Ramona Groeber Manoj K. Mandal Ennio Salvioni Pierpaolo Mastrolia

> Dipartimento di Fisica e Astronomia "Galileo Galilei" Università degli Studi di Padova 10.07.2023

ADVANCED CALCULUS for FUNDAMENTAL INTERACTIONS

one-day Scientific Flash-mob del Gruppo Teorico

Istituto Nazionale di Fisica Nuclear

Motivations

• Three reasons that triggered this meeting

• A PNRR initiative

• An INFN initiative

• An interdisciplinary activity

PNRR e SuperCalcolo Exascale : 1,000,000,000,000,000,000 Flops

Advancement of HPC developments

• Tecnopolo Cineca a Bologna

<section-header>

• Centro Nazionale HPC, BD e QC

Leonardo at Cineca [video link]

MUR

Piano Nazionale li Ripresa e Resili

CN1.HPC.Spoke2 / Fundamental Research & Space Economy

Spoke2 & Work Packages

- WP1. Theoretical Physics
- WP2. Experimental Particle Physics
- WP3. Experimental Astro-Particle Physics
- WP4. Boosting the Computational Performances
- WP5. Architectural Support

CN1.HPC.Spoke2 / Fundamental Research & Space Economy

Spoke2 & Work Packages

• WP1. Theoretical Physics

- theories and models, towards pre-Exascale and Exascale architectures.
- b. Theoretical research projects in domains already using HPC solutions, such as:
 - 1. electromagnetic effects in hadronic processes);
 - ii. collider physics phenomenology;
 - primordial universe, dark matter and energy, neutrino physics);
 - iv. nuclear physics;
 - biology);
 - vi. condensed matter in low dimensional systems;

a. Development of algorithms, codes and computational strategies for the simulation of physical

lattice field theory (flavour physics, QCD phase diagrams, hadronic physics, interactions beyond the Standard Model, machine learning in quantum field theories,

iii. gravitational waves, cosmology and astroparticle physics (neutron-star physics,

v. physics of complex systems (fluid dynamics, disordered systems, quantitative

vii. quantum systems (entanglement, quantum simulations, quantum information).

CN1.HPC.Spoke2 / Fundamental Research & Space Economy

Spoke2 & Work Packages

• WP1. Theoretical Physics

- theories and models, towards pre-Exascale and Exascale architectures.
- b. Theoretical research projects in domains already using HPC solutions, such as:
 - 1. electromagnetic effects in hadronic processes);
 - ii. collider physics phenomenology;
 - primordial universe, dark matter and energy, neutrino physics);
 - iv. nuclear physics;
 - biology);
 - vi. condensed matter in low dimensional systems;

a. Development of algorithms, codes and computational strategies for the simulation of physical

lattice field theory (flavour physics, QCD phase diagrams, hadronic physics, interactions beyond the Standard Model, machine learning in quantum field theories,

iii. gravitational waves, cosmology and astroparticle physics (neutron-star physics,

v. physics of complex systems (fluid dynamics, disordered systems, quantitative

vii. quantum systems (entanglement, quantum simulations, quantum information).

Usecase HPC.spoke2.WP1 / ADVANCED CALCULUS FOR PRECISION PHYSICS

Nodes: UNIBO - UNICAL - UNIMIB - UNIPD

N. Bartolo, R. Gröber, M. Liguori, F. Maltoni, P. Mastrolia, M. K. Mandal, C. Oleari, A. Papa, T. Peraro, A. Raccanelli, E. Re, E. Salvioni, M. Zanetti

• Five research directions:

I. Models & Diagrams
2. Amplitudes & Integrals
3. Cross Sections & Events
4. Physics at Colliders
5. Beyond Colliders

The software developed in this research program will have a major impact on Collider Phenomenology, as well as on Cosmology and Mathematics.

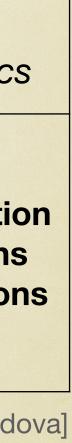
•	Standard Model Physics	•
•	Beyond Standard Model Physics	•
•	Parton Distributions Functions	•
•	Higgs boson and Heavy Particles Physics	•

Effective Field Theories for Quantum and Classical Physics

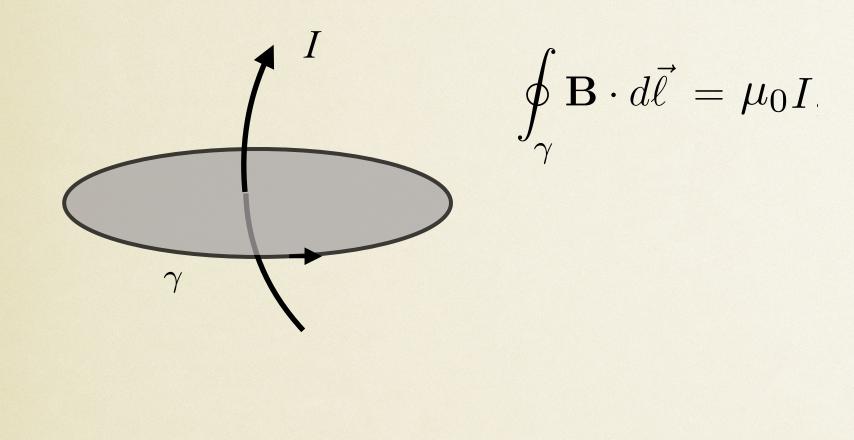
Scattering Amplitudes

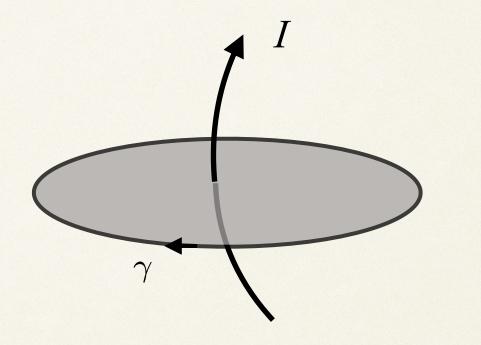
Physics of the Universe and Gravitational Waves Physics

Computational Algebraic Geometry



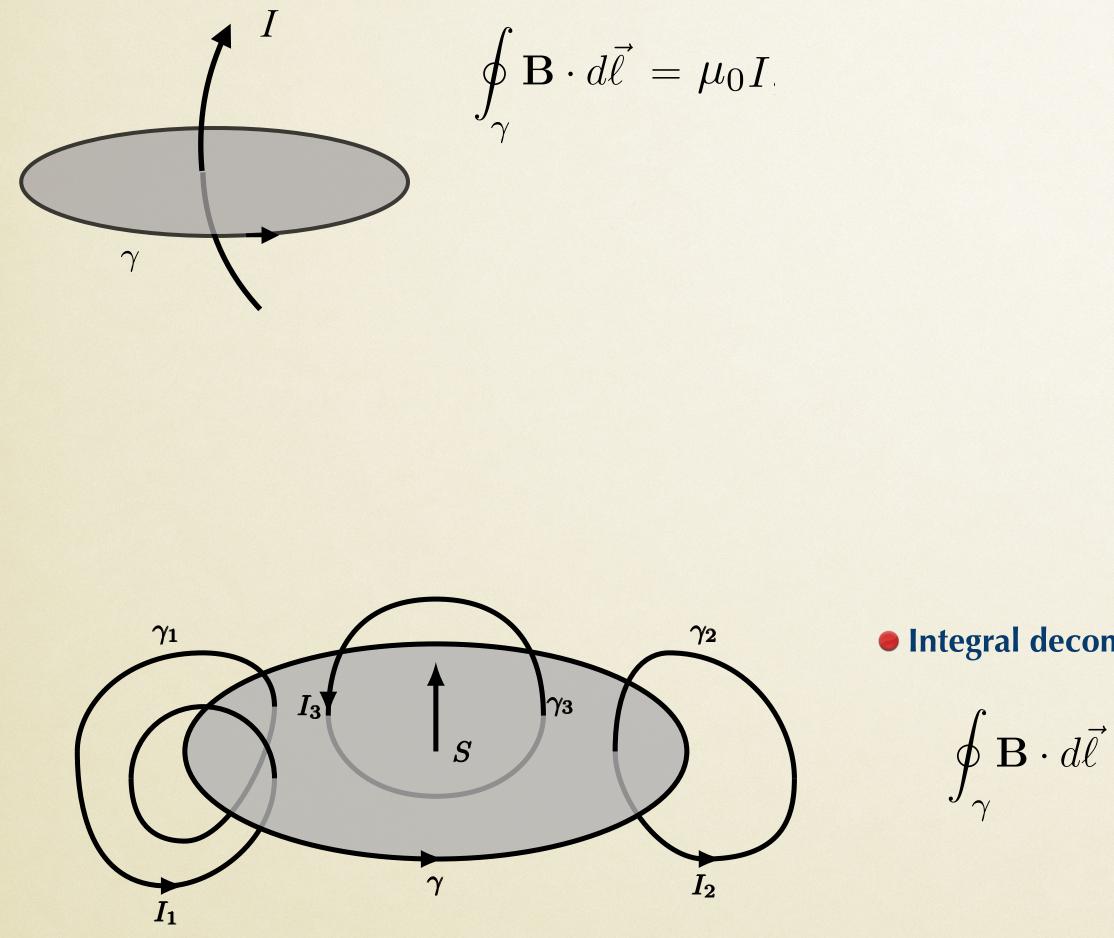
Iniziativa Specifica INFN /AMPLITUDES

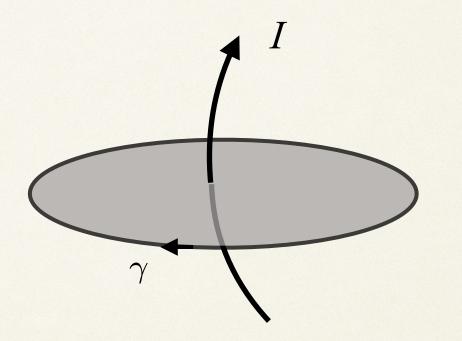

Sezioni	Bologna	LNF	Napoli	Padova	Roma	Torino
Responsabili	T. Peraro	V. Del Duca (P.I.)	F. Tramontano	P. Mastrolia	R. Bonciani	S. Badger


Partecipanti	Staff	Postdoc	PhD
Nazionali	10	4	3
Locali	P. Mastrolia, R. Groeber, P. Paradisi, M. Passera, M. K. Mandal	-	G. Brunello, G. E. Crisanti

Temi di Ricerca	Analytic Structure of On-Shell Amplitudes	Computational Methods for Multiscale Amplitudes	Applications to High-Energy Particle Physics	Applications to Gravitational Waves Physics
Progetti e Attività	 High Energy Behaviour Multi-collinear Factorisation Mathematical Structures 	 Integral Relations Differential Equations Intersection Numbers 	 Subtraction Methods Two-loop five-particle Processes Top-quark Precision Physics Higgs-boson Precision Physics EFT and On-Shell Methods 	 Binary Systems and Radiatio Post-Newtonian Corrections Post-Minkowsian Correction

Ampere's Law: Stokes, Riemann, de Rham, Morse and Feynman



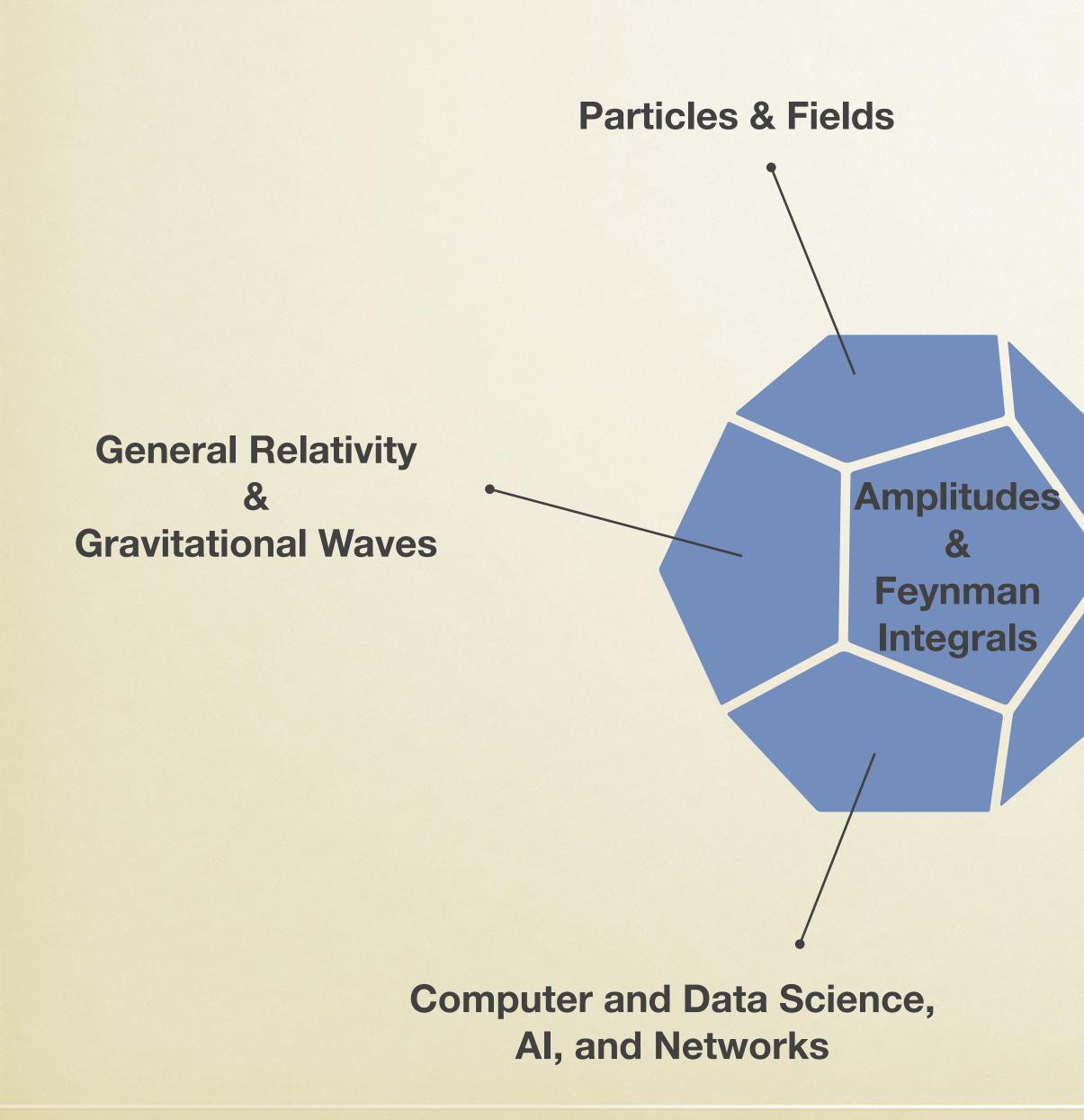

 $\oint \mathbf{B} \cdot d\vec{\ell} = -\mu_0 I_1$

Ampere's Law: Stokes, Riemann, de Rham, Morse and Feynman

 $\operatorname{Link}(\gamma_1, \gamma) = +2$, $\operatorname{Link}(\gamma_2, \gamma) = -1$, and $\operatorname{Link}(\gamma_3, \gamma) = 0$

 $\oint \mathbf{B} \cdot d\vec{\ell} = -\mu_0 I.$

Integral decomposition by geometry


 $\oint_{\gamma} \mathbf{B} \cdot d\vec{\ell} = \mu_0 \sum_k (\pm n_k) I_k \qquad n_k = \operatorname{Link}(\gamma_k, \gamma)$

Master Contributions

Gauss' Linking Number

Scattering Amplitudes: interdisciplinary toolbox

Effective Field Theories (in different disciplines)

Analysis, Geometry, Topology, **Number Theory, Combinatorics, Statistics**

Conclusion Beginning

• Novel methods and algorithms, new ideas and novel technology will help the investigation of Nature at its most extreme and critical conditions, at all scales.

• Numerical, Analytic, and Symbolic Calculus is ubiquitous.

Physics as Applied Geometry: the legacy of Galileo.

Conclusion Beginning

• Novel methods and algorithms, new ideas and novel technology will help the investigation of Nature at its most extreme and critical conditions, at all scales.

• Numerical, Analytic, and Symbolic Calculus is ubiquitous.

Physics as Applied Geometry: the legacy of Galileo.

Let's enjoy the day: thank you all for contributing to it!

