Probing anomalous transport of (integrable) spin chains

Zala Lenarčič

Jožef Stefan Institute, Ljubljana, Slovenia

October 2023

Probing transport properties via tensor network calculations

Boundary driven open systems, Znidarič, PRL 20211

$$\hat{\mathcal{L}}
ho = -i[H,
ho] + \hat{\mathcal{D}}
ho, \ \hat{\mathcal{D}}
ho = \sum_{k} L_{k}
ho L_{k}^{\dagger} - \frac{1}{2} \{L_{k}^{\dagger}L_{k},
ho\}$$

with

$$\begin{split} & L_1 = \sqrt{1+\mu} S_1^- \quad L_3 = \sqrt{1-\mu} S_L^- \\ & L_2 = \sqrt{1-\mu} S_1^+ \quad L_4 = \sqrt{1+\mu} S_L^+ \end{split}$$

Probe:

- Nature of diffusion in integrable and nearly integrable systems
- Stability of superdiffusion in nearly integrable systems
- Subdiffusion in tilted (Stark) interacting chains

Integrable systems

- Macroscropic number of conservations laws $[H, C_i] = 0$
- Paradigmatic example: Heisenberg model

$$H_{XXZ} = \sum_{i} J(S_{i}^{x} S_{i+1}^{x} + S_{i}^{y} S_{i+1}^{y} + \Delta S_{i}^{z} S_{i+1}^{z})$$

Three types of conservation laws J. Stat. Mech. (2016) 064008

$$C_{i} = \begin{cases} Q_{i} = \sum_{x} q_{x}^{(i)}, & d_{x} \\ X_{i} = \sum_{x} x_{x}^{(i)}, & d_{x} \\ Z_{i} = \sum_{x} z_{x}^{(i)}, & d_{x} \end{cases}$$

local quasi-local, even under spin reversal symm quasi-local, odd under spin reversal symm

Non-trivial transport properties

$$H_{XXZ+B} = \sum_{i} J(S_{i}^{x}S_{i+1}^{x} + S_{i}^{y}S_{i+1}^{y} + \Delta S_{i}^{z}S_{i+1}^{z}) + BS_{i}^{z} = \sum_{i} h_{i,i+1}$$

• Ballistic transport of energy current, PRB 55, 11029 (1997)

$$J_{E} = \sum_{i} (\vec{S}_{i-1} \times \vec{S}_{i}) \cdot \vec{S}_{i+1} + BJ_{S}, \quad \frac{dh_{i,i+1}}{dt} = i[H, h_{i,i+1}] = -(j_{i+1}^{E} - j_{i}^{E})$$
$$J_{S} = \sum_{i} S_{i}^{x} S_{i+1}^{y} - S_{i}^{y} S_{i+1}^{x}, \qquad \frac{dS_{i}^{z}}{dt} = i[H, S_{i}^{z}] = -(j_{i,i+1}^{S} - j_{i-1,i}^{S})$$

• Important $J_E = Q_3$, implying ballistic energy transport

balistic
$$J_{E}$$
 balistic J_{E}
 $J_{E}=Q_{3}$ $J_{E}=Q_{3}$

Non-trivial transport properties

$$H_{XXZ+B} = \sum_{i} J(S_{i}^{x} S_{i+1}^{x} + S_{i}^{y} S_{i+1}^{y} + \Delta S_{i}^{z} S_{i+1}^{z}) = \sum_{i} h_{i,i+1}$$

• Ballistic transport of energy current, PRB 55, 11029 (1997)

$$J_{E} = \sum_{i} (\vec{S}_{i-1} \times \vec{S}_{i}) \cdot \vec{S}_{i+1}, \qquad \qquad \frac{dh_{i,i+1}}{dt} = i[H, h_{i,i+1}] = -(j_{i+1}^{E} - j_{i}^{E})$$
$$J_{S} = \sum_{i} S_{i}^{x} S_{i+1}^{y} - S_{i}^{y} S_{i+1}^{x}, \qquad \qquad \frac{dS_{i}^{z}}{dt} = i[H, S_{i}^{z}] = -(j_{i,i+1}^{S} - j_{i-1,i}^{S})$$

• Very rich spin transport RMP 93, 25003 (2021)

What happens to spin transport under perturbations?

$$H = H_{XXZ} + H'$$

- Different transport regimes
- Different symmetry classes of perturbations
- Finite / zero magnetization

Approaches

• Full ED or Microcanonical Lanczos method (MCLM)

$$\sigma(\omega) = \frac{\beta}{L} \int_0^\infty dt \, e^{i\omega t} \langle J_s(t) J_s(0) \rangle_\beta = 2\pi D \, \, \delta(\omega) + \sigma_{reg}(\omega)$$

Spin stiffness for ballistic transport

$$D^* = rac{D}{\chi_0}, \quad \chi_0 = rac{1}{\pi}\int d\omega\sigma(\omega)$$

• Diffusion constrant

$$\mathcal{D} = rac{\sigma_{reg}(\omega=0)}{\chi_0}$$

• Boundary driven open systems

$$\hat{\mathcal{L}}\rho = -i[H,\rho] + \hat{\mathcal{D}}\rho, \ \hat{\mathcal{D}}\rho = \sum_{k} L_{k}\rho L_{k}^{\dagger} - \frac{1}{2} \{L_{k}^{\dagger}L_{k},\rho\}$$

with

Approaches

$$\begin{split} L_1 &= \sqrt{1+\mu}S_1^- \quad L_3 = \sqrt{1-\mu}S_L^- \\ L_2 &= \sqrt{1-\mu}S_1^+ \quad L_4 = \sqrt{1+\mu}S_L^+ \end{split}$$

Current scaling, Znidaric, PRL 2011

$$\text{tr}[J_{s}\rho_{NESS}] \sim L^{-\gamma} \text{ with } \begin{cases} \gamma = 0, & \text{ballistic,} \\ 0 < \gamma < 1, & \text{super-diffusive,} \\ \gamma = 1, & \text{diffusive,} \\ \gamma > 1, & \text{sub-diffusive,} \end{cases}$$

• Boundary driven open systems

$$\hat{\mathcal{L}}\rho = -i[H,\rho] + \hat{\mathcal{D}}\rho, \ \hat{\mathcal{D}}\rho = \sum_{k} L_{k}\rho L_{k}^{\dagger} - \frac{1}{2} \{L_{k}^{\dagger}L_{k},\rho\}$$

with

Approaches

$$\begin{split} & L_1 = \sqrt{1+\mu}S_1^- \quad L_3 = \sqrt{1-\mu}S_L^- \\ & L_2 = \sqrt{1-\mu}S_1^+ \quad L_4 = \sqrt{1+\mu}S_L^+ \end{split}$$

Spin profiles for unperturbed Heisenberg model

Approaches

• Generalized hydrodynamics: elastic scattering of quasi-particles

Types of conservation laws \leftrightarrow types of quasi-particles PRL 115, 157201 (2015), J. Stat. Mech. (2021) 084001

$$\begin{cases} Q_i = \sum_x q_x^{(i)}, \quad (s = 1) \text{ magnons } \uparrow\uparrow\downarrow\uparrow\uparrow\uparrow\\ X_i = \sum_x x_x^{(i)}, \quad (s > 1) \text{ bound states of magnons } \uparrow\uparrow\downarrow\downarrow\uparrow\uparrow\uparrow,\\ Z_i = \sum_x z_x^{(i)}, \quad \text{doublet with eff. mag. moment } \text{PRL 119, 020602 (2017)} \end{cases}$$

Drude weight

What happens to spin transport under perturbations?

$$H = H_{XXZ} + H'$$

- Diffusive regime $\Delta > 1$
 - Prelovšek, Nandy, Lenarčič, Mierzejewski, and Herbrych, PRB 106, 245104 (2022)

Results: perturbed diffusive spin transport $\Delta > 1$

$$H = J \sum_{i} \left[\frac{1}{2} \left(S_{i+1}^{+} S_{i}^{-} + \text{H.c.} \right) + \Delta S_{i+1}^{z} S_{i}^{z} \right] + \delta h J H' \quad H' = \sum_{i} (-1)^{i} S_{i}^{z}$$

Main result from open systems analysis, $\mathcal{D} = -\frac{\mathrm{tr}[J_s \rho_{NESS}]}{\nabla s^z}$

- jump in diffusion constant PRB 106, 245104 (2022)
- see also De Nardis et al, PNAS 119 (34) 2022

Results: perturbed diffusive spin transport $\Delta > 1$

Comparison to ED results

What happens to spin transport under perturbations?

De Nardis et al, Proc. Nat. Acad. Sci. 119 (34), (2022)

- for $\Delta = \infty$: sudiffusive transport
- finite $\Delta > 1$: intermediate sudiffusive transport

Superdiffusion

$$H = H_{XXZ} + H'$$

- Different symmetry classes of perturbations
 - Nandy et al, Rev. B 108, L081115 (2023)
 - See also De Nardis et al, PRL 127, 057201 (2021)
- Finite / zero magnetization
 - Nandy et al, Rev. B 108, L081115 (2023)

Superdiffusion

 Generalized hydrodynamics: elastic scattering of quasi-particles J. Stat. Mech. (2021) 084001 Drude weight

$$D = \frac{\beta}{2} \sum_{s=1}^{s_{\text{max}} \to \infty} \int d\theta \rho_s^{\text{tot}}(\theta) n_s (1 - n_s) (v_s^{\text{eff}}(\theta) m_s^{\text{dr}})^2.$$

- Non-analytical dependence on Drude weight at $m
 ightarrow \infty$
- Contribution from $s_{max} \rightarrow \infty$, i.e., giant magnons.

Results: role of symmetry of perturbations

$$\begin{split} H &= J \sum_{i} \vec{S}_{i} \cdot \vec{S}_{i+1} + g J H', \\ H'_{\rm is} &= \sum_{i} (-1)^{i} \vec{S}_{i} \cdot \vec{S}_{i+1}, \\ H'_{\rm an} &= (1/2) \sum_{i} (-1)^{i} (S^{+}_{i+1} S^{-}_{i} + \text{H.c.}) \end{split}$$

Symmetry of perturbation very important!

- symm. breaking: diffusive transport
- symm. preserving: superdiffusive transport, $j_s \sim L^{-1/2}$
- Relevant for cold atom experiment, Science, 376(6594), 716-720 (2022)

Results: role of symmetry of perturbations

Superdiffusive scaling of diffusion constant $\mathcal{D}=-\frac{{\rm tr}[J_s\rho_{\text{NESS}}]}{\nabla s^z}\sim L^\zeta$

 \rightarrow superdiffusion robust at significant perturbations, PRB 108, L081115 (2023)

Results: role of symmetry of perturbations

$$\begin{split} H &= J \sum_{i} \vec{S}_{i} \cdot \vec{S}_{i+1} + g J H', \\ H'_{\rm is} &= \sum_{i} (-1)^{i} \vec{S}_{i} \cdot \vec{S}_{i+1}, \\ H'_{\rm an} &= (1/2) \sum_{i} (-1)^{i} (S^{+}_{i+1} S^{-}_{i} + \text{H.c.}) \end{split}$$

Main ED result: symmetry of perturbation very important!

 \rightarrow diffusion constant at finite magnetization

Transport in tilted chains

$$H = \sum_{l} \left(c_{l}^{\dagger} c_{l+1} + c_{l+1}^{\dagger} c_{l} \right) + V \tilde{n}_{l} \tilde{n}_{l+1} + F \left(l - \frac{L}{2} \right) \tilde{n}_{l} + H', \ \tilde{n}_{l} = n_{l} - 1/2$$

$$H_F(t) = \sum_l \left(e^{-iFt} c_l^{\dagger} c_{l+1} + e^{iFt} c_{l+1}^{\dagger} c_l + V n_l n_{l+1} \right) + H' \; .$$

Crossover from diffusive to subdiffusive transport

$$H = \sum_{l} \left(c_{l}^{\dagger} c_{l+1} + c_{l+1}^{\dagger} c_{l} \right) + V \tilde{n}_{l} \tilde{n}_{l+1} + F \left(l - \frac{L}{2} \right) \tilde{n}_{l} + H', \ \tilde{n}_{l} = n_{l} - 1/2$$

• Current exponentially suppressed with $F \leftrightarrow$ no Stark localization, PRL 122, 040606 (2019)

Crossover from diffusive to subdiffusive transport

$$H = \sum_{l} \left(c_{l}^{\dagger} c_{l+1} + c_{l+1}^{\dagger} c_{l} \right) + V \tilde{n}_{l} \tilde{n}_{l+1} + F \left(l - \frac{L}{2} \right) \tilde{n}_{l} + H', \ \tilde{n}_{l} = n_{l} - 1/2$$

- Profile: diffusive \rightarrow subdiffusion
- Current: F and L dependent scaling $I \sim L^{1-z}$
- Define *L* dependent dynamical exponent *z*

Crossover from diffusive to subdiffusive transport

$$H = \sum_{l} \left(c_{l}^{\dagger} c_{l+1} + c_{l+1}^{\dagger} c_{l} \right) + V \tilde{n}_{l} \tilde{n}_{l+1} + F \left(l - \frac{L}{2} \right) \tilde{n}_{l} + H', \ \tilde{n}_{l} = n_{l} - 1/2$$

- Universal scaling of $z(F\sqrt{L})$
- z = 4: fractonic hydrodynamics due to conserved M at large F?
- Cold atom experiment, Phys. Rev. X 10, 011042 (2020).

 $z(F\sqrt{L})$ dependence and bounds on dynamics of *M*

$$\frac{\mathrm{d}\langle M\rangle_t}{\mathrm{d}t} = \frac{1}{F} \frac{\mathrm{d}\langle H - H_0 \rangle_t}{\mathrm{d}t} = -\frac{1}{F} \frac{\mathrm{d}\langle H_0 \rangle_t}{\mathrm{d}t}$$

• variation of dipol moment: $\langle M \rangle_t = \langle \psi(0) | e^{iHt} M e^{-iHt} | \psi(0) \rangle$

$$|\langle M \rangle_t - \langle M \rangle_{t'}| < \delta_M = \frac{\alpha L}{F}$$

• width of the spectrum of M, $M|\psi_n
angle=d_n|\psi_n
angle$

$$\sigma_M^2 = rac{1}{Z} \operatorname{Tr}(M^2) = \sum_{l=-rac{L}{2}+1}^{rac{L}{2}} rac{l^2}{4} \simeq rac{L^3}{48}$$

• When fractonic dyamics sets in

$$\frac{\delta_M}{\sigma_M} = \frac{4\alpha\sqrt{3}}{F\sqrt{L}} \; .$$

Proof of *M* conservation in $T = \infty$ state

$$\lim_{L\to\infty}\frac{\langle M(t)M\rangle_{T=\infty}}{\langle MM\rangle_{T=\infty}}=1, \qquad M(t)=e^{iHt}Me^{-iHt}$$

Proof of *M* conservation in $T = \infty$ state

$$\lim_{L\to\infty}\frac{\langle M(t)M\rangle_{T=\infty}}{\langle MM\rangle_{T=\infty}}=1, \qquad M(t)=e^{iHt}Me^{-iHt}$$

Proof:

$$\begin{split} ||H||^{2} &= ||H_{0}||^{2} + F^{2}||M||^{2}, \quad \frac{||H_{0}||}{||M||} \propto \frac{L^{1/2}}{L^{3/2}} \\ ||M||^{2} &= ||M^{\parallel}||^{2} + ||M^{\perp}||^{2} \\ M^{\parallel} &= \frac{\langle MH \rangle}{\langle HH \rangle} H, \qquad M^{\perp} = M - M^{\parallel} \\ \langle [M^{\parallel} + M^{\perp}(t)]M \rangle &\geq ||M^{\parallel}||^{2} - |\langle M^{\perp}(t)M \rangle| \\ &\geq ||M^{\parallel}||^{2} - ||M^{\perp}|| ||M||, \\ 1 \geq \frac{\langle M(t)M \rangle}{||M||^{2}} &\geq 1 - \frac{||M^{\perp}||}{||M||} - \frac{||M^{\perp}||^{2}}{||M||^{2}} \end{split}$$

ML assisted reconstruction of H from measurements

ML assisted reconstruction of H from measurements

Input *x*: expectation values $tr[O(\alpha)\rho]$ of local operators

$$O(\alpha) = \sigma_1^{\alpha_1} \dots \sigma_{|S|}^{\alpha_{|S|}}, \quad \alpha = (\alpha_1, \dots, \alpha_{|S|}) \in \{0, x, y, z\}^{|S|}$$

 \circ data element: $\langle O(lpha)
angle$ of N_O operators

Bootleneck: N_L neurons

- Dimensional reduction $N_O \rightarrow N_L$
- Latent (compressed) representation

Loss function

$$\mathcal{L}_{\mathcal{D}_{\mathcal{T}}}(\theta) = rac{1}{|\mathcal{D}_{\mathcal{T}}|} \sum_{x \in \mathcal{D}_{\mathcal{T}}} (f_{\theta}(x) - x)^2$$

H reconstruction procedure

H reconstruction procedure

Test Hamiltonian reconstruction

Strictly local Hamiltonian, e.g. $H = \sum_{i} J \sigma_{i}^{z} \sigma_{i+1}^{z} + h \sigma_{i}^{x}$

• Correct reconstruction, if maximal $\sup(O(\alpha)) \ge \sup(H)$

Long-range interactions, e.g., $H = \sum_{i} \sum_{d} \frac{1}{d^{\gamma}} (a \sigma_i^x \sigma_{i+d}^x + b \sigma_i^y \sigma_{i+d}^y)$

- small error in reconstruction due to finite support of $\langle O(lpha)
 angle$
- Qualitatively ok

Test Hamiltonian reconstruction

Reconstructing

Application to Floquet H learning

- Floquet engineering via periodic driving: H(t + T) = H(t)
- Floquet Hamiltonian, U_{t0+T}, t₀ = U = e^{-iTH_F} Eckardt, Rev. Mod. Phys. 89, 011004 (2017)
 - H_F from high frequency $\Omega = 1/T \gg 1$ expansion (Magnus...)
 - $\circ~$ Valid on prethermal plateau, up to timescales $e^{\alpha\Omega}$

What is the effective Hamiltonian beyond the Floquet prethermal regime?

Application to Floquet H learning

Floquet protocol

$$U = e^{-iH_1T/2}e^{-iH_2T/2}$$
$$H_1 = \sum_{j=1}^N J\sigma_j^z \sigma_{j+1}^z + h_x \sigma_j^x + h_z \sigma_j^z$$
$$H_2 = \gamma \sum_{j=1}^N \sigma_j^x$$

Floquet H learning in the heating regime

Model:

$$U = \exp(-iH_1 T/4) \exp(-iVT/2) \exp(-iH_1 T/4),$$

$$H_1 = \sum_i J\sigma_i^z \sigma_{i+1}^z + h_z \sigma_i^z + h_x \sigma_i^x, \ V = \epsilon \sum_j \sigma_j^x$$

Heating regime for larger ϵ :

A single latent variable sufficient for the whole time span

• thermal states throughout the heating regime PRB 103, 144307 (2021)

Does H_F become less local in the heating regime?

Floquet H learning in the heating regime

Model:

$$U = \exp(-iH_1 T/4) \exp(-iVT/2) \exp(-iH_1 T/4),$$

$$H_1 = \sum_i J\sigma_i^z \sigma_{i+1}^z + h_z \sigma_i^z + h_x \sigma_i^x, \ V = \epsilon \sum_j \sigma_j^x$$

Heating regime for larger ϵ :

A single latent variable sufficient for the whole time span

• thermal states throughout the heating regime PRB 103, 144307 (2021)

Does H_F become less local in the heating regime?

Open setup: noise-type reconstruction

$$H = \sum_i J_z S_i^z S_{i+1}^z + h_x S_i^x + h_z S_i^z$$

with Lindblad operators that favour AFM $\sigma^{\rm x}_i\sigma^{\rm x}_{i+1}$ correlations

$$\hat{\mathcal{L}}\rho = -i[H,\rho] + \epsilon \hat{\mathcal{D}}\rho = 0, \quad \hat{\mathcal{D}}\rho = \sum_{k} L_{k}\rho L_{k}^{\dagger} - \frac{1}{2} \{L_{k}^{\dagger}L_{k},\rho\}$$

$$L_{i}^{(1a)} = S_{i}^{+,x} P_{i+1}^{\downarrow,x}, \quad L_{i}^{(1b)} = P_{i}^{\downarrow,x} S_{i+1}^{+,x},$$

$$L_{i}^{(2a)} = S_{i}^{-,x} P_{i+1}^{\uparrow,x}, \quad L_{i}^{(2b)} = P_{i}^{\uparrow,x} S_{i+1}^{-,x},$$

$$L_{i}^{(3)} = S_{i}^{z}$$

$$(1)$$

Hubbard excitons in Hubbard systems

Credit: Nature Physics (2023). DOI: 10.1038/s41567-023-02187-0

Collaboration with CalTech experimenta group, Nat. Phys. (2023).

See poster by Madhumita Sarkar

Collaborators

P. Prelovšek, S. Nandy, Z. Lenarčič, M. Mierzejewski, and J. Herbrych, Phys. Rev. B 106, 245104 (2022)

S. Nandy, Z. Lenarčič, E. Ilievski, M. Mierzejewski, J. Herbrych, P. Prelovšek, Phys. Rev. B 108, L081115 (2023)

S. Nandy, J. Herbrych, Z. Lenarčič, A. Głódkowski, P. Prelovšek, M. Mierzejewski, arXiv:2310.01862 (2023)

S Nandy, M Schmitt, M Bukov, Z Lenarčič, arXiv:2308.08608 (2023)

Dr. Sourav Nandy

ERC and QuantERA PhD and postdoc positions

ERC DrumS: Weakly driven quantum symmetries

Tensor Networks in Simulation of Quantum matter (T-NiSQ)

Bañuls, Cirac, Bloch (Munich), Ringbauer, Blatt (Innsbruck), Montangero (Padova), Ortega (Bilbao).

Quantum simulation with engineered dissipation (QuSiED)

Chang (Barcelona), Marino (Mainz), Nägerl (Innsbruck), Hemmerich (Hamburg), Zarand (Budapest).

Probing transport properties via tensor network calculations

- Diffusion in nearly integrable systems
 - Jump in diffusion constant
 - PRB 106, 245104 (2022)
- Superdiffusion in nearly int. systems
 - Superdiffusion stable for symmetry preserving perturbations
 - PRB 108, L081115 (2023)
- Subdiffusion in tilted (Stark) chains
 - Fractonic hydro
 - Universal $z(F\sqrt{L})$ dependence and TD subdiffusion
 - arXiv:2310.01862 (2023)
- ML assisted Hamiltonian reconstruction,
 - arXiv:2308.08608 (2023)

