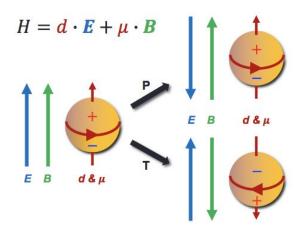
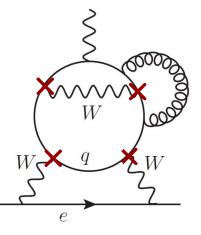
Phydes: an apparatus for the measurement of the electron EDM

Presentazione infrastrutture in acquisizione con il Progetto di Eccellenza "Frontiere Quantistiche"

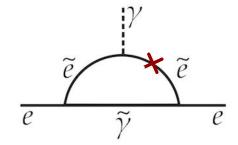

The electron EDM


Electron Electric Dipole Moment (eEDM) → asymmetric charge distribution along the particle spin

The eEDM is odd under both Parity and Time-reversal
→ CP-violating (assuming CPT-invariance)

In the **SM**, the eEDM is **predicted to be** $^{\prime\prime}10^{-38} \div 10^{-40}$ ecm, mainly arising from CP-violating CKM contributions

- first non-vanishing contributions at 4-loop level



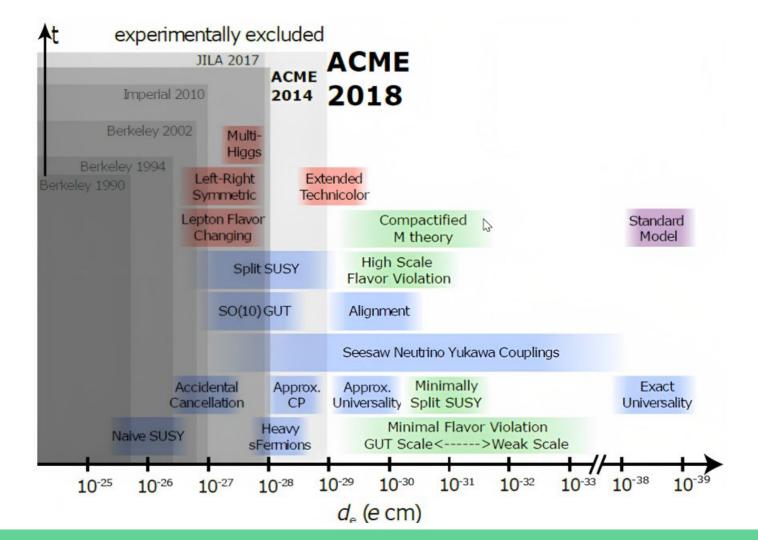
eEDM as a probe for New Physics

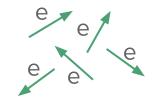
CP violation is required to generate a cosmological matter-antimatter asymmetry

CPV in SM through the CKM matrix is many orders of magnitude below what is necessary!

In New Physics models, CP-violating terms may arise already at 1-loop $\mathbf{d}_{\mathbf{e}} \sim (\text{loop}) \times |\mathbf{e}|$

Model-independent probe of possible New Physics sources of **CP** violation

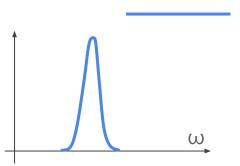

Precision eEDM measurements can probe scales up to PeV to EeV, far beyond the reach of particle colliders

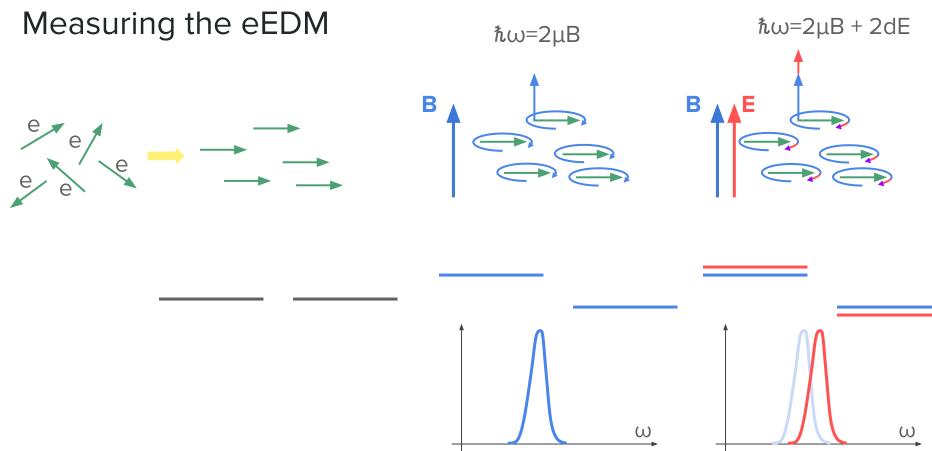

Most recent **experimental** results (from the ACME II collaboration) set eEDM **upper limit at** ~10⁻²⁹ ecm \mathbb{A}^{P} phase from soft breaking \mathbb{A}^{P} sin $(\Phi_{CP})^{\text{naturally O}(1)}$

scale of SUSY breaking naturally ~200 GeV

naturally ~ α/π

 $\longrightarrow \sim 5 \times 10^{-25}$ cm naturally





πω=2μΒ

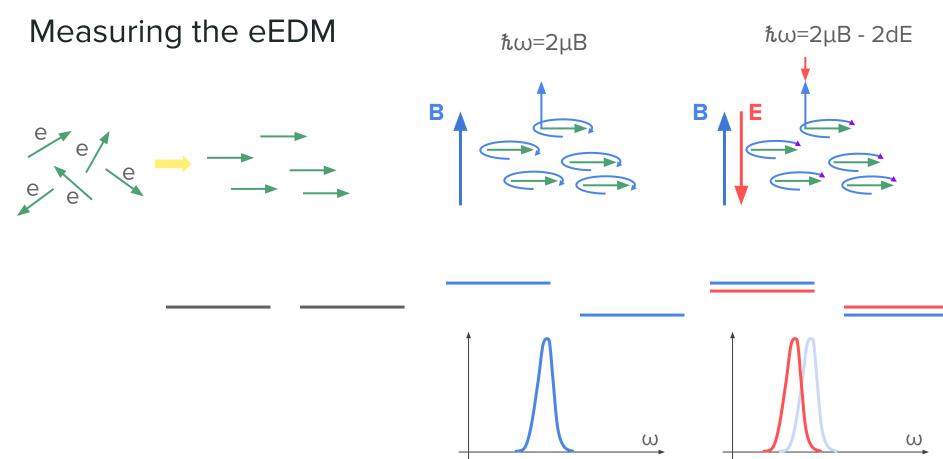
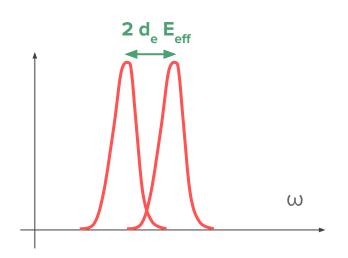



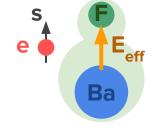
Figure of merit for the optimization of the measurement of the eEDM:

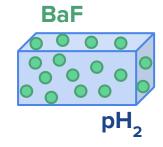
$$\delta d_e = \frac{1}{E_{eff} \ \tau \ \sqrt{N}}$$

- *E*_{eff} → Effective electric field
- $\tau \rightarrow$ Coherence time
- *N* → Number of probed atoms/molecules

PHYDES

eEDM measurement apparatus using BaF diatomic polar molecules and ParaHydrogen

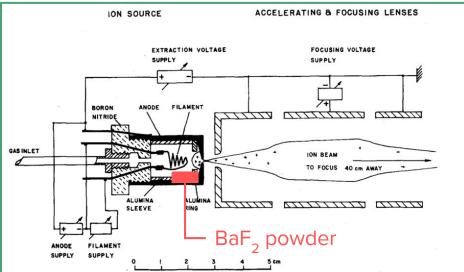

- Sigla INFN Gr. V for the R&D effort
 - PI: Giovanni Carugno
 - + Borghesani, Gasparini, Zanetti, Pazzini, Gonella, Benettoni
- NQSTI PNRR Tecnologie Quantistiche


Barium Monofluoride (BaF) will be used as the molecules are characterized by large effective electric fields E_{eff} acting on the unpaired electron ($\propto Z_{Ba}^3$)

- large BaF polarization fraction with small (~100s V/cm) lab. E fields
- **E**_{eff} on the unpaired e⁻ of the order of 100 *GV/cm*

BaF will be embedded in a inert **solid crystal of ParaHydrogen (pH₂)** to suppress residual guest-host interactions

- large number **N** of trapped BaF molecules \Rightarrow large n_{e}
- freedom of BaF polarization and rotation in the pH₂ lattice


PHYDES - BaF line production

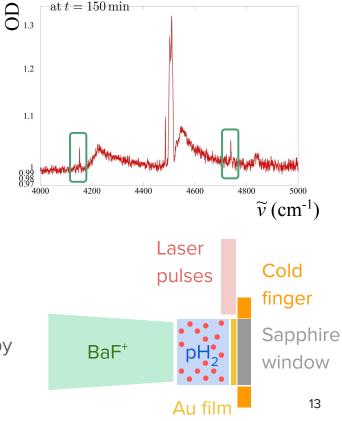
BaF beam preparation with isotopic separation:

- BaF injection + ionization
- Wien filter (**B**x**E**) for mass selection

Preliminary tests with Xe⁺ beam (mass similar to BaF):

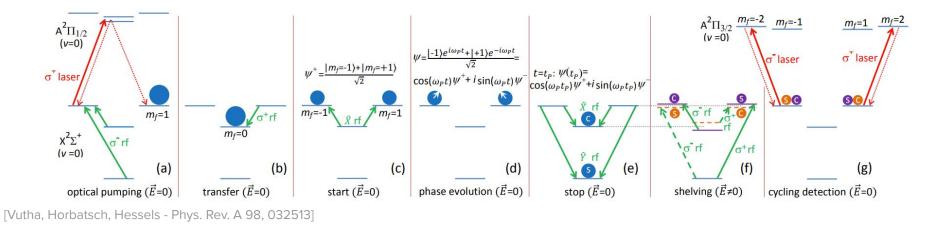
- Beam current 100 nA
- Final Xe^+ energy = 5 eV
- Estimate of \sim 100 ppm for BaF⁺ on pH₂ target

PHYDES - pH2 production and BaF neutralization


Para- H_2 (nuclear spin J=0) is produced via spin-spin interaction of H_2 with iron-oxide powder

A continuous flow of pH_2 is sprayed onto a sapphire window kept at $^{\sim}$ 2.7 K

FTIR spectroscopy allows to monitor the growth rate of the crystal and the para-vs-ortho H_2 fraction. From preliminary estimates:


- growth rate \sim 120 μ m/hour
- fraction of ortho- $H_2 \sim 3\%$

BaF⁺ neutralization before the embedding in pH_2 will be realized by **photo-extraction of e⁻ from a** *Au* **film on the sapphire surface**

PHYDES - eEDM measurement

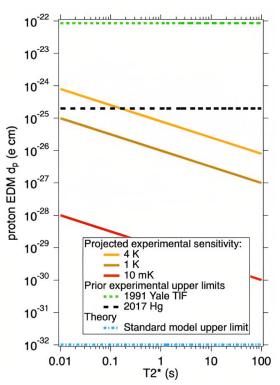
The system will have to go through a fine state preparation for the actual signal extraction

2 different measurement approaches can be set up, based on squid / optical fluorescence methods

The cooling temperature (ideally < 1 K) of the final pH_2 +BaF system will possibly be one of the most important factors for boosting the eEDM result, as it will improve the coherence time τ and decrease the phonon-induced noise

The proton EDM

Possibilities to extend this effort towards the proton EDM


Probing the nucleus (proton/nucleon) EDM by **implanting isotopic impurities** @ **100 ppm level in the pH**₂ **solid matrix**

 pH_2 is a non-active NMR target \Rightarrow NMR of HD-doped pH_2 to probe pEDM

- Provide pH₂ cryo-cooling < 100 mK (*crucial*!)
- Appropriate spin state preparation
- Apply 9 T **B** field
- Sense pick-up signal

Upper limits on pEDM can be extracted exploiting large T2* relaxation coherence time ⇒ higher than 1 sec

Experimental sensitivity strongly dependent on the cryo capabilities and the homogeneity of the B field

Requests

Leiden Cryogenics Dilution Refrigerator [Model CF-CS110-200-1PT-1T-100mK]

Cryogenic refrigeration system:

- Base temperature slightly below 100 mK
 → eEDM
- Can be later upgraded to reach ~15 mK or <10 mK temperatures
 → pEDM
- Cooling system as a long-lasting asset for all experimental activities within the LaTeQ lab / DFA

Currently received a quotation for **250 k€** from Leiden Cryogenics

- 50 k€ can be taken from PNRR

⇒ ~°200 k€ request

Atomic EDM w/ Shiff moment: Octupole Enhancement

No atomic EDM due to nucleus - Schiff's Theo

Electrons screen appli field

Need for octupole d to enhance the Shiff m

mic EDM due to ED s - Schiff's Theoren ns screen applied o I for octupole defor ance the Shiff mom	n electric rmation		$ +>$ $\int_{->}^{\Delta I}$ $zZA\beta_{2}\beta_{3}$	E ── Ψ⁻=($ \begin{array}{c} +\rangle + -\rangle)/\sqrt{2} \\ +\rangle - -\rangle)/\sqrt{2} \\ e \ Z \ A^{2/3} \end{array} $		$\Psi^{-} = ((1 - \alpha))^{-1} = \alpha = \frac{\langle \Psi^{-} \rangle}{\alpha}$	$ +\alpha\rangle +\rangle + (1-\alpha) -\rangle)/\sqrt{2}$ $-\alpha\rangle +\rangle + (1+\alpha) -\rangle)/\sqrt{2}$ $\frac{ V^{PT} \Psi^{+}\rangle}{\Delta E} \sim \frac{\beta_{3}A^{-1/3}}{\Delta E}$ $\beta_{2}, \beta_{3} \sim 0.1$
	²²³ Rn	²²³ Ra	²²⁵ Ra	²²³ Fr	²²⁵ Ac	²²⁹ Pa	¹⁹⁹ Hg	¹²⁹ Xe
t _{1/2}	23.2 m	11.4 d	14.9 d	22 m	10.0 d	1.5 d		
1	7/2	3/2	1/2	3/2	3/2	5/2	1/2	1/2
Δe _{th} (keV)	37	170	47	75	49	5		
ΔE _{exp} (keV)	_	50.2	55.2	160.5	40.1	0.22		
10 ⁵ S (efm ³)	1000	400	300	500	900	12000	-1.4	1.75
10 ²⁸ d _A (ecm)	2000	2700	2100	2800			-5.6	0.8

[Haxton & Henley; Auerbach, Flambaum & Spevak; Hayes, Friar & Engel; Dobaczewski & Engel]

Production at Legnaro National Laboratory - Requests

²³²ThO₂ target

- p(40 MeV)+²³²Th → ²²⁹Pa 150 mb
- $p(70 \text{MeV}) + ^{232} \text{Th} \rightarrow ^{225} \text{Ac} 10 \text{ mb}$

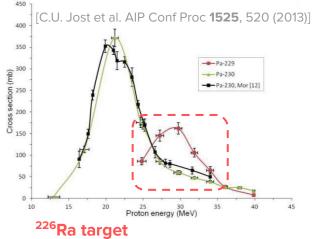
Estimated intensity at LNL:

 229 Pa by 232 Th(p,4n): 10⁹ s⁻¹ (if extraction efficiency 0.05)

Developments ⇒ Molecular fluoride beams of heavy elements: Ac, Pa

Some molecular beams are already developed:

- SF6 gas + Sr (calibrated solutions used for the SIS/PIS efficiency tests) > SrF
- SF6 gas + Ba (calibrated solutions used for the SIS/PIS efficiency tests) > BaF
- Molecular beams for new elements to be developed → PhD thesis

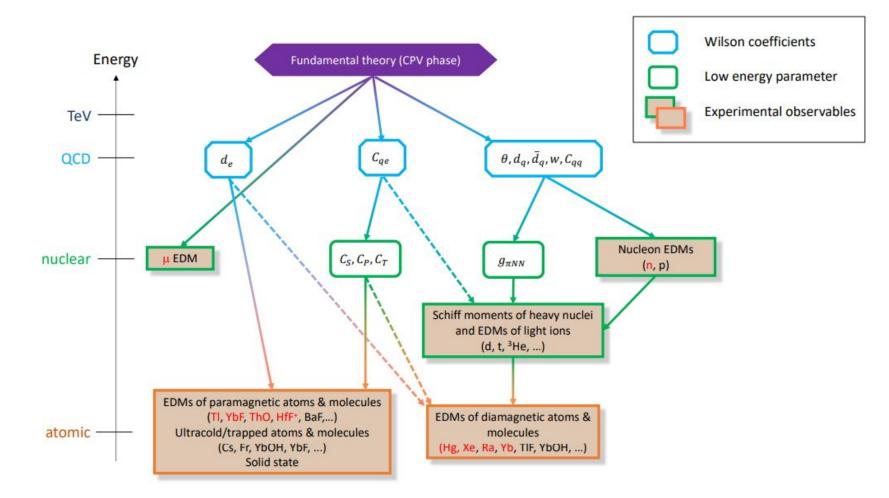

Requests:

~10 k€

~10 k€

~5 k€

- vacuum chamber dedicated to the molecular beam source
 - for the sources and elements dedicated to injection
 - → for consumables necessary for the functioning of the sources



- p(15 MeV)+²²⁶Ra → ²²⁵Ac 700 mb (batch mode: τ = 10 days)
- p(70MeV)+²²⁶Ra → ²²³Fr 3 mb

⇒ [∼]25 k€ request

Leiden quotation

Item	QTY	Description Cryogen-Free dilution refrigerator Model LC CF-CS110- 100mK				
1	1					
2		Optimized mixture (furnished by customer)	~17 Liter			
3	1	Ultra-sensitive LCR bridge inclusive Break Out Box and cables. (necessary)	9.500			
4	1	Calibrated RuO2 resistance thermometer	1.100			
		Wiring				
5	2	CuNi wires in 2 sets of 24 twisted wires (some wires used for thermometry)	Standard			
		Packing, shipping and insurance				
6	1	Packing, shipping and insurance (tentative quote. Final invoice will depend on the packing and shipping company invoice) Incoterms: DAP (Delivered at Place)	15.000			
7	1	Installation and final performance demonstration at the end users location	7.000			
	Total		252.600			

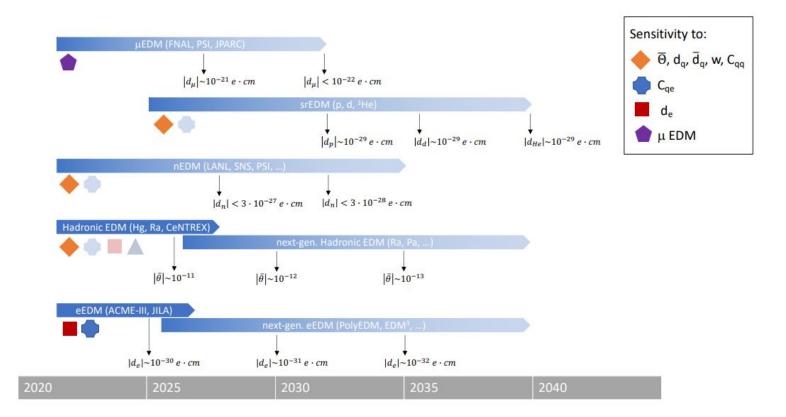
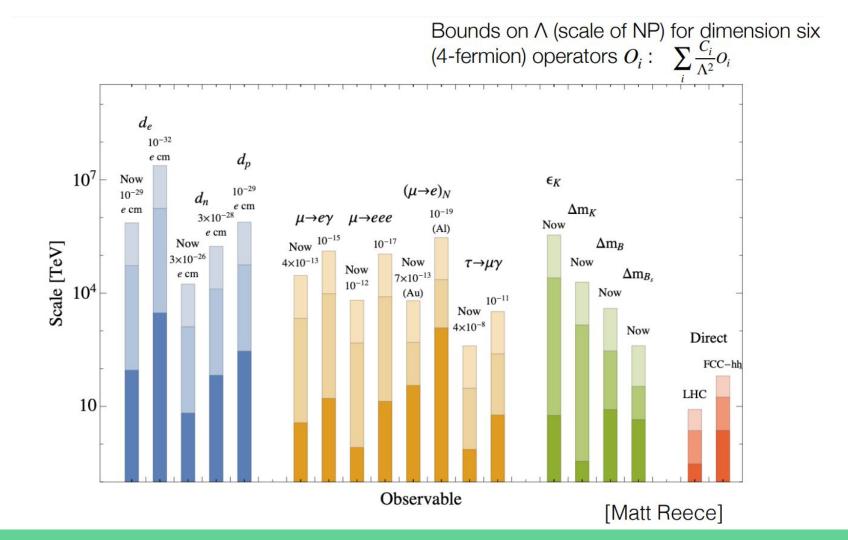
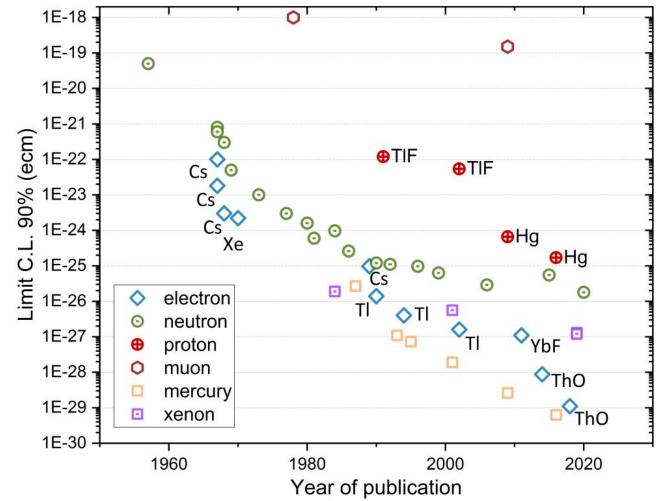



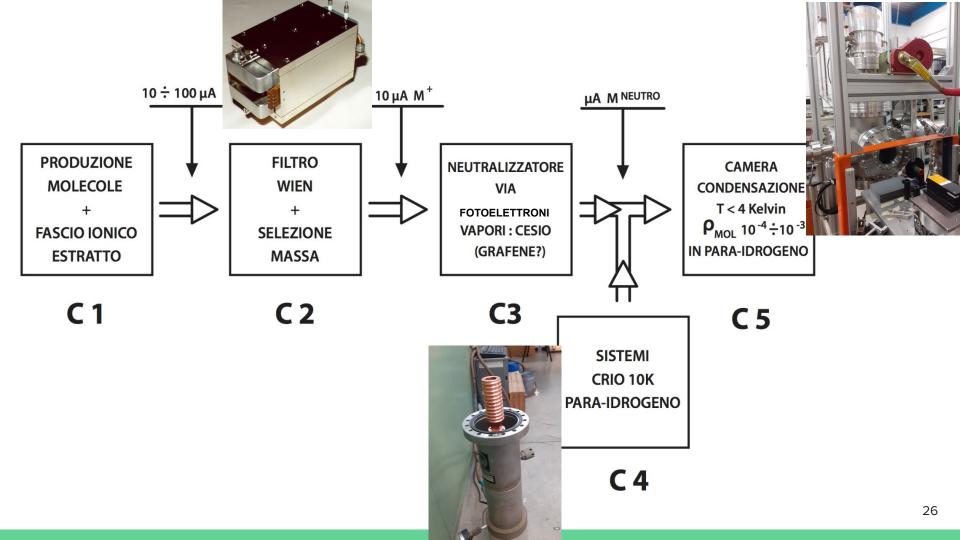
Figure 3-1. Timelines for the major current and planned EDM searches with their sensitivity to the important parameters of the effective field theory (see Fig. 3-2 for details). Solid (shaded) symbols indicate each experiment's primary (secondary) sensitivities. Measurement goals indicated by the black arrows are based on current plans of the various groups.

Model-independent predictions

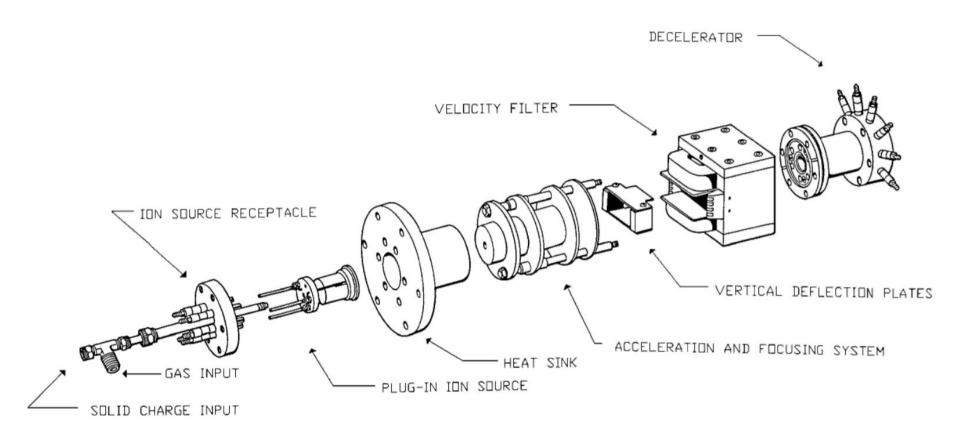
• ${
m BR}(\ell_i o \ell_j \gamma)$ vs. $(m{g}-m{2})_\mu$


$$\begin{aligned} \mathrm{BR}(\mu \to \boldsymbol{e}\gamma) &\approx 3 \times 10^{-13} \bigg(\frac{\Delta a_{\mu}}{3 \times 10^{-9}}\bigg)^2 \bigg(\frac{\theta_{e\mu}}{10^{-5}}\bigg)^2 \\ \mathrm{BR}(\tau \to \mu\gamma) &\approx 4 \times 10^{-8} \bigg(\frac{\Delta a_{\mu}}{3 \times 10^{-9}}\bigg)^2 \bigg(\frac{\theta_{\mu\tau}}{10^{-2}}\bigg)^2 \end{aligned}$$

• EDMs vs. $(g-2)_{\mu}$


$$egin{array}{rcl} d_e &\simeq& \left(rac{\Delta a_\mu}{3 imes 10^{-9}}
ight) 10^{-28} \left(rac{\phi_e^{CPV}}{10^{-4}}
ight) \; e \; {
m cm}\,, \ d_\mu &\simeq& \left(rac{\Delta a_\mu}{3 imes 10^{-9}}
ight) 2 imes 10^{-22} \; \phi_\mu^{CPV} \; e \; {
m cm}\,. \end{array}$$

- Main messages:
 - $\Delta a_{\mu} \approx (3 \pm 1) \times 10^{-9}$ requires a nearly flavor and CP conserving NP
 - Large effects in the muon EDM $d_{\mu} \sim 10^{-22} \ e \ {\rm cm}$ are still allowed!


[Giudice, P.P., & Passera, '12]

[Chislett, Crivellin, Hoferichter, Schmidt-Wellenburg - Prospects for a Muon g – 2/EDM Measurement Using Re-accelerated

