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Motivations

 Three reasons that triggered this meeting

 A PNRR initiative

 An INFN initiative

 An interdisciplinary activity



Leonardo_at_Cineca [video link]

Centro Nazionale HPC, BD e QC

PNRR e SuperCalcolo Exascale : 1,000,000,000,000,000,000 Flops

Tecnopolo Cineca a Bologna

Advancement of HPC developments

https://youtu.be/odxilzS6sYg
https://youtu.be/odxilzS6sYg


CN1.HPC.Spoke2 / Fundamental Research & Space Economy

Spoke2 & Work Packages

 WP1. Theoretical Physics

 WP2. Experimental Particle Physics 

 WP3. Experimental Astro-Particle Physics 

 WP4. Boosting the Computational Performances

 WP5. Architectural Support



CN1.HPC.Spoke2 / Fundamental Research & Space Economy

Spoke2 & Work Packages

 WP1. Theoretical Physics

Section A – Scientific quality 11 

The development of algorithms and computational solutions designed will be shared with all the scientific 
domains in the Centre; indeed, it is expected that their application to further domains will add more value to 
the scientific advancement per se.  In particular, we aim to foster a profitable exchange of technology and 
experience with the productive sector, by showing that solutions from research can be reused in the most data 
and computing intensive activities from the CN private partners. 
 

RESEARCH TOPICS AND LINES 
 
The Spoke activities will align on 6 different topics, which are identified as Work Packages in the following 
of this document. They are: 

1) Theoretical Physics:  
a. Development of algorithms, codes and computational strategies for the simulation of physical 

theories and models, towards pre-Exascale and Exascale architectures. 
b. Theoretical research projects in domains already using HPC solutions, such as: 

i. lattice field theory (flavour physics, QCD phase diagrams, hadronic physics, 
interactions beyond the Standard Model, machine learning in quantum field theories, 
electromagnetic effects in hadronic processes);  

ii. collider physics phenomenology;  
iii. gravitational waves, cosmology and astroparticle physics (neutron-star physics, 

primordial universe, dark matter and energy, neutrino physics); 
iv. nuclear physics; 
v. physics of complex systems (fluid dynamics, disordered systems, quantitative 

biology); 
vi. condensed matter in low dimensional systems;  

vii. quantum systems (entanglement, quantum simulations, quantum information). 
2) Experimental High Energy Physics: selection, data reduction, simulation and reconstruction 

algorithms (either via explicit programming or large-scale Machine Learning solutions) for HEP 
experiments (LHC, Future Colliders, KEK, IHEP, neutrino experiments...), with applications ranging 
from innovative triggers to distributed analysis techniques.  

3) Experimental Astro-Particle Physics: data reduction, reconstruction and time cross-correlation 
algorithms, data selection and simulations of astroparticle and gravitational waves experiments, tools 
for cross-correlations and pattern recognition in multi-messenger physics, including novel 
implementations using techniques like Machine Learning. 

4) Boosting the computational performance of Theoretical and Experimental Physics algorithms: porting 
of applications to GPUs and heterogeneous architectures (e.g., scalability of scientific codes and 
applications on GPU/CPU many-cores clusters, local and remote offloading, mission-critical 
algorithms on FPGAs, ...). The solutions and tools implemented during the project will be easily 
extendable to other scientific domains of the Centre and to the industrial partners in the Spoke; 
moreover, the personnel trained within the Centre will help to spread and boost the application of HPC 
methodologies to Italian academic and industrial fields, for a comprehensive advancement of the 
Italian system. 

5) Architectural Support for Theoretical and Experimental Physics Data Management on the Distributed 
CN infrastructure: support for the adaptation of existing applications on the data-lake distributed 
infrastructure, and via innovative computational models (for example sharing of gauge configurations 
in lattice field theories, long-term data preservation, streaming access to data, tiered storage solutions, 
…). The solutions implemented will be tailored to the needs of the scientific fields, easily extendible 
not only to the nearby scientific domains in the Centre, but also to all academic and industrial realities 
where needs to access distributed computing and large amounts of data exist. In particular, the 
industrial partners in the Spoke have expressed interest in using the same technologies for their specific 
use cases. 
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Usecase HPC.spoke2.WP1 /ADVANCED CALCULUS FOR PRECISION PHYSICS

Nodes: UNIBO - UNICAL - UNIMIB - UNIPD 
 
N. Bartolo, R. Gröber, M. Liguori, F, Maltoni, P. Mastrolia, M. K. Mandal, C. Oleari, A. Papa, T. Peraro, A. Raccanelli, E. Re, E. Salvioni, 
M. Zanetti 

● Effective Field Theories for Quantum and Classical Physics 

● Scattering Amplitudes 

● Physics of the Universe and Gravitational Waves Physics 

● Computational Algebraic Geometry 

The software developed in this research program will have a major impact on Collider Phenomenology, as well as on Cosmology and 
Mathematics.

● Standard Model Physics 

● Beyond Standard Model Physics 

● Parton Distributions Functions 

● Higgs boson and Heavy Particles Physics 

 1. Models & Diagrams  2. Amplitudes & Integrals  3. Cross Sections & Events  4. Physics at Colliders  5. Beyond Colliders

  Five research directions:



Iniziativa Specifica INFN /AMPLITUDES

Sezioni Bologna LNF Napoli Padova Roma Torino

Responsabili T. Peraro V. Del Duca (P.I.) F. Tramontano P. Mastrolia R. Bonciani S. Badger

Partecipanti Staff Postdoc PhD

Nazionali 10 4 3

Locali P. Mastrolia, R. Groeber, P. Paradisi, M. Passera, M. K. Mandal - G. Brunello, G. E. Crisanti

Temi di Ricerca Analytic Structure  
of On-Shell Amplitudes

Computational Methods  
for Multiscale Amplitudes

Applications to  
High-Energy Particle Physics

Applications to  
Gravitational Waves Physics

Progetti 
e 

Attività

• High Energy Behaviour

• Multi-collinear Factorisation

• Mathematical Structures

• Integral Relations 
• Differential Equations 
• Intersection Numbers

• Subtraction Methods

• Two-loop five-particle Processes 

• Top-quark Precision Physics 
• Higgs-boson Precision Physics 
• EFT and On-Shell Methods

• Binary Systems and Radiation 
• Post-Newtonian Corrections 
• Post-Minkowsian Corrections

[in grassetto sono indicate le attività a cui collabora la sez. Padova]
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Also, the rotational symmetry makes the magnitude B φ-independent, while the translation

symmetry in z direction makes it z-independent. Altogether,

B(s,φ, z) = B(s only) φ̂. (3)

Given this symmetry-restricted from of the magnetic field, we may find its radius de-

pendence from the Ampere’s law. Let the Ampere’s loop L be a circle in the plane ⊥ to the

wire and centered on the wire,

wire

Ampere’s loop

(4)

For this loop, d"# = s dφ φ̂, hence

∮

B · d"# =

∮

B(s)× s× dφ = 2πs× B(s). (5)

On the other hand, the current through the loop is simply the net current I in the wire, thus

2πs×B(s) = µ0 × I =⇒ B(s) =
µ0 × I

2πs
. (6)

Now consider a wire of finite thickness. For simplicity, let the wire have round cross-

section of radius a and uniform current density

J =
I

πa2
ẑ . (7)

In this case, the same considerations as for the thin wire tells us that the magnetic field is

in the φ̂ direction while its magnitude depends only on the radial coordinate s. Moreover,
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By elaborating on the recent progress made in the area of Feynman integrals, we apply the
intersection theory for twisted de Rham cohomologies to special functions appearing in Quantum
Mechanics and Quantum Field Theory, showing that the algebraic identities they obey can be derived
by means of intersection numbers. Our investigation suggests an algebraic approach generically
applicable to the study of higher-order moments of probability distributions, which are interpreted
as a basis of integrals, where the number of independent moments corresponds to the dimension of
the cohomology groups. Our study o↵ers additional evidence of the intertwinement between physics,
geometry, and statistics.

I. INTRODUCTION

In electromagnetism, Ampere’s theorem states that in
presence of a circuit carrying an electric current I, the
circulation of the induced magnetic field along the bound-
ary of an oriented surface is just µ0(±n)I, where µ0 is the
magnetic permeability of empty space, and n is the total
number of times the wire crosses the surface, whereas the
sign depends on the alignment of the normal to the sur-
face and of the direction of the current flow. In presence
of several closed circuits �k, each carrying a current Ik,
computing the circulation of the induced magnetic field
along a closed path � that wounds them, may look like a
complicated problem, depending on the shapes of � and
�k. Nevertheless, the answer turns out to be simple, be-
cause it can be expressed as a combination of elementary
terms, as µ0

P
k(±nk)Ik, exploiting the geometric infor-

mation carried by the intersection number of �k and (the
surface bounded by) �, i.e. nk = Link(�k, �), known as
Gauss’ linking number. See Figure 1, for an illustration.

I3I3I3 �3�3�3

���

�1�1�1

I1I1I1

�2�2�2

I2I2I2

SSS

FIG. 1. Circuits linked with the boundary � of a surface S.
The central vector is the orientation of S. Link numbers:
Link(�1, �) = +2, Link(�2, �) = �1, and Link(�3, �) = 0.

⇤ sergio.cacciatori@uninsubria.it
† pierpaolo.mastrolia@unipd.it

Computing integrals is routine in any scientific ambit:
expectation values in Quantum Mechanics, Feynman in-
tegrals in Quantum Field Theory, Partition Functions in
Statistical Mechanics, and higher momenta in Statistics
are just a few paradigmatic examples out of a plethora
of cases. Stokes’ theorem represents a first step toward a
unifying vision of integrals evaluation as a whole: when
it is possible to look at them as representing fluxes of
closed di↵erential forms through surfaces, it tells us that
such integrals are invariant upon deforming either the
integrand, by exact forms, or the contour, by boundary
terms. This gives rise to the de Rham theory of coho-
mology, and its generalizations, as its twisted version,
which allows the inclusion of singular di↵erential forms.
Thus, within cohomology theories, the analytic proper-
ties of functions are tight to the algebraic properties of
the elements appearing in the corresponding integral rep-
resentations (forms and contours), which, in turn, are
determined by the geometry (holes and singularities) of
their existence domains.

The linearity of integral calculus makes it not sur-
prising that (regulated bounded) integrals form a vector
space structure. The intersection theory of twisted de
Rham cohomology [1–21] o↵ers the proper mathemati-
cal framework to characterize it and to establish linear
and quadratic relations involving the integrals. These
relations emerge from the intersection numbers of either
integration contours or di↵erential forms, (respectively
known as twisted cycles and twisted cocycles). Contours
and forms belong to two distinct vector spaces, respec-
tively known as homology and cohomology groups, natu-
rally generated by bases of independent elements. They
are isomorphic, and their dimension depends on the geo-
metrical properties of the variety associated with the in-
tegration measure: zeroes and critical points of the mea-
sure determine the algebraic and analytic properties of
the integrals.

The cohomology groups associated with the class of in-
tegrals we deal with in this study are finite dimensional
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applicable to the study of higher-order moments of probability distributions, which are interpreted
as a basis of integrals, where the number of independent moments corresponds to the dimension of
the cohomology groups. Our study o↵ers additional evidence of the intertwinement between physics,
geometry, and statistics.

I. INTRODUCTION

In electromagnetism, Ampere’s theorem states that in
presence of a circuit carrying an electric current I, the
circulation of the induced magnetic field along the bound-
ary of an oriented surface is just µ0(±n)I, where µ0 is the
magnetic permeability of empty space, and n is the total
number of times the wire crosses the surface, whereas the
sign depends on the alignment of the normal to the sur-
face and of the direction of the current flow. In presence
of several closed circuits �k, each carrying a current Ik,
computing the circulation of the induced magnetic field
along a closed path � that wounds them, may look like a
complicated problem, depending on the shapes of � and
�k. Nevertheless, the answer turns out to be simple, be-
cause it can be expressed as a combination of elementary
terms, as µ0

P
k(±nk)Ik, exploiting the geometric infor-

mation carried by the intersection number of �k and (the
surface bounded by) �, i.e. nk = Link(�k, �), known as
Gauss’ linking number. See Figure 1, for an illustration.
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FIG. 1. Circuits linked with the boundary � of a surface S.
The central vector is the orientation of S. Link numbers:
Link(�1, �) = +2, Link(�2, �) = �1, and Link(�3, �) = 0.
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Computing integrals is routine in any scientific ambit:
expectation values in Quantum Mechanics, Feynman in-
tegrals in Quantum Field Theory, Partition Functions in
Statistical Mechanics, and higher momenta in Statistics
are just a few paradigmatic examples out of a plethora
of cases. Stokes’ theorem represents a first step toward a
unifying vision of integrals evaluation as a whole: when
it is possible to look at them as representing fluxes of
closed di↵erential forms through surfaces, it tells us that
such integrals are invariant upon deforming either the
integrand, by exact forms, or the contour, by boundary
terms. This gives rise to the de Rham theory of coho-
mology, and its generalizations, as its twisted version,
which allows the inclusion of singular di↵erential forms.
Thus, within cohomology theories, the analytic proper-
ties of functions are tight to the algebraic properties of
the elements appearing in the corresponding integral rep-
resentations (forms and contours), which, in turn, are
determined by the geometry (holes and singularities) of
their existence domains.

The linearity of integral calculus makes it not sur-
prising that (regulated bounded) integrals form a vector
space structure. The intersection theory of twisted de
Rham cohomology [1–21] o↵ers the proper mathemati-
cal framework to characterize it and to establish linear
and quadratic relations involving the integrals. These
relations emerge from the intersection numbers of either
integration contours or di↵erential forms, (respectively
known as twisted cycles and twisted cocycles). Contours
and forms belong to two distinct vector spaces, respec-
tively known as homology and cohomology groups, natu-
rally generated by bases of independent elements. They
are isomorphic, and their dimension depends on the geo-
metrical properties of the variety associated with the in-
tegration measure: zeroes and critical points of the mea-
sure determine the algebraic and analytic properties of
the integrals.

The cohomology groups associated with the class of in-
tegrals we deal with in this study are finite dimensional

-
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ABSTRACT

We propose a universal strategy, based on intersection theory, to access the vector space structure of generic classes of
integrals that are ubiquitous in scientific calculus. We show that the relations linking them can be derived by projections, where
the intersection number for differential forms acts as a scalar product. By elaborating on the recent progress made in the
area of Feynman integrals, de Rham’s intersection theory is applied to special functions appearing in Quantum Mechanics
and Quantum Field Theory. Our investigation suggests a novel approach, generally applicable to the study of higher-order
moments of probability distributions, which are interpreted as a basis of integrals. Our study offers additional evidence of the
intertwinement between fundamental physics, geometry, and statistics.

1 Introduction
In electromagnetism, Ampere’s theorem states that in presence of a circuit carrying an electric current I, the circulation of the
induced magnetic field along the boundary of an oriented surface is just µ0(±n)I, where µ0 is the magnetic permeability of
empty space, and n is the total number of times the wire crosses the surface, whereas the sign depends on the alignment of the
normal to the surface and of the direction of the current flow. In presence of several closed circuits gk, each carrying a current Ik,
computing the circulation of the induced magnetic field along a closed path g that wounds them, may look like a complicated
problem, depending on the shapes of g and gk. Nevertheless, the answer turns out to be simple, because it can be expressed as a
combination of elementary terms, as µ0 Âk(±nk)Ik, exploiting the geometric information carried by the intersection number of
gk and (the surface bounded by) g , i.e. nk = Link(gk,g), known as Gauss’ linking number. See Figure 1, for an illustration.
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Figure 1. Circuits linked with the boundary g of a surface S. The central vector is the orientation of S. Link numbers:
Link(g1,g) = +2, Link(g2,g) =�1, and Link(g3,g) = 0.

Computing integrals is routine in any scientific ambit: expectation values in Quantum Mechanics, Feynman integrals in
Quantum Field Theory, Partition Functions in Statistical Mechanics, and higher momenta in Statistics are just a few paradigmatic
examples out of a plethora of cases. Stokes’ theorem represents a first step toward a unifying vision of integrals evaluation
as a whole: when it is possible to look at them as representing fluxes of closed differential forms through surfaces, it tells us
that such integrals are invariant upon deforming either the integrand, by exact forms, or the contour, by boundary terms. This
gives rise to the de Rham theory of cohomology, and its generalizations, as its twisted version, which allows to include singular
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Also, the rotational symmetry makes the magnitude B φ-independent, while the translation

symmetry in z direction makes it z-independent. Altogether,

B(s,φ, z) = B(s only) φ̂. (3)

Given this symmetry-restricted from of the magnetic field, we may find its radius de-

pendence from the Ampere’s law. Let the Ampere’s loop L be a circle in the plane ⊥ to the

wire and centered on the wire,

wire

Ampere’s loop

(4)

For this loop, d"# = s dφ φ̂, hence

∮

B · d"# =

∮

B(s)× s× dφ = 2πs× B(s). (5)

On the other hand, the current through the loop is simply the net current I in the wire, thus

2πs×B(s) = µ0 × I =⇒ B(s) =
µ0 × I

2πs
. (6)

Now consider a wire of finite thickness. For simplicity, let the wire have round cross-

section of radius a and uniform current density

J =
I

πa2
ẑ . (7)

In this case, the same considerations as for the thin wire tells us that the magnetic field is

in the φ̂ direction while its magnitude depends only on the radial coordinate s. Moreover,
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prising that (regulated bounded) integrals form a vector
space structure. The intersection theory of twisted de
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cal framework to characterize it and to establish linear
and quadratic relations involving the integrals. These
relations emerge from the intersection numbers of either
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known as twisted cycles and twisted cocycles). Contours
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rally generated by bases of independent elements. They
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sure determine the algebraic and analytic properties of
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symmetry in z direction makes it z-independent. Altogether,
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wire and centered on the wire,
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Ampere’s loop

(4)
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B(s)× s× dφ = 2πs× B(s). (5)

On the other hand, the current through the loop is simply the net current I in the wire, thus
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section of radius a and uniform current density

J =
I

πa2
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terms. This gives rise to the de Rham theory of coho-
mology, and its generalizations, as its twisted version,
which allows the inclusion of singular di↵erential forms.
Thus, within cohomology theories, the analytic proper-
ties of functions are tight to the algebraic properties of
the elements appearing in the corresponding integral rep-
resentations (forms and contours), which, in turn, are
determined by the geometry (holes and singularities) of
their existence domains.

The linearity of integral calculus makes it not sur-
prising that (regulated bounded) integrals form a vector
space structure. The intersection theory of twisted de
Rham cohomology [1–21] o↵ers the proper mathemati-
cal framework to characterize it and to establish linear
and quadratic relations involving the integrals. These
relations emerge from the intersection numbers of either
integration contours or di↵erential forms, (respectively
known as twisted cycles and twisted cocycles). Contours
and forms belong to two distinct vector spaces, respec-
tively known as homology and cohomology groups, natu-
rally generated by bases of independent elements. They
are isomorphic, and their dimension depends on the geo-
metrical properties of the variety associated with the in-
tegration measure: zeroes and critical points of the mea-
sure determine the algebraic and analytic properties of
the integrals.

The cohomology groups associated with the class of in-
tegrals we deal with in this study are finite dimensional
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presence of a circuit carrying an electric current I, the
circulation of the induced magnetic field along the bound-
ary of an oriented surface is just µ0(±n)I, where µ0 is the
magnetic permeability of empty space, and n is the total
number of times the wire crosses the surface, whereas the
sign depends on the alignment of the normal to the sur-
face and of the direction of the current flow. In presence
of several closed circuits �k, each carrying a current Ik,
computing the circulation of the induced magnetic field
along a closed path � that wounds them, may look like a
complicated problem, depending on the shapes of � and
�k. Nevertheless, the answer turns out to be simple, be-
cause it can be expressed as a combination of elementary
terms, as µ0

P
k(±nk)Ik, exploiting the geometric infor-

mation carried by the intersection number of �k and (the
surface bounded by) �, i.e. nk = Link(�k, �), known as
Gauss’ linking number. See Figure 1, for an illustration.
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FIG. 1. Circuits linked with the boundary � of a surface S.
The central vector is the orientation of S. Link numbers:
Link(�1, �) = +2, Link(�2, �) = �1, and Link(�3, �) = 0.
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