) Consider a **one-loop** box integral

$$\int d^D q \ \frac{(q^2)^{n_1} (q \cdot p_1)^{n_2} (q \cdot p_2)^{n_3} (q \cdot p_3)^{n_4}}{(q^2 - m_t^2)[(q + p_2)^2 - m_t^2][(q - p_1 - p_3)^2 - m_t^2][(q - p_1)^2 - m_t^2]}$$

2) Focus on the p3-dependent part; explicit the transverse component wrt beam axis

$$\frac{(q \cdot p_3)^{n_4}}{[(q - p_1 - p_3)^2 - m_t^2]} \qquad p_3^{\mu} = \frac{u'}{s'} p_1^{\mu} + \frac{t'}{s'} p_2^{\mu} + r_{\perp}^{\mu} \\ = -p_1^{\mu} - \frac{t'}{s'} (p_1 - p_2)^{\mu} + \frac{\Delta_m}{s'} p_1^{\mu} + r_{\perp}^{\mu}$$
forward limit $p_1^{\mu} \sim p_1^{\mu} \sim p_1^{\mu}$

3) In the forward limit $p_3^\mu \simeq -p_1^\mu$

$$\int d^D q \ \frac{(q^2)^{n_1} (q \cdot p_1)^{n'_2} (q \cdot p_2)^{n'_3} (q \cdot r_\perp)^{n'_4}}{(q^2 - m_t^2)^{l_1} [(q + p_2)^2 - m_t^2] [(q - p_1)^2 - m_t^2]}$$

4) LiteRed searches for MIs with $n'_4 = 0 \rightarrow$ the MIs do not depend on r_{\perp}

Top-quark loops for precision Higgs physics

Interference @ NLO: massless vs massive

Two-loop boxes are a problem (again)

- Light-quark (~massless) known fully analytically [Caola et al. - 1509.06734]
- Heavy quarks
- ➤ Exact numerical results available [Agarwal, Jones, von Manteuffel - 2011.15113; Brønnum-Hansen, Wang - 2101.12095]
- Analytic approximations:

-LME [Melnikov, Dowling - 1503.01274 ; Gröber, Maier, Rauh - 1605.04610]

-High-energy exp [Davies et al. - 2002.05558]

$$m_Z^2 \ll m_t^2 \ll \hat{s}, \hat{t}$$

$$2\,Re\left({}^{*}_{g} = {}^{*}_{g} * {}^{*}_{g} * {}^{*}_{g} = {}^{*}_{g} = {}^{*}_{g} * {}^{*}_{g} = {}^{*}_{g$$

[Campbell et al. - 1605.01380]

Helicity amplitudes at NLO

