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(Quantum) Circuit Description Languages

• Classical programs that describe quantum computations
• Qiskit, Cirq, Quipper [1], …

alice :: Qubit -> Qubit -> Circ (Bit,Bit)
alice q a = do
a <- qnot a ‘controlled‘ q
q <- hadamard q
(x,y) <- measure (q,a)
return (x,y) 



Problems [2]

Circuit description Languages

• High level
• Millions of qubits
• Trillions of gates

Real-world quantum computers

• Low level
• A couple hundred qubits
• Less than a thousand gates

VS

Idea: formal methods



Refinement Types

• Refinement type = regular type + predicate [3,4] 

• Index refinement type = regular type + index [5,6] 

• Support for limited dependency

{n : Int | n >= 1 && n <= 12}

Int[1,12], List[5] Int 

List[i] Int -> List[j] Int -> List[i+j] Int 



Proto-Quipper-R (PQR) Overview

• Extending the Proto-Quipper [7] calculus with refinements

• CircI (T,U) : Circuits of width at most I
• A      B : Functions that build a circuit of width at most I
• ListI A : Lists of length exactly I

• I,J ::= … | n | i | I + J | max(I,J)
• V,W ::= … | ℓ | (ℓ,C,ℓ’) | nil | cons V W
• M,N ::= … | apply(V,W) | foldi V W

I



PQR Type System

“For all index variables in Θ, under typing contexts Γ and Q, M is a program 
of type A and builds a circuit of width at most I.”

• Subtyping judgment: Θ ⊢s A <: B
• Semantic relationship between indices: Θ ⊨ I ≤ J
• Ideally delegated to an external SMT solver [8]

Θ;Γ;Q ⊢ M : A ; I



Quantum Fourier Transform in PQR

qft :: Listi Qubit Listi Qubiti

qft :: List3 Qubit List3 Qubit3

qft (cons q1 (cons q2 (cons q3 nil))) :: List3 Qubit ; 3



Conclusion & Future Work

• The language is defined and has been proven to be
• Type-safe: evaluation preserves types
• Correct: the derived upper bounds actually hold at runtime

• The language can describe and verify a realistic algorithm (i.e. QFT)

• Future work:
• Generalizing to other kinds of resource consumption
• Automatizing the type-checking process
• Implementation and interaction with SMT solvers
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Quantum algorithm on NISQ devices

• For solution of both classical and quantum applications

• State preparation of non-trivial problems

Elisa Ercolessi



ENCODING of the STATES  
 as q-bits|ψ⟩

QUANTUM EVOLUTION 
 as q-gatese−itH |ψ⟩

MEAN VALUES & CORRELATORS 
from q-measurements

➠
➠

DYNAMICS OF LATTICE GAUGE THEORIES

➤ STRING BREAKING
in the one-dimensional   Schwinger model  
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On NISQ device:

- embedding: 
Hilbert space reduction 
thanks to Gauge symmetries and Parity

- evolution: 
via Trotter 
• fixed depth for 2 sites
• minimisation of 3 qubit gates

- measure:
of Loschmid amplitude after a quench 

2 sites

Noisy Simulation
(including SPAM. Doppler damping, amplitude)

on PASQAL Pulser SDK

➤ signals of Dynamical Phase Transitions



BAYESIAN OPTIMIZATION FOR QAOA
QUANTUM CLASSICAL

• Bayesian Optimization exploits the prediction of the GP to 
propose a new set of optimal parameters at every step of 
QAOA

• We use a stochastic Gaussian Process (GP) to recreates 
the landscape of a function

cost function reconstruction

barren plateau



to solve a number of issues:
 number of points in landscape 

number of measurements 
noisy circuits 

BAYESIAN  
OPTIMIZATION 

Step

Sequence of pulses  
optimized at the previous step

The graph of atoms is loaded on 
a triangular lattice layout of traps

COMBINATORIAL 
PROBLEMS

ON A GRAPH


