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QUANTUM DEVICES: a definition

A quantum machine is a device whose degrees of freedom are intrinsically quantum mechanical

TRANSISTOR → electronic bandgap LASER→ 3/4-levels system

Every machine is made of atoms and its microscopic degrees of freedom (the electrons and nuclei) are
intrinsically quantum. Nevertheless, both the laser and the transistor are classical machines, because their
operational degrees of freedom are purely classical



WHAT IS A QUANTUM SENSOR?

“Quantum sensors are individual systems or ensembles of systems that use
quantum coherence, interference and entanglement to determine physical
quantities of interest.”
Rev. Mod. Phys. 89, 035002 (2017)

“A device whose measurement (sensing) capability is enabled by our ability to
manipulate and readout its quantum states.”
M. Safranova and D. Budker

measurementrandom interaction with fieldinitialised
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WHAT IS A QUANTUM SENSOR?

Quantum sensors have been realised in multiple physical systems with very different operating principles.

Solid-state spins Atomic ensemblesSuperconducting circuits

It might take some more time to adapt them in real-world settings, but they are already in use in the lab.
Applied to problems in which significant gain (up to 1000s) compared to conventional detectors is required.
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quantum microwaves in DARK MATTER search

<latexit sha1_base64="eGTLDa2XmrNfm+UqEYsyp5XHa+U=">AAAB/XicbVDLSgMxFM3UV62v8bFzEyyCCy0ztagLF0U3LivYB3TGkknTNjTJDElGqMPgr7hxoYhb/8Odf2PazkJbD1w4nHMv994TRIwq7TjfVm5hcWl5Jb9aWFvf2Nyyt3caKowlJnUcslC2AqQIo4LUNdWMtCJJEA8YaQbD67HffCBS0VDc6VFEfI76gvYoRtpIHXvvErrOfXJSPk29Y5h4ksNm2rGLTsmZAM4TNyNFkKHWsb+8bohjToTGDCnVdp1I+wmSmmJG0oIXKxIhPER90jZUIE6Un0yuT+GhUbqwF0pTQsOJ+nsiQVypEQ9MJ0d6oGa9sfif145178JPqIhiTQSeLurFDOoQjqOAXSoJ1mxkCMKSmlshHiCJsDaBFUwI7uzL86RRLrlnpcptpVi9yuLIg31wAI6AC85BFdyAGqgDDB7BM3gFb9aT9WK9Wx/T1pyVzeyCP7A+fwCnnpNz</latexit>

< 10�23 W

Wave-like 
dark matter

Unknown frequency (particle mass)

Although a number of experimental efforts to detect
axions are now underway, the Sikivie microwave cavity
detector [14,15] marked the first feasible means of
detecting the so-called “invisible” axion. This paper
described the first axion haloscope, in which a static
magnetic field provided a new channel for the axion to
decay into a photon. The process, known as inverse
Primakoff conversion [16], follows from the equations of
axion electrodynamics. The resulting excess power from
the photon could then be resonantly enhanced and detected
in a microwave cavity. A few years ago, the axion dark
matter experiment, ADMX, became the first experiment to
reach DFSZ sensitivity. Defined as “run 1A”, this run
resulted in the reporting of a limit on gaγγ over axion masses
of 2.68–2.7 μeV [17]. The experiment recently extended
this limit to cover the range from 2.81–3.31 μeV, corre-
sponding to a frequency range from about 680 to 790 MHz.
The resulting data, acquired over a period between January
and October of 2018, are referred to as “run 1B” [18]. This
paper gives complete details of the analysis for run 1B,
assuming a fully virialized dark matter halo. While the
foundation of the analysis is unchanged from previous runs,
improvements have been made, and the details specific to
this run are explained.
There are two key components to a haloscope analysis

worth emphasizing: axion search data and noise charac-
terization data. The former is acquired by digitizing power
from the cavity, in series with a number of other processes
(described as the “run cadence”), whereas the latter is
acquired periodically by halting axion search operations
and performing a noise temperature measurement. Both are
essential to the final analysis.
Ultimately, the analysis hinges not only on these

two distinct sets of data, but on a number of other factors,
which are described in the course of this paper, and
outlined below.

1. The experimental configuration is described for run
1B (Sec. II), with particular emphasis on the aspects
of the receiver chain that were updated for this run.
For the purposes of this paper, the receiver chain is
defined as all rf components that are used in both
axion search and noise characterization modes, as
described in Sec. II. The design of the receiver chain
directly motivates particular choices for the analysis.

2. Section III undertakes a discussion of the run
cadence and means of data acquisition. This section
includes the acquisition of sensor data as well as
radio frequency (rf) data. The specifics of the data
preprocessing are elaborated.

3. The techniques that were used to characterize the
system noise temperature, which is critical to quan-
tifying our sensitivity, are explained in Sec. IV. This
section also enumerates and motivates data quality
cuts. Systematic uncertainties are quantified and
discussed.

4. Section V explains the analysis of the raw power
spectra, beginning with removal of the warm elec-
tronics baseline, followed by the filtering and
combining of data to form the grand spectrum via
an optimal weighting procedure.

5. Section VI describes both hardware and software
synthetic axion injections.

6. SectionVII describes the handling ofmode crossings.
7. Section VIII explains the rescan procedure.
8. The final section of this paper (Sec. IX) explains the

limit-setting procedure and interpretation.
Barring the existence of any persistent candidates, the limit
setting process marks the final step in the data-processing
sequence, resulting in a statement of exclusion over the run
1B frequency range.

II. EXPERIMENTAL SETUP

A. Detector

The axion dark matter experiment uses the haloscope
approach to search for dark matter axions [14,19]. A cavity
haloscope is a high-Q, cryogenic, microwave cavity
immersed in a high field solenoid. The ADMX solenoid
can be operated at fields as high as 8.5 T, but, in the interest
of safety and reliability, was operated at 7.6 T throughout
the course of run 1B. The run 1B cavity consisted of a 140-
liter cavity made of copper-plated stainless steel (136 liter
when the tuning rod volume is subtracted). Two 50.8-mm
diameter copper tuning rods ran the length of the cavity
parallel to the axis. The rods were thermalized by their
contact to the top and bottom of the cavity via sapphire
shafts. Each rod could be translated from near the wall to
near the center of the cavity. To detect the axion signal, the
microwave cavity must be tuned to match the signal
frequency defined by fa ≈ma (not accounting for its small
kinetic energy). The axion mass is unknown over a broad
range, so the cavity was tuned by moving metallic rods to
scan a range of frequencies. Power from the cavity was
extracted by an antenna consisting of the exposed center
conductor of a semirigid coaxial cable. The antenna was
inserted into the top of the cavity and connected to the
receiver chain. Assuming their existence, axions would
deposit excess power in the cavity when the cavity was
tuned to the axion mass equivalent frequency. This excess
power would be detected as a small narrow band excess in
the digitized spectrum. The axion power detected by the
antenna is given by

Paxion ¼ 2.2 × 10−23W
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where V is the volume of the cavity, B is the static magnetic
field from the solenoid, ρ is the dark matter density, f is the
frequency of the photon, QL is the loaded quality factor,
Qaxion is the axion quality factor, and C010 is the form
factor. The form factor describes the overlap of the electric
field of the cavity mode and magnetic field generated by the
solenoid [19]. The indices denote the usage of the TM010

mode, which maximizes the form factor. The cavity mode
linewidth is given by Δf ¼ f=QL. The detuning factor,
δfa, is the frequency offset of the axion signal from the
cavity resonance. The cavity coupling parameter, which
describes how much power is picked up by the strongly
coupled antenna, is given by β ¼ ðQ0=QL − 1Þ, where Q0

is the unloaded cavity quality factor. The dark matter
density of 0.43 GeV=cm3 [20] has previously been
assumed by ADMX in presenting its sensitivity. Of note
is that the deposited power is on the order of 10 yoctowatts
—a level which is just barely detectable using state-of-the-
art technology. Typically, the experimentalist has control
over the cavity coupling parameter, volume, magnetic field,
form factor, and quality factor, whereas the remaining
parameters are set by nature. Optimizing for signal-to-noise
(SNR) means maximizing the former, while minimizing the
system noise.
ADMX run 1B relied on two key components to achieve

DFSZ sensitivity: the use of a quantum amplifier, and a
dilution refrigerator. The quantum amplifier afforded the
experiment a low amplifier noise, whereas the dilution
refrigerator reduced the physical temperature of the micro-
wave cavity and the quantum amplifier. Combined, the two
advances reduced the system noise compared to earlier
ADMX experiments [21–23].
ADMX has evolved and been improved since its first run

at DFSZ sensitivity [24]. Each run presents its own unique
set of challenges, motivating unique choices for the
analysis. Challenges pertaining to the run 1B receiver
chain will be described in the following sections.

B. ADMX run 1B receiver chain

The receiver chain for ADMX varies between runs, as
the system is continuously optimized for the frequency
range covered. For run 1B, the part of the receiver chain
that was contained in the cold space (defined as everything
that is colder than room temperature) is shown in Fig. 1.
The receiver chain was designed with two goals in mind:
first, to read out power from the cavity (“axion search
mode”) and second, to characterize the noise of the receiver
chain (“noise characterization mode”). There were a few
factors which motivated the design of the operating modes,
each accessible by flipping an rf switch (indicated by S in
Fig. 1) that allowed the JPA to be connected to either the
cavity (axion search mode) or the hot load (noise charac-
terization mode). The design of the axion search mode was
driven by the desire to minimize attenuation along the
output line and reduce the amplifier and physical noise as

much as possible. Likewise, the design of the noise
characterization mode was motivated by the need to have
a reliable means of heating the 50-ohm terminator (“hot
load”) at the end of the output line, as described in Sec. IV.
With the switch configured to connect the output line to the
cavity, there were three critical rf paths. First, a swept rf
signal from the vector network analyzer (VNA) could be
routed through the cavity via the weak port (2) and up
through the cavity and output line (1), back to the VNA.
The weak port is aptly named to describe the fact that it
connects to a weakly coupled antenna at the base of the
cavity. Such measurements were referred to as transmission
measurements. Next, a swept rf signal could be injected via
the bypass line (3), reflected off the cavity and emerge via
the output line (1). Because this setup was used to measure
power reflected off the cavity, this is referred to colloquially
as a reflection measurement, even though the signal path
technically followed that of an S21 measurement. While the
axion search data were being acquired, connections to
network analyzer input and output were disabled and power
coming out of the cavity via the output line (1) was
amplified, mixed to an intermediate frequency, filtered,

FIG. 1. ADMX run 1B receiver chain. C1, C2 and C3 are
circulators. The temperature stages for all components are shown
on the right-hand side. Components A1, A4, A7 are 20 dB
attenuators. Components A2, A5 and A8 are 3 dB attenuators.
Components A3 and A9 are 20 dB attenuators, whereas A6 is a
30 dB attenuator. The final stage 30-dB attenuator A6 on the
bypass line played an important role in the noise calibration
technique described in Sec. IV C. Off resonance, thermal photons
from this attenuator were reflected off the cavity, and emerged up
through the output line. A Y-factor measurement was performed
on these data as heat was applied to the quantum amplifier
package.
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and further amplified before reaching the digitizer
(Signatec PX1500 [25]). The other two setups (reflection
and transmission routes) were used to characterize the
detector and receiver chain. Reflection measurements were
used to determine and adjust the antenna coupling, and
transmission measurements were used to determine the
cavity quality factor and resonant frequency. Broadly
speaking, both measurements were used throughout
data-taking operations to check the integrity of the receiver
chain, as abnormal transmission or reflection measure-
ments could be indicative of problems along the sig-
nal path.
In the cold space, signals from the cavity on the output

line were amplified by a Josephson parameteric amplifier
(JPA) [26,27] followed by a heterostructure field-effect
transistor (HFET), model number LNF-LNC03_14A from
low noise factory [28]. In general, the noise contribution
from the first stage amplifier was the dominant source of
noise coming from the electronics [29], motivating the
decision to place the JPA, with its exceedingly low
amplifier noise, as close to the strongly coupled antenna
as possible. The JPAwas highly sensitive to magnetic fields
and was therefore strategically placed in a low-field region,
accomplished via a bucking coil that partially cancels the
main magnetic field about a meter above the cavity. The
JPA was also encased in passive magnetic shielding
consisting of a mu-metal cylinder. For the purposes of this
paper, all rf electronics from the HFET to the warm
electronics are defined as the “downstream” electronics.
Further, all components from the first circulator, C1, to the
third circulator, C3, including the JPA, are defined as the
“quantum electronics package.” The quantum electronics
package was contained within a metal framework that is
thermally sunk to the top of the cavity. This package was
contained in the 250 mK temperature space shown
in Fig. 1.
Upon exiting the insert, signals on the output line entered

the warm electronics. First, the signal was amplified by a
postamplifier located immediately outside the insert. The
signal then proceeded to the receiver box. The chain of

components inside the receiver box can be seen in Fig. 2.
The signal from the cavity output was first amplified, then
mixed with a local oscillator, before being filtered via a low
pass filter, amplified and further filtered, first by a 2-MHz
bandpass filter, and later by a 150-kHz bandpass filter.
Upon exiting the receiver box, the signal was digitized with
a Nyquist sampling time of 10 ms, yielding a 48.8-kHz
wide spectrum centered at the cavity frequency with bins
95-Hz wide. The native digitizer sampling rate itself was
200 Megasamples per second, which was downsampled to
25 Megasamples per second. For each bin, 10,000 of the
10-ms subspectra were coadded to produce the power
spectrum from the cavity averaged over 100 s. The noise
in each spectrum bin can be reliably approximated as
Gaussian. Further instrumentation details can be found in
Ref. [30]. There were two data output paths: one for the
medium-resolution analysis (this paper) and another for the
high-resolution analysis, which is currently in preparation.
For the medium-resolution analysis, the 100 s of data were
averaged, resulting in a 512-point power spectrum with
95-Hz bin widths. For the high-resolution analysis, an
inverse FFTwas performed with sufficient phase coherence
to be able to reconstruct the characteristics of the time
series. The 100-s digitization time was a prerequisite for
performing a high-resolution search [31]. The high-reso-
lution analysis would be able to detect annual and diurnal
shifts in the frequency of an axion signal if detected,
something unresolvable with the medium-resolution.

III. RUN CADENCE

The goal of an axion haloscope analysis is to search for
power fluctuations above an average noise background that
could constitute an axion signal. Rescans are used to
identify persistent candidates and rule out candidates that
arise from statistical fluctuations. For an axion signal to
trigger a rescan, it must be flagged as a candidate in
the analysis. In ADMX run 1B, there were three distinct
types of candidates, which are explained in Sec. VIII, but,
in general, a candidate can be thought of as a power

FIG. 2. Components within the ADMX run 1B receiver box. From left to right: (A) and (B) dc amplifiers (minicircuits
ZX60-3018Gþ), (C) directional coupler (minicircuits ZX30-17-5-Sþ), (D) polyphase microwave image-reject mixer, (E) low pass
filter (minicircuits ZX75LP-50þ), (F) directional coupler (minicircuits ZX30-17-5-Sþ), G) 2-MHz bandpass filter (minicircuits
SBP-10.7þ), (H) dc amplifier (minicircuits ZFL-500þ), (I) 2-MHz bandpass filter (minicircuits SBP-10.7þ), (J) dc amplifier
(minicircuits ZFL-500þ), (K) 150-kHz wide custom made filter. The center frequency of the two filters was 10.7 MHz. The intent of
these filters is to reduce wideband noise that would cause the digitizer to clip. The directional couplers enable trouble-shooting before
and after the mixing stage.
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fluctuation above the average noise background. With this
in mind, the raw data were processed in such a way that
accounted for variations in the individual spectra both at a
single frequency and across a range of frequencies.
An axion haloscope search must incorporate mecha-

nisms for discerning false signals from a true signal.
Possible false signals include statistical fluctuations, rf
interference, and intentionally injected synthetic axion
signals. For ADMX run 1B, such false signals were
rejected via both data quality cuts as well as the rescan
procedure, described in Secs. V and VIII.
The haloscope technique is established as an effective

means to search for axions, as evidenced by the fact that it
is currently one of only a few types of experiment that
have reached DFSZ sensitivity. Nevertheless, a well-known
shortcoming of the haloscope technique is its inability to
search over a wide range of axion masses quickly.
Therefore, a critical figure of merit for the axion haloscope
is the scan rate, which can be written as
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where Tsys is the system noise temperature [19,32]. This
equation represents the instantaneous scan rate; in other
words, it does not account for ancillary measurements and
amplifier biasing procedures. Data-taking operations
involved tuning, with the scan rate set according to the
parameters above. One advantage of a haloscope experi-
ment, however, is that it possesses a robust means of
confirming the existence of a dark matter candidate. The
data-taking strategy for the run took the form of a decision
tree such that advancement to each new step signified a
higher probability of axion detection. The strategy is
illustrated in Fig. 3.
The first step was tuning the cavity at a fixed rate over a

predefined frequency range, called a nibble, which was
typically about 10-MHz wide, but varied depending on run
conditions. Ideally, the first pass through a nibble would
occur at a rate that was commensurate with achieving
DFSZ sensitivity, although, due to fluctuating noise levels,
that was not always the case. The center frequency of
spectra acquired under ideal operating conditions were
typically spaced 2-kHz apart. The scan rate varied depend-
ing on the achievable operating conditions, including
quality factor and system noise temperature.
Data-taking under these circumstances advanced as

follows. Each 100-s digitization was accompanied by a
series of measurements and procedures needed to charac-
terize and optimize the receiver chain (Table I). Every

pass through this sequence was referred to as a single
data-taking cycle and lasted approximately 2 min without
JPA optimization. An additional step of recoupling the
antenna was also performed on occasion. This adjustment
required user intervention and was done manually. Under
ideal operating conditions, this cadence continued for the
duration of a data “nibble,” after which a rescan procedure
was implemented. Rescans acquired more data in regions
where axion candidates were flagged. The precise defi-
nition of what constitutes a candidate is described in
Sec. VIII. The rescan procedure used the same run cadence,
but with significantly increased tuning rate, slowing down
only at axion candidate frequencies. After rescan, all the
data were examined to see if the candidate was persistent,
followed by other tests to evaluate the axionic nature of the
signal. The analysis was run continually throughout data-
taking so that the scan rate could be adjusted in real time, to
reflect changes in the experiment’s sensitivity to axions.
A detailed discussion of rescan procedure and data-taking
decision tree can be found in Sec. VIII.

IV. ANALYSIS INPUTS

A. System noise characterization

Central to any haloscope search is the ability to achieve a
large SNR for axions. Given that ADMX operates in the
high-temperature limit, where hf ≪ kBT, the system noise
temperature, Tsys, can be written as

Tsys ¼ Tcav þ Tamp; ð3Þ

where Tamp is the noise temperature of the amplifiers and
Tcav is the physical temperature of the cavity. The physical
temperature of the cavity was measured with a temperature
sensor mounted to the top of the cavity. The rods were
assumed to be well-thermalized because no heating of the
cavity was observed at high rod speeds, and no bump in the
spectra appeared on resonance that could be attributable to
poor thermalization. The amplifier noise can be written as

Tamp ¼ Tquantum þ THFET=Gquantum

þ Tpost=ðGquantumGHFETÞ; ð4Þ

where Tquantum is the noise temperature of the JPA, THFET is
the noise temperature of the HFET, and Tpost is the noise
temperature of the postamplifier. The gain of the first stage
amplifier (the JPA) is given by Gquantum, and the gain of the
HFET is given by GHFET.
This means that the noise power, Pn can be written as

Pn ¼ kBTsysb; ð5Þ

where Pn is the noise power, kB is the Boltzmann constant,
and b is the bandwidth over which the noise power is
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Thousands of years are required to probe the open parameter space with the conventional hetherodyne detector

Dilution refrigerator (mK temperature)
Quantum-limited amplifiers
Heterodyne microwave receiver



Why 1000s-years? df/dt ∝ T−2
sys

Even though the experiment is cooled to the lowest temperatures in the Universe (∼ 10 mK), and Josephson
Parametric Amplifiers (JPA) are employed to minimize added noise, they introduce fundamental noise
(SQL, Standard Quantum Limit noise)

Tsys = Tc + TA
Tc cavity physical temperature
TA effective noise temperature of the amplifier

kBTsys = hν
(

1
ehν/kBT − 1
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ADMX: Axion Dark Matter eXperiment

at 10 GHz frequency



Why 1000s-years? df/dt ∝ T−2
sys

Even though the experiment is cooled to the lowest temperatures in the Universe (∼ 10 mK), and Josephson
Parametric Amplifiers (JPA) are employed to minimize added noise, they introduce fundamental noise
(SQL, Standard Quantum Limit noise)

Tsys = Tc + TA
Tc cavity physical temperature
TA effective noise temperature of the amplifier

kBTsys = hν
(

1
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+
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Na > 1

at 10 GHz frequency



beyond the SQL with a “microwave phototube” ⇐⇒ detection of quantum microwaves

B [T] PKSVZ
sig [yW(ph/s)] PDFSZ

sig [yW(ph/s)]
νc = 7.37 GHz 2 0.84(0.17) 0.11(0.026)

12 30.4(6.2) 6.3(0.86)
νc = 10 GHz 12 22.39(3.38) 3.11(0.47)

signal power and photon rate for benchmark QCD axion models in yoctowatt (yW= 10−24 W)

Using quantum-limited linear amplifiers (Josephson parametric amplifiers) the noise set by quantum
mechanics exceeds the signal in the high frequency range, whereas photon counting has no intrinsic limitations



SMPDS in the microwave range

Detection of individual microwave photons is a challenging task because of their low energy
e.g. hν = 2.1 × 10−5 eV for ν = 5 GHz

Requirements for dark matter search:

◦ detection of itinerant photons due to involved intense B fields

◦ lowest dark count rate Γ < 100 Hz

◦ ≳ 40 − 50 % efficiency

◦ large “dynamic” bandwidth ∼ cavity tunability



DETECTION OF QUANTUM MICROWAVES

The detection of individual microwave photons has been pioneered by atomic cavity quantum electrodynamics
experiments and later on transposed to circuit QED experiments

Nature 400, 239–242 (1999)

The first term describes a single photon mode (a) as a harmonic
oscillator of frequency vr. The second term describes an atom or
qubit, with transition frequency va, as a two-level pseudo-spin (sz)
system. The third term is a dispersive interaction that can be viewed
as either an atom-state-dependent shift of the cavity frequency or a
photon-number-dependent light shift (the Stark plus Lamb shifts) of
the atom transition frequency. This interaction means that when the
atom state is changed, an energy 2"x is added to or removed from
each cavity photon. The form of the interaction is of particular inter-
est because it commutes with the individual atom and photon terms,
meaning that it is possible to do a quantum non-demolition14,15

(QND)measurement of either the atom state bymeasuring the phase
shift of photons in the cavity16 or photon number using the atomic
Stark shift17,18.

A QNDmeasurement protocol to measure photon number might
drive the atom at the Stark shifted atom frequency vn5va1 2nx,
followed by an independent measurement of the atom state. If the
atom is excited, the field must have exactly n photons. Because the
photon number is not changed in this process, theQNDprotocol can
be repeated indefinitely. In practice, all measurements have some
demolition, which limits the number of repetitions before the mea-
surement changes themeasured variable (the number of photons). In
our experiment, the cavity transmission is used to measure the atom
state, so while the interaction is QND, the detection performed here
is not. Any cavity QED experiment that employs a fixed coupling will
have demolition arising from the overlap of the atomic and photonic
wavefunctions, creating a probability, (g/D)2, that a measurement of
photon number will absorb a photon or ameasurement of the atomic
state will induce a transition, demolishing the measured state. This
source of demolition could be minimized by adiabatically changing
the coupling strength, as happens in the case of a Rydberg or alkali
atom slowly passing through a cavity.

In analogy with the strong resonant case, the strong dispersive
limit can be entered when the Stark shift per photon is much larger
than the decoherence rates (2x. c, k, 1/T; the white region in Fig. 1),
while the demolition remains small (g/D)2= 1. The small number-

dependent frequency shift present in the weak dispersive regime (red
region in Fig. 1) becomes so large that each photon number produces
a resolvable peak in the atomic transition spectrum, allowing the
measurement we report here. It has been proposed that the disper-
sive photon shift could be used to make a QND measurement of the
photon number state of the cavity using Rydberg atoms19. Previously
attainable interaction strengths required photon number detection
experiments to employ absorptive quantum Rabi oscillations in the
resonant regime20, allowing a QND measurement21 restricted to dis-
tinguishing only between zero and one photon.More recently, a non-
resonant Rydberg atom experiment entered the strong dispersive
limit, measuring the single photonWigner function with demolition
(g/D)25 6%, in principle allowing ,15 repeated measurements22.
We present here a circuit QED experiment clearly demonstrating
the strong dispersive regime, resolving states of up to ten photons,
and having demolition (g/D)2, 1%, which should allow up to,100
repeated QND measurements.

In circuit QED1,16 the ‘atom’–photon interaction is implemented
by a Cooper pair box (CPB)23, chosen for its large dipole moment,
capacitively coupled to a full-wave one-dimensional transmission
line resonator (Fig. 2). The reduced mode volume of a one-dimen-
sional resonator comparedwith that of a three-dimensional cavity7 of
similar wavelength (w2l< 1026 cm3 versus l3< 1 cm3), where w is
the transverse dimension of the resonator, yields 106 times larger
energy density. This large energy density, together with the large
geometric capacitance (dipole moment) of the CPB, yields an inter-
action strength that is g/va,r5 2% of the total photon energy. This
dimensionless coupling, 104 times larger than currently attainable in
atomic systems, allows circuit QED to overcome the larger decoher-
ence rates present in the solid-state environment, maintaining
g/ceff5 40 possible coherent vacuum Rabi oscillations in the strong
resonant regime, where ceff5 (c1 k)/2 is the combined photon-
qubit decay rate. The equivalent comparison of the dispersive inter-
action to decoherence examines the Stark shift per photon in relation
to the qubit decay, 2x/c5 6, and determines the resolution of photon
number peaks. Comparing instead to the cavity lifetime yields an
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Figure 2 | A Cooper pair box inside a cavity, and spectral features of the
circuit QED system. a, An on-chip coplanar waveguide (CPW) cavity with
resonant frequency vr/2p5 5.7GHz. The area within the red box is shown
magnified in b. b, TheCooper pair box (CPB), placed at a voltage antinode of
the CPW (metal is beige, substrate is dark), consists of two superconducting
islands (light blue) connected by a pair of Josephson tunnel junctions
(purple in c). Both the CPB and cavity are made from aluminium. The
transition frequency between the lowest two CPB levels is
va=2p<

ffiffiffiffiffiffiffiffiffiffiffiffi
8EJEC

p
=h~6:9 GHz, where the Josephson energy EJ/h5 11.5GHz

and the charging energy EC/h5 e2/2CSh5 520MHz, where CS is the total
capacitance between the islands. Both the large dipole coupling,
g/2p5 105MHz, and the small charging energy are due to the large
geometric capacitance of the CPB to the resonator. The anharmonicity is
10%, allowing the first two levels to be addressed uniquely, though higher
levels do contribute dispersive shifts, resulting in a negative effective Stark
shift per photon, xeff/p5217MHz. d, Dispersive cavity–qubit energy levels.
Each level is labelled by the qubit state, |gæ or |eæ, and photon number |næ.

Dashed lines are qubit–cavity energy levels with no interaction (g5 0),
where solid lines show eigenstates dressed by the dispersive interaction.
Transitions from |næ R |n1 1æ show the qubit-dependent cavity shift.
Transitions at constant photon number from |gæ |næ R |eæ |næ show a
photon-number-dependent frequency shift, 2nxeff. e, Cavity–qubit spectral
response. To measure the qubit state and populate the cavity, a coherent
tone is driven at vrf (bottom left), which is blue detuned from the cavity by
several linewidths, reducing any cavity nonlinearity. Thermal fields are
generated with gaussian noise applied in the red envelope, spanning the
cavity. The qubit spectrum (bottom right) is detuned from the cavity by
D/2p5 1.2GHz? g/2p. Information about photon number is measured by
monitoring transmission at vrf while driving the qubit with a spectroscopy
tone atvs. Each photon shifts the qubit transition by more than a linewidth
( |xeff | /2p. c/2p5 1.9MHz, k/2p5 250 kHz), giving a distinct peak for
each photon number state. The maximum number of resolvable peaks is
2 |xeff | /k.
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In both cases two-level atoms interact directly with a microwave field mode∗ in the cavity

∗ a quantum oscillator whose quanta are photons
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Cavity-QED for photon counting

Can the field of a single photon have a large effect on the atom (TLS)?

Interaction: H = −d⃗ · E⃗, E(t) = E0 cosωqt

It’s a matter of increasing the coupling strength g between the atom and the field g = E⃗ · d⃗:

→ work with large atoms

→ confine the field in a cavity

E⃗ ∝
1

√
V
, V volume

κ rate of cavity photon decay
γ rate at which the qubit loses its excitation
to modes ̸= from the mode of interest

g ≫ κ, γ ⇐⇒ regime of strong coupling
coherent exchange of a field quantum between the atom (matter) and the cavity (field)



CAVITY QED SYSTEM

2

FIG. 1: (color online). a) Standard representation of cavity
quantum electrodynamic system, comprising a single mode of
the electromagnetic field in a cavity with decay rate κ cou-
pled with a coupling strength g = Ermsd/! to a two-level
system with spontaneous decay rate γ and cavity transit time
ttransit. b) Energy spectrum of the uncoupled (left and right)
and dressed (center) atom-photon states in the case of zero
detuning. The degeneracy of the two-dimensional manifolds
of states with n − 1 quanta is lifted by 2g

√
n + 1. c) Energy

spectrum in the dispersive regime (long dash lines). To sec-
ond order in g, the level separation is independent of n, but
depends on the state of the atom.

The key parameters describing a cQED system (see
Table I) are the cavity resonance frequency ωr, the atomic
transition frequency Ω, and the strength of the atom-
photon coupling g appearing in the Jaynes-Cummings
Hamiltonian [14]

H = !ωr

(
a†a +

1

2

)
+

!Ω

2
σz+!g(a†σ−+aσ+)+Hκ+Hγ .

(1)
Here Hκ describes the coupling of the cavity to the con-
tinuum which produces the cavity decay rate κ = ωr/Q,
while Hγ describes the coupling of the atom to modes
other than the cavity mode which cause the excited state
to decay at rate γ (and possibly also produce additional
dephasing effects). An additional important parameter
in the atomic case is the transit time ttransit of the atom
through the cavity.

In the absence of damping, exact diagonalization of the
Jaynes-Cumming Hamiltonian yields the excited eigen-
states (dressed states) [15]

|+, n⟩ = cos θn |↓, n⟩ + sin θn |↑, n + 1⟩ (2)

|−, n⟩ = − sin θn |↓, n⟩ + cos θn |↑, n + 1⟩ (3)

and ground state |↑, 0⟩ with corresponding eigenenergies

E±,n = (n + 1)!ωr ± !
2

√
4g2(n + 1) + ∆2 (4)

E↑,0 = −!∆

2
. (5)

In these expressions,

θn =
1

2
tan−1

(
2g

√
n + 1

∆

)
, (6)

and ∆ ≡ Ω − ωr the atom-cavity detuning.
Figure 1b) shows the spectrum of these dressed-states

for the case of zero detuning, ∆ = 0, between the atom
and the cavity. In this situation, degeneracy of the pair
of states with n quanta is lifted by 2g

√
n + 1 due to the

atom-photon interaction. In the manifold with a sin-
gle excitation, Eqs. (2) and (3) reduce to the maximally

entangled atom-field states
∣∣±, 0

〉
= (|↑, 1⟩ ± |↓, 0⟩) /

√
2.

An initial zero-photon excited atom state |↑, 0⟩ will there-
fore flop into a photon |↓, 1⟩ and back again at the vac-
uum Rabi frequency g/π. Since the excitation is half
atom and half photon, the decay rate of

∣∣±, 0
〉

is (κ+γ)/2.

The pair of states
∣∣±, 0

〉
will be resolved in a transmission

experiment if the splitting 2g is larger than this linewidth.
The value of g = Ermsd/! is determined by the transition
dipole moment d and the rms zero-point electric field
of the cavity mode. Strong coupling is achieved when
g ≫ κ, γ [15].

For large detuning, g/∆ ≪ 1, expansion of Eq. (4)
yields the dispersive spectrum shown in Fig. 1c). In this
situation, the eigenstates of the one excitation manifold
take the form [15]

∣∣−, 0
〉

∼ −(g/∆) |↓, 0⟩ + |↑, 1⟩ (7)∣∣+, 0
〉

∼ |↓, 0⟩ + (g/∆) |↑, 1⟩ . (8)

The corresponding decays rates are then simply given by

Γ−,0 ≃ (g/∆)2γ + κ (9)

Γ+,0 ≃ γ + (g/∆)2κ. (10)

More insight into the dispersive regime is gained by
making the unitary transformation

U = exp
[ g

∆
(aσ+ − a†σ−)

]
(11)

and expanding to second order in g (neglecting damping
for the moment) to obtain

UHU † ≈ !
[
ωr +

g2

∆
σz

]
a†a +

!
2

[
Ω +

g2

∆

]
σz . (12)

As is clear from this expression, the atom transition is ac-
Stark/Lamb shifted by (g2/∆)(n + 1/2). Alternatively,
one can interpret the ac-Stark shift as a dispersive shift
of the cavity transition by σzg

2/∆. In other words, the
atom pulls the cavity frequency by ±g2/κ∆.

A simple theoretical model (Jaynes-Cummings)
describes atoms as two-level, spin-like systems
interacting with a quantum oscillator

2
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system with spontaneous decay rate γ and cavity transit time
ttransit. b) Energy spectrum of the uncoupled (left and right)
and dressed (center) atom-photon states in the case of zero
detuning. The degeneracy of the two-dimensional manifolds
of states with n − 1 quanta is lifted by 2g
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spectrum in the dispersive regime (long dash lines). To sec-
ond order in g, the level separation is independent of n, but
depends on the state of the atom.

The key parameters describing a cQED system (see
Table I) are the cavity resonance frequency ωr, the atomic
transition frequency Ω, and the strength of the atom-
photon coupling g appearing in the Jaynes-Cummings
Hamiltonian [14]
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Here Hκ describes the coupling of the cavity to the con-
tinuum which produces the cavity decay rate κ = ωr/Q,
while Hγ describes the coupling of the atom to modes
other than the cavity mode which cause the excited state
to decay at rate γ (and possibly also produce additional
dephasing effects). An additional important parameter
in the atomic case is the transit time ttransit of the atom
through the cavity.

In the absence of damping, exact diagonalization of the
Jaynes-Cumming Hamiltonian yields the excited eigen-
states (dressed states) [15]

|+, n⟩ = cos θn |↓, n⟩ + sin θn |↑, n + 1⟩ (2)

|−, n⟩ = − sin θn |↓, n⟩ + cos θn |↑, n + 1⟩ (3)

and ground state |↑, 0⟩ with corresponding eigenenergies
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and ∆ ≡ Ω − ωr the atom-cavity detuning.
Figure 1b) shows the spectrum of these dressed-states

for the case of zero detuning, ∆ = 0, between the atom
and the cavity. In this situation, degeneracy of the pair
of states with n quanta is lifted by 2g
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n + 1 due to the

atom-photon interaction. In the manifold with a sin-
gle excitation, Eqs. (2) and (3) reduce to the maximally

entangled atom-field states
∣∣±, 0

〉
= (|↑, 1⟩ ± |↓, 0⟩) /

√
2.

An initial zero-photon excited atom state |↑, 0⟩ will there-
fore flop into a photon |↓, 1⟩ and back again at the vac-
uum Rabi frequency g/π. Since the excitation is half
atom and half photon, the decay rate of

∣∣±, 0
〉

is (κ+γ)/2.

The pair of states
∣∣±, 0

〉
will be resolved in a transmission

experiment if the splitting 2g is larger than this linewidth.
The value of g = Ermsd/! is determined by the transition
dipole moment d and the rms zero-point electric field
of the cavity mode. Strong coupling is achieved when
g ≫ κ, γ [15].

For large detuning, g/∆ ≪ 1, expansion of Eq. (4)
yields the dispersive spectrum shown in Fig. 1c). In this
situation, the eigenstates of the one excitation manifold
take the form [15]

∣∣−, 0
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∼ −(g/∆) |↓, 0⟩ + |↑, 1⟩ (7)∣∣+, 0
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The corresponding decays rates are then simply given by
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Stark/Lamb shifted by (g2/∆)(n + 1/2). Alternatively,
one can interpret the ac-Stark shift as a dispersive shift
of the cavity transition by σzg

2/∆. In other words, the
atom pulls the cavity frequency by ±g2/κ∆.

− ωr cavity resonance frequency

− Ω atomic transition frequency

− g strength of the atom-photon coupling



from cavity-QED to circuit-QED

g is significantly increased compared to Rydberg atoms:

→ artificial atoms are large (∼ 300µm)
=⇒ large dipole moment

→ E⃗ can be tightly confined
E⃗ ∝

√
1/λ3

ω2λ ≈ 10−6 cm3 (1D) versus λ3 ≈ 1 cm3 (3D)
=⇒ 106 larger energy density

8 CHAPTER 2. REVIEW AND THEORY

[Leek07], coupling of two qubits via a cavity bus [Majer07, Sillanpää07], observation of
the

p
n nonlinearity of the Jaynes-Cummings ladder [Fink08], observation of the Lamb

shift [Fragner08], cooling and amplification with a qubit [Grajcar08], controlled symme-
try breaking in circuit QED [Deppe08], generation of Fock states [Hofheinz08] and arbi-
trary superpositions of Fock states [Hofheinz09], observation of collective states of up to 3
qubits [Fink09b], observation of Autler-Towns and Mollow transitions [Baur09], high drive
power nonlinear spectroscopy of the vacuum Rabi resonance [Bishop09], demonstration
of two qubit entanglement using sideband transitions [Leek09], demonstration of gates
and basic two qubit quantum computing algorithms [DiCarlo09], violation of Bell’s in-
equality [Ansmann09], demonstration of single shot qubit readout [Mallet09], implemen-
tation of separate photon storage and qubit readout modes [Leek10], measurement of the
quantum-to-classical transition and thermal field sensing in cavity QED [Fink10], quan-
tum non-demolition detection of single microwave photons [Johnson10], implementa-
tion of optimal qubit control pulse shaping [Motzoi09, Chow10a, Lucero10], preparation
and generation of highly entangled 2 and 3-qubit states [Chow10b, Neeley10, DiCarlo10]
and the first measurement of microwave frequency photon antibunching [Bozyigit10c,
Bozyigit10b] using linear amplifiers and on-chip beam splitters.

Similarly, strong interactions have also been observed between superconducting
qubits and freely propagating photons in microwave transmission lines. This includes
the observation of resonance fluorescence [Astafiev10a], quantum limited amplification
[Astafiev10b] and electromagnetically induced transparency [Abdumalikov10] with a sin-
gle artificial atom. The rapid advances in circuit QED furthermore inspired and enabled
the demonstration of single phonon control of a mechanical resonator passively cooled to
its quantum ground state [O´Connell10].

We will now review the basics of circuit QED using transmon type charge qubits and
coplanar waveguide resonators.

L=19 mm

a

b

Figure 2.1: Schematic of an experimental cavity QED (a) and circuit QED (b) setup. a, Optical analog of circuit
QED. A two-state atom (violet) is coupled to a cavity mode (red). b, Schematic of the investigated circuit QED
system. The coplanar waveguide resonator is shown in light blue, the transmon qubit in violet and the first
harmonic of the standing wave electric field in red. Typical dimensions are indicated.

(a) (g/2π)cavity ∼ 50 kHz

(b) (g/2π)circuit ∼ 100 MHz (typical)

104 larger coupling than in atomic systems



“Atoms”: (almost) natural qubits

In Sec. IV, we provide a review of how single- and two-qubit
operations are typically implemented in superconducing circuits, by
using a combination of local magnetic flux control and microwave
drives. In particular, we discuss the family of two-qubit gates arising
from a capacitive coupling between qubits, and introduce several
recent advances that have been demonstrated to achieve high-fidelity
gates, as well as applications in quantum information processing that
use these gates. The continued development of high-fidelity two-qubit
gates in superconducting qubits is a highly active research area. For
this reason, we include sufficient technical details that a reader may
use this review as a starting point to critically assess the pros and cons
of the various gates, as well as develop an appreciation for the types of
gate-engineering already implemented in-state-of-the-art supercon-
ducting quantum processors.

Finally, in Sec. V, we discuss the physics and engineering associ-
ated with the dispersive readout technique, typically used to measure
the individual qubit states in modern quantum processors. After a
discussion of the theory behind dispersive coupling, we give an intro-
duction to design of Purcell filters and the development of quantum-
limited parametric amplifiers (PAs).

II. ENGINEERING QUANTUM CIRCUITS
In this section, we will demonstrate how quantum systems based

on superconducting circuits can be engineered to achieve certain
desired properties. Using the most common qubit modalities, we dis-
cuss how properties such as the qubit transition frequency, anharmo-
nicity, and noise susceptibility can be tailored by the choice of circuit
topology and element parameter values. We also discuss how to engi-
neer the interactions between different quantum systems, in particular,
the cases of qubit-qubit and qubit-resonator couplings.

A. From quantum harmonic oscillator to the transmon
qubit

A quantum mechanical system is governed by the time-
dependent Schr€odinger equation

Ĥ jwðtÞi ¼ i"h
@

@t
jwðtÞi; (1)

where jwðtÞi is the state of the quantum system at time t, "h is the
reduced Planck’s constant h/2p, and Ĥ is the “Hamiltonian” that
describes the total energy of the system. The “hat” is used to indicate
that Ĥ is a quantum operator. As the Schr€odinger equation is a first-
order linear differential equation, the temporal dynamics of the quan-
tum system may be viewed as a straightforward example of a linear
dynamical system with a formal solution

jwðtÞi ¼ e$iĤ t="hjwð0Þi: (2)

The time-independent Hamiltonian Ĥ governs the time evolution of
the system through the operator e$iĤ t="h. Thus, just as with classical
systems, determining the Hamiltonian of a system—whether the clas-
sical Hamiltonian H or its quantum counterpart Ĥ—is the first step to
deriving its dynamical behavior. In Sec. IV, we consider the case when
the Hamiltonian is time-dependent in the context of qubit control.

To understand the dynamics of a superconducting qubit circuit,
it is natural to start with the classical description of a linear LC reso-
nant circuit [Fig. 1(a)]. In this system, energy oscillates between

electrical energy in the capacitor C and magnetic energy in the induc-
tor L. In the following, we will arbitrarily associate the electrical energy
with the “kinetic energy” and the magnetic energy with the “potential
energy” of the oscillator. The instantaneous, time-dependent energy in
each element is derived from its current and voltage

EðtÞ ¼
ðt

$1
Vðt0ÞIðt0Þdt0; (3)

where Vðt0Þ and Iðt0Þ denote the voltage and current of the capacitor
or inductor.

To derive the classical Hamiltonian, we follow the standard
approach used in classical mechanics: the Lagrange-Hamilton formu-
lation. Here, we represent the circuit elements in terms of one of its
generalized circuit coordinates, charge or flux. In the following, we
pick flux, defined as the time integral of the voltage

UðtÞ ¼
ðt

$1
Vðt0Þdt0: (4)

In this example, the voltage at the node is also the branch voltage across
the element. In this section, we will simply refer to these as node vol-
tages and fluxes for convenience. For a more detailed discussion of
nodes and branches in this context, we refer the reader to Ref. 44.

Note that in the following, we could have exchanged our associa-
tions with kinetic energy (momentum coordinate) and potential
energy (position coordinate), and instead start with the charge variable
Q(t), which is the time integral of the current I(t).

By combining Eqs. (3) and (4), using the relations V ¼ L dI=dt
and I ¼ C dV=dt, and applying the integration by parts formula, we

FIG. 1. (a) Circuit for a parallel LC-oscillator (quantum harmonic oscillator, QHO),
with inductance L in parallel with capacitance, C. The superconducting phase on
the island is denoted as /, referencing the ground as zero. (b) Energy potential for
the QHO, where energy levels are equidistantly spaced "hxr apart. (c) Josephson
qubit circuit, where the nonlinear inductance LJ (represented by the Josephson-
subcircuit in the dashed orange box) is shunted by a capacitance, Cs. (d) The
Josephson inductance reshapes the quadratic energy potential (dashed red) into
sinusoidal (solid blue), which yields nonequidistant energy levels. This allows us to
isolate the two lowest energy levels j0i and j1i, forming a computational subspace
with an energy separation "hx01, which is different than "hx12.
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E01 = E1 − E0 = ℏω01 ̸= E02 = E2 − E1 = ℏω21
→ good two-level atom approximation

control internal state by shining laser tuned at the
transition frequency:
H = −d⃗ · E⃗(t), with E(t) = E0 cosω01t



qubits from “artificial atoms”: LC circuit

In Sec. IV, we provide a review of how single- and two-qubit
operations are typically implemented in superconducing circuits, by
using a combination of local magnetic flux control and microwave
drives. In particular, we discuss the family of two-qubit gates arising
from a capacitive coupling between qubits, and introduce several
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gates, as well as applications in quantum information processing that
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duction to design of Purcell filters and the development of quantum-
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dependent Schr€odinger equation
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reduced Planck’s constant h/2p, and Ĥ is the “Hamiltonian” that
describes the total energy of the system. The “hat” is used to indicate
that Ĥ is a quantum operator. As the Schr€odinger equation is a first-
order linear differential equation, the temporal dynamics of the quan-
tum system may be viewed as a straightforward example of a linear
dynamical system with a formal solution
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The time-independent Hamiltonian Ĥ governs the time evolution of
the system through the operator e$iĤ t="h. Thus, just as with classical
systems, determining the Hamiltonian of a system—whether the clas-
sical Hamiltonian H or its quantum counterpart Ĥ—is the first step to
deriving its dynamical behavior. In Sec. IV, we consider the case when
the Hamiltonian is time-dependent in the context of qubit control.

To understand the dynamics of a superconducting qubit circuit,
it is natural to start with the classical description of a linear LC reso-
nant circuit [Fig. 1(a)]. In this system, energy oscillates between

electrical energy in the capacitor C and magnetic energy in the induc-
tor L. In the following, we will arbitrarily associate the electrical energy
with the “kinetic energy” and the magnetic energy with the “potential
energy” of the oscillator. The instantaneous, time-dependent energy in
each element is derived from its current and voltage

EðtÞ ¼
ðt

$1
Vðt0ÞIðt0Þdt0; (3)

where Vðt0Þ and Iðt0Þ denote the voltage and current of the capacitor
or inductor.

To derive the classical Hamiltonian, we follow the standard
approach used in classical mechanics: the Lagrange-Hamilton formu-
lation. Here, we represent the circuit elements in terms of one of its
generalized circuit coordinates, charge or flux. In the following, we
pick flux, defined as the time integral of the voltage

UðtÞ ¼
ðt

$1
Vðt0Þdt0: (4)

In this example, the voltage at the node is also the branch voltage across
the element. In this section, we will simply refer to these as node vol-
tages and fluxes for convenience. For a more detailed discussion of
nodes and branches in this context, we refer the reader to Ref. 44.

Note that in the following, we could have exchanged our associa-
tions with kinetic energy (momentum coordinate) and potential
energy (position coordinate), and instead start with the charge variable
Q(t), which is the time integral of the current I(t).

By combining Eqs. (3) and (4), using the relations V ¼ L dI=dt
and I ¼ C dV=dt, and applying the integration by parts formula, we

FIG. 1. (a) Circuit for a parallel LC-oscillator (quantum harmonic oscillator, QHO),
with inductance L in parallel with capacitance, C. The superconducting phase on
the island is denoted as /, referencing the ground as zero. (b) Energy potential for
the QHO, where energy levels are equidistantly spaced "hxr apart. (c) Josephson
qubit circuit, where the nonlinear inductance LJ (represented by the Josephson-
subcircuit in the dashed orange box) is shunted by a capacitance, Cs. (d) The
Josephson inductance reshapes the quadratic energy potential (dashed red) into
sinusoidal (solid blue), which yields nonequidistant energy levels. This allows us to
isolate the two lowest energy levels j0i and j1i, forming a computational subspace
with an energy separation "hx01, which is different than "hx12.
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E01 = E1 − E0 = ℏω01 ̸= E02 = E2 − E1 = ℏω21
→ good two-level atom approximation

control internal state by shining laser tuned at the
transition frequency:
H = −d⃗ · E⃗(t), with E(t) = E0 cosω01t

In Sec. IV, we provide a review of how single- and two-qubit
operations are typically implemented in superconducing circuits, by
using a combination of local magnetic flux control and microwave
drives. In particular, we discuss the family of two-qubit gates arising
from a capacitive coupling between qubits, and introduce several
recent advances that have been demonstrated to achieve high-fidelity
gates, as well as applications in quantum information processing that
use these gates. The continued development of high-fidelity two-qubit
gates in superconducting qubits is a highly active research area. For
this reason, we include sufficient technical details that a reader may
use this review as a starting point to critically assess the pros and cons
of the various gates, as well as develop an appreciation for the types of
gate-engineering already implemented in-state-of-the-art supercon-
ducting quantum processors.

Finally, in Sec. V, we discuss the physics and engineering associ-
ated with the dispersive readout technique, typically used to measure
the individual qubit states in modern quantum processors. After a
discussion of the theory behind dispersive coupling, we give an intro-
duction to design of Purcell filters and the development of quantum-
limited parametric amplifiers (PAs).

II. ENGINEERING QUANTUM CIRCUITS
In this section, we will demonstrate how quantum systems based

on superconducting circuits can be engineered to achieve certain
desired properties. Using the most common qubit modalities, we dis-
cuss how properties such as the qubit transition frequency, anharmo-
nicity, and noise susceptibility can be tailored by the choice of circuit
topology and element parameter values. We also discuss how to engi-
neer the interactions between different quantum systems, in particular,
the cases of qubit-qubit and qubit-resonator couplings.

A. From quantum harmonic oscillator to the transmon
qubit

A quantum mechanical system is governed by the time-
dependent Schr€odinger equation

Ĥ jwðtÞi ¼ i"h
@

@t
jwðtÞi; (1)

where jwðtÞi is the state of the quantum system at time t, "h is the
reduced Planck’s constant h/2p, and Ĥ is the “Hamiltonian” that
describes the total energy of the system. The “hat” is used to indicate
that Ĥ is a quantum operator. As the Schr€odinger equation is a first-
order linear differential equation, the temporal dynamics of the quan-
tum system may be viewed as a straightforward example of a linear
dynamical system with a formal solution

jwðtÞi ¼ e$iĤ t="hjwð0Þi: (2)

The time-independent Hamiltonian Ĥ governs the time evolution of
the system through the operator e$iĤ t="h. Thus, just as with classical
systems, determining the Hamiltonian of a system—whether the clas-
sical Hamiltonian H or its quantum counterpart Ĥ—is the first step to
deriving its dynamical behavior. In Sec. IV, we consider the case when
the Hamiltonian is time-dependent in the context of qubit control.

To understand the dynamics of a superconducting qubit circuit,
it is natural to start with the classical description of a linear LC reso-
nant circuit [Fig. 1(a)]. In this system, energy oscillates between

electrical energy in the capacitor C and magnetic energy in the induc-
tor L. In the following, we will arbitrarily associate the electrical energy
with the “kinetic energy” and the magnetic energy with the “potential
energy” of the oscillator. The instantaneous, time-dependent energy in
each element is derived from its current and voltage

EðtÞ ¼
ðt

$1
Vðt0ÞIðt0Þdt0; (3)

where Vðt0Þ and Iðt0Þ denote the voltage and current of the capacitor
or inductor.

To derive the classical Hamiltonian, we follow the standard
approach used in classical mechanics: the Lagrange-Hamilton formu-
lation. Here, we represent the circuit elements in terms of one of its
generalized circuit coordinates, charge or flux. In the following, we
pick flux, defined as the time integral of the voltage

UðtÞ ¼
ðt

$1
Vðt0Þdt0: (4)

In this example, the voltage at the node is also the branch voltage across
the element. In this section, we will simply refer to these as node vol-
tages and fluxes for convenience. For a more detailed discussion of
nodes and branches in this context, we refer the reader to Ref. 44.

Note that in the following, we could have exchanged our associa-
tions with kinetic energy (momentum coordinate) and potential
energy (position coordinate), and instead start with the charge variable
Q(t), which is the time integral of the current I(t).

By combining Eqs. (3) and (4), using the relations V ¼ L dI=dt
and I ¼ C dV=dt, and applying the integration by parts formula, we

FIG. 1. (a) Circuit for a parallel LC-oscillator (quantum harmonic oscillator, QHO),
with inductance L in parallel with capacitance, C. The superconducting phase on
the island is denoted as /, referencing the ground as zero. (b) Energy potential for
the QHO, where energy levels are equidistantly spaced "hxr apart. (c) Josephson
qubit circuit, where the nonlinear inductance LJ (represented by the Josephson-
subcircuit in the dashed orange box) is shunted by a capacitance, Cs. (d) The
Josephson inductance reshapes the quadratic energy potential (dashed red) into
sinusoidal (solid blue), which yields nonequidistant energy levels. This allows us to
isolate the two lowest energy levels j0i and j1i, forming a computational subspace
with an energy separation "hx01, which is different than "hx12.
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toolkit: capacitor, inductor, wire (all SC)
ω01 = 1/

√
LC ∼ 10 GHz∼ 0.5 K

→ simple LC circuit is not a good two-level atom
approximation



qubits from “artificial atoms”: LC circuit with NL inductance of the Josephson Junction

In Sec. IV, we provide a review of how single- and two-qubit
operations are typically implemented in superconducing circuits, by
using a combination of local magnetic flux control and microwave
drives. In particular, we discuss the family of two-qubit gates arising
from a capacitive coupling between qubits, and introduce several
recent advances that have been demonstrated to achieve high-fidelity
gates, as well as applications in quantum information processing that
use these gates. The continued development of high-fidelity two-qubit
gates in superconducting qubits is a highly active research area. For
this reason, we include sufficient technical details that a reader may
use this review as a starting point to critically assess the pros and cons
of the various gates, as well as develop an appreciation for the types of
gate-engineering already implemented in-state-of-the-art supercon-
ducting quantum processors.

Finally, in Sec. V, we discuss the physics and engineering associ-
ated with the dispersive readout technique, typically used to measure
the individual qubit states in modern quantum processors. After a
discussion of the theory behind dispersive coupling, we give an intro-
duction to design of Purcell filters and the development of quantum-
limited parametric amplifiers (PAs).

II. ENGINEERING QUANTUM CIRCUITS
In this section, we will demonstrate how quantum systems based

on superconducting circuits can be engineered to achieve certain
desired properties. Using the most common qubit modalities, we dis-
cuss how properties such as the qubit transition frequency, anharmo-
nicity, and noise susceptibility can be tailored by the choice of circuit
topology and element parameter values. We also discuss how to engi-
neer the interactions between different quantum systems, in particular,
the cases of qubit-qubit and qubit-resonator couplings.

A. From quantum harmonic oscillator to the transmon
qubit

A quantum mechanical system is governed by the time-
dependent Schr€odinger equation

Ĥ jwðtÞi ¼ i"h
@

@t
jwðtÞi; (1)

where jwðtÞi is the state of the quantum system at time t, "h is the
reduced Planck’s constant h/2p, and Ĥ is the “Hamiltonian” that
describes the total energy of the system. The “hat” is used to indicate
that Ĥ is a quantum operator. As the Schr€odinger equation is a first-
order linear differential equation, the temporal dynamics of the quan-
tum system may be viewed as a straightforward example of a linear
dynamical system with a formal solution

jwðtÞi ¼ e$iĤ t="hjwð0Þi: (2)

The time-independent Hamiltonian Ĥ governs the time evolution of
the system through the operator e$iĤ t="h. Thus, just as with classical
systems, determining the Hamiltonian of a system—whether the clas-
sical Hamiltonian H or its quantum counterpart Ĥ—is the first step to
deriving its dynamical behavior. In Sec. IV, we consider the case when
the Hamiltonian is time-dependent in the context of qubit control.

To understand the dynamics of a superconducting qubit circuit,
it is natural to start with the classical description of a linear LC reso-
nant circuit [Fig. 1(a)]. In this system, energy oscillates between

electrical energy in the capacitor C and magnetic energy in the induc-
tor L. In the following, we will arbitrarily associate the electrical energy
with the “kinetic energy” and the magnetic energy with the “potential
energy” of the oscillator. The instantaneous, time-dependent energy in
each element is derived from its current and voltage

EðtÞ ¼
ðt

$1
Vðt0ÞIðt0Þdt0; (3)

where Vðt0Þ and Iðt0Þ denote the voltage and current of the capacitor
or inductor.

To derive the classical Hamiltonian, we follow the standard
approach used in classical mechanics: the Lagrange-Hamilton formu-
lation. Here, we represent the circuit elements in terms of one of its
generalized circuit coordinates, charge or flux. In the following, we
pick flux, defined as the time integral of the voltage

UðtÞ ¼
ðt

$1
Vðt0Þdt0: (4)

In this example, the voltage at the node is also the branch voltage across
the element. In this section, we will simply refer to these as node vol-
tages and fluxes for convenience. For a more detailed discussion of
nodes and branches in this context, we refer the reader to Ref. 44.

Note that in the following, we could have exchanged our associa-
tions with kinetic energy (momentum coordinate) and potential
energy (position coordinate), and instead start with the charge variable
Q(t), which is the time integral of the current I(t).

By combining Eqs. (3) and (4), using the relations V ¼ L dI=dt
and I ¼ C dV=dt, and applying the integration by parts formula, we

FIG. 1. (a) Circuit for a parallel LC-oscillator (quantum harmonic oscillator, QHO),
with inductance L in parallel with capacitance, C. The superconducting phase on
the island is denoted as /, referencing the ground as zero. (b) Energy potential for
the QHO, where energy levels are equidistantly spaced "hxr apart. (c) Josephson
qubit circuit, where the nonlinear inductance LJ (represented by the Josephson-
subcircuit in the dashed orange box) is shunted by a capacitance, Cs. (d) The
Josephson inductance reshapes the quadratic energy potential (dashed red) into
sinusoidal (solid blue), which yields nonequidistant energy levels. This allows us to
isolate the two lowest energy levels j0i and j1i, forming a computational subspace
with an energy separation "hx01, which is different than "hx12.
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E01 = E1 − E0 = ℏω01 ̸= E02 = E2 − E1 = ℏω21
→ good two-level atom approximation

control internal state by shining laser tuned at the
transition frequency:
H = −d⃗ · E⃗(t), with E(t) = E0 cosω01t

In Sec. IV, we provide a review of how single- and two-qubit
operations are typically implemented in superconducing circuits, by
using a combination of local magnetic flux control and microwave
drives. In particular, we discuss the family of two-qubit gates arising
from a capacitive coupling between qubits, and introduce several
recent advances that have been demonstrated to achieve high-fidelity
gates, as well as applications in quantum information processing that
use these gates. The continued development of high-fidelity two-qubit
gates in superconducting qubits is a highly active research area. For
this reason, we include sufficient technical details that a reader may
use this review as a starting point to critically assess the pros and cons
of the various gates, as well as develop an appreciation for the types of
gate-engineering already implemented in-state-of-the-art supercon-
ducting quantum processors.

Finally, in Sec. V, we discuss the physics and engineering associ-
ated with the dispersive readout technique, typically used to measure
the individual qubit states in modern quantum processors. After a
discussion of the theory behind dispersive coupling, we give an intro-
duction to design of Purcell filters and the development of quantum-
limited parametric amplifiers (PAs).

II. ENGINEERING QUANTUM CIRCUITS
In this section, we will demonstrate how quantum systems based

on superconducting circuits can be engineered to achieve certain
desired properties. Using the most common qubit modalities, we dis-
cuss how properties such as the qubit transition frequency, anharmo-
nicity, and noise susceptibility can be tailored by the choice of circuit
topology and element parameter values. We also discuss how to engi-
neer the interactions between different quantum systems, in particular,
the cases of qubit-qubit and qubit-resonator couplings.

A. From quantum harmonic oscillator to the transmon
qubit

A quantum mechanical system is governed by the time-
dependent Schr€odinger equation

Ĥ jwðtÞi ¼ i"h
@

@t
jwðtÞi; (1)

where jwðtÞi is the state of the quantum system at time t, "h is the
reduced Planck’s constant h/2p, and Ĥ is the “Hamiltonian” that
describes the total energy of the system. The “hat” is used to indicate
that Ĥ is a quantum operator. As the Schr€odinger equation is a first-
order linear differential equation, the temporal dynamics of the quan-
tum system may be viewed as a straightforward example of a linear
dynamical system with a formal solution

jwðtÞi ¼ e$iĤ t="hjwð0Þi: (2)

The time-independent Hamiltonian Ĥ governs the time evolution of
the system through the operator e$iĤ t="h. Thus, just as with classical
systems, determining the Hamiltonian of a system—whether the clas-
sical Hamiltonian H or its quantum counterpart Ĥ—is the first step to
deriving its dynamical behavior. In Sec. IV, we consider the case when
the Hamiltonian is time-dependent in the context of qubit control.

To understand the dynamics of a superconducting qubit circuit,
it is natural to start with the classical description of a linear LC reso-
nant circuit [Fig. 1(a)]. In this system, energy oscillates between

electrical energy in the capacitor C and magnetic energy in the induc-
tor L. In the following, we will arbitrarily associate the electrical energy
with the “kinetic energy” and the magnetic energy with the “potential
energy” of the oscillator. The instantaneous, time-dependent energy in
each element is derived from its current and voltage

EðtÞ ¼
ðt

$1
Vðt0ÞIðt0Þdt0; (3)

where Vðt0Þ and Iðt0Þ denote the voltage and current of the capacitor
or inductor.

To derive the classical Hamiltonian, we follow the standard
approach used in classical mechanics: the Lagrange-Hamilton formu-
lation. Here, we represent the circuit elements in terms of one of its
generalized circuit coordinates, charge or flux. In the following, we
pick flux, defined as the time integral of the voltage

UðtÞ ¼
ðt

$1
Vðt0Þdt0: (4)

In this example, the voltage at the node is also the branch voltage across
the element. In this section, we will simply refer to these as node vol-
tages and fluxes for convenience. For a more detailed discussion of
nodes and branches in this context, we refer the reader to Ref. 44.

Note that in the following, we could have exchanged our associa-
tions with kinetic energy (momentum coordinate) and potential
energy (position coordinate), and instead start with the charge variable
Q(t), which is the time integral of the current I(t).

By combining Eqs. (3) and (4), using the relations V ¼ L dI=dt
and I ¼ C dV=dt, and applying the integration by parts formula, we

FIG. 1. (a) Circuit for a parallel LC-oscillator (quantum harmonic oscillator, QHO),
with inductance L in parallel with capacitance, C. The superconducting phase on
the island is denoted as /, referencing the ground as zero. (b) Energy potential for
the QHO, where energy levels are equidistantly spaced "hxr apart. (c) Josephson
qubit circuit, where the nonlinear inductance LJ (represented by the Josephson-
subcircuit in the dashed orange box) is shunted by a capacitance, Cs. (d) The
Josephson inductance reshapes the quadratic energy potential (dashed red) into
sinusoidal (solid blue), which yields nonequidistant energy levels. This allows us to
isolate the two lowest energy levels j0i and j1i, forming a computational subspace
with an energy separation "hx01, which is different than "hx12.
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toolkit: capacitor, inductor, wire (all SC) + JJ
JJ is a nonlinear and dissipationless element

LJ =
ϕ0
2π

1
Ic cosϕ



the Josephson Junction

the only circuit element that is both dissipationless and nonlinear
(fundamental properties to make quantum hardware)

It’s integrated in superconducting (SC) circuits, solid state electrical circuits fabricated using techniques
borrowed from conventional integrated circuits.



T = 10 − 20 mK in dilution refrigerators

kBT hν

=⇒ low temperature physics



Jaynes-Cummings model

Interaction of a two state system with quantized radiation in a cavity

HJC = 1
2ℏωqσ̂z + ℏωrâ†â + ℏg(âσ̂+ + â†σ̂−)

Parameter space diagram for cavity-QED

∆ = |ωr − ωq|

Γ = min{γ, κ, 1/T}

− ωr ∼ ωq resonance case

− ∆ = |ωr − ωq| ≫ g dispersive limit case



Dispersive regime of detuning g/∆ ≪ 1

χ =
g2

δ

→ ℏχσ̂z dispersive qubit readout

→ 2χa†a number splitting



a real (B field, tunable) DM search with a QIS device

→ itinerant vs cavity single microwave photon counter (SMPD)

SMPD

Phys. Rev. Lett. 126, 141302 (2021) 

CAVITY PHOTONSITINERANT PHOTONS

⊙ low dark counts =⇒ sensitivity

⊙ tunability
static (≃ 100 kHz), dynamical (≃ 100 MHz)
+ Josephson mixer

⊙ metrological methods from QIS field

⊙ on/off resonance studies



SMPD-HALOSCOPE experiment

⊙ hybrid (normal-superconducting) cavity
7.37 GHz, tunable, Q0 = 9 × 105

(at 14 mK, under 2 T)

⊙ T=14 mK delfridge base temperature
@ Quantronics lab (CEA, Saclay)

⊙ a thousandfold acceleration of the search

⊙ spin-off company in 2024 (FR)

⊙ come to visit the lab
Progetto di Eccellenza, DFA



building a SMPD-HALOSCOPE experiment in Padova
Progetto di Eccellenza, DFA
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