

Depleted detectors Timing detectors

Days of Detection

1st international school on microelectronics for solid-state detectors design, manufacturing and application October 23 – 25, 2023

Padova

Lucio Pancheri

University of Trento and TIFPA-INFN, Italy

- Introduction
- Overview of CMOS depleted sensors technologies
- Latest developments on silicon sensors for ps timing
- Trends and future perspectives

Silicon depleted sensors for radiation detection

- Depleted silicon pixel sensors: large active volume for ionizing particles and X-rays.
- Target applications:
 - Tracking and timing in High Energy Physics experiments
 - Medical imaging
 - Astro-particle detection on satellites
 - Material science

CSES-01

ALICE ITS

Minimum Ionizing particles: energy loss distribution in silicon

- Signal released by M.I.P.s: typically from 60 to 80 e⁻/µm in Silicon: required detector active thickness increases with electronic noise
- Signal to Noise Ratio determines performance for both tracking and timing applications

X-rays

EUV, X-rays: "Point-like" interaction with the production of many e-h pairs in a small region, a few μm wide.

- 100s µm thickness required for efficiency
- Low electronic noise required for charge resolution

Average number of e-h pairs:

$$n_{e-h} = \frac{E_{ph}}{E_{ion}}$$

Si ionization energy E_{ion}=3.6eV

Detector bias

Minimum bias voltage for full depletion:

Charge collection: drift

Charge collection by drift required for:

- **Timing resolution**
- **Radiation hardness**

 10^{8}

To minimize the charge collection time, the electric field in the detector should be large enough to saturate the charge carrier drift velocity

Hybrid and monolithic pixel sensors

Hybrid Pixel Sensors

- Detectors and electronics optimized separately
- Excellent radiation damage tolerance
- Problems: interconnection stray capacitance (affects SNR) interconnection cost, yield, material budget

Monolithic Active Pixel Sensors (MAPS)

- Constraints on the detector optimization: CMOS processes need customization (special substrates, dedicated implants)
- More freedom with older process nodes (110 to 350nm)
- Lower capacitance, lower costs, better yield and low material budget

L. Gonella, Particle Physics Seminar, 2017

Hybrid pixel sensors: perspectives

- The situation is changing. Wafer-level **3D stacking** has become an industry standard in the last years: widely adopted in image sensors for the consumer market
- Accessibility of 3D integration processes is still a problem for niche applications.

Fig. 8. Trend of Cu–Cu connection pitch. (a) Simplified device structure and (b) cross sections.

The origins of depleted monolithic imaging detectors: deep depleted CCDs

Fig. 2. Backside-Illuminated Deep-Depletion CCD

IEEE IEDM Tech. Dig. 1979

DEEP DEPLETION CHARGE-COUPLED DEVICES FOR X-RAY AND IR SENSING APPLICATIONS

M. C. Peckerar, D. McCann, F. Blaha, W. Mend & R. Fulton

Westinghouse Electric Corporation Advanced Technology Laboratory Baltimore, Maryland 21203

IEEE IEDM Tech. Dig. 1985

DEEP-DEPLETION CCDS WITH IMPROVED UV SENSITIVITY

J.T. Bosiers*, N.S. Saks, D.J. Michels, D. McCarthy, M.C. Peckerar

Naval Research Laboratory, Washington, D.C. 20375

*Sachs-Freeman Associates, Inc., Landover, MD 20785

The origins of depleted monolithic imaging detectors: pn CCDs

- Idea dates back to the 1980s (E.Gatti, P. Rehak)
- Operation concept: same as CCD, but gates are replaced with pn junctions
- Successfully employed in color X-ray imaging, X-ray fluorescence, electron detection in SEM/TEM microscopy

S. Ihle et al., IEEE NSS 2008

CMOS fully depleted pixel array with backside junction

- Full CMOS at the periphery
- PMOS-only in the pixels
- Backside N-diffusion: backside processing needed
- P-type collection nodes: collection of holes

W. Snoeys, IEEE Tran. Electron Dev., 1994

CMOS fully depleted pixel array pixel array with backside junction

- BS junction terminates on a trench for breakdown prevention
- Requires BS lithography and trench etching in the middle of the process flow: difficult to integrate in a commercial CMOS

J. D. Segal, IEEE NSS 2010.

Standard twin-well CMOS: features

- Twin wells: to host NMOS and PMOS transistor
- Sensor: implemented with nwells
- p-substrate with intermediate resistivity (typ. 10 Ohm cm): only a few µm depletion region for typical voltages
- Collection speed: slow diffusion in non-depleted substrate
- Competitive collection by nwells: low efficiency

Customizing CMOS for improved MAPS performance

- Reduce the substrate doping: high resistivity silicon
- High bias voltage for large depletion region
- Avoid competitive charge collection. Three approaches:
 - 1. Put CMOS electronics inside the collection electrode: large collection electrode
 - 2. Isolating nwells other than collection electrodes with deep pwell: **small collection electrode**
 - 3. Isolate the electronics from the detectors with a buried oxide layer: Silicon On Insulator (SOI)

Large collection electrode: High Voltage CMOS

- The collection diode is a deep nwell.
- The CMOS electronics (pwells + nwells) is inside the deep nwell
- High voltage bias can be applied: large depleted volume

I. Peric et al., NIM A582 (2007) pp. 876-885

I. Caicedo et al 2019 JINST 14 C06006

Large collection electrode with High-Resistivity substrate

High resistivity substrates (>2 kOhm/cm): depletion width > 250μm

- Uniform electric field
- Fast charge collection
- High efficiency at fluence > 10¹⁵ n_{eq}/cm²

Main drawbacks:

Parasitic capacitance: large noise

Small collection electrode: ALPIDE

- Installed on ALICE ITS
- Nwell shielded by deep pwell (J.P. Crooks et al. IEEE NSS 2007)
- High resistivity (> 1kΩ cm) p-type epi-layer with 25 µm thickness
- 28 x 28 µm² pixel size
- Small sensor capacitance: low noise
- **Partial depletion**: drift and diffusion
- Radiation tolerance: NIEL up to 10¹³ (1MeV n_{eq})/cm²

Depleted MAPS with small collection electrode

- Produced in CMOS 180nm process modified with a low-doped n-type deep implantation
- Fully depleted: charge collection by drift
- Fast charge collection: few ns
- Good efficiency and speed after irradiation at 10¹⁵ (1MeV n_{eg})/cm²

0.9

0.8

0.7

0.6

0.5

Depleted MAPS with small collection electrode: going faster

Backside voltage

Electrostatic potential:

Electrostatic potential:

Additional p-implant: - 6 V 0.8 V - 6 V P-well P-well Deep P-well Deep P-well Deep P-well N- P-type epitaxial layer P+ substrate Backside voltage

Electrostatic potential:

Depleted MAPS with small collection electrode: going thicker

Fully-Depleted SOI sensors

- Buried oxide layer: separates detectors from electronics
- High resistivity substrate: up to 500µm depleted thickness

FD-SOI progress

- Problem: buried oxide affects electronics → back-gate effect
- Solution: 2 buried oxide layers
- Ionizing radiation tolerance up to 100kGy (Y. Arai, IEEE IEDM 2017)
- Reduced electronic noise
- Issues: SOI wafer cost, single vendor

L. Pancheri – Depleted detectors / Timing detectors

ARCADIA - Sensor concept

- Customized **110nm CMOS** process (LFoundry)
- Small Collection Electrodes
- Deep pwells
- n-type high resistivity active region
- Reverse-biased junction at the bottom: depletion grows from back to top
- n-epi layer: reduce punch-through current between p+ and deep pwells
- Sensing electrodes can be biased at low voltage (< 1V)

Wafer post-processing: starting material and backside process

Pixel array cross section – backside lithography – type 3 substrates

Main demonstrator: 512 x 512 pixel array for charged particle tracking

- Pixel pitch: 25µm Array core area: 1.28cm x 1.28cm
- Pixel electronics: analog and digital. In-pixel threshold and data storage
- Architecture: **event-driven**. Pixel detecting events (charge pulses) send their address to the chip peripheral circuits
- Low **power** (20mW/cm²) and high **event rate** (100 MHz/cm²)

Detail of pixel layout

512 x 512 pixel sensor mounted on PCB

ARCADIA main demonstrator: detection of charged particles

Days of Dectection 2023

L. Pancheri – Depleted detectors / Timing detectors

M. Rolo

Detectors for ps timing of charged particles

Applications:

- High Energy Physics: Time of Flight layers in High Luminosity experiments
- Space: ToF layers in astro-particle detectors
- Medical: time tagging of particles in therapeutic beams

M. Pierini, SOSC 2018

Sensor timing resolution

H. F.-W. Sadrozinski et al 2018 Rep. Prog. Phys. 81 026101

LGADs: operation

- Avalanche multiplication: linear-mode (sub-Geiger) operation
- Separate absorption-multiplication region:
 - Fully depleted HR substrate or epitaxial layer
 - P+ gain layer: high electric field
- Gain area termination needed: dead (no gain) region between the pixels

G. Paternoster et al., J. Instrum., vol. 12, no. 2, 2017, Art. no. C02077

LGADs: timing resolution

- Uniform electric field in a large area (~ mm^2): $\sigma_{distortion}$ is negligible
- The effect of electronics noise on timing resolution (σ_{jitter}) can be reduced by increasing the gain
- Fundamental limitation: Landau noise, due to fluctuations in the released charge

N. Cartiglia et al., NIM A 924 (2019) 350-354

How to go below 30ps with LGADs?

• Low threshold \rightarrow practical limits in an array due to electronic noise, pixel non-uniformity and electrical cross-talk

Thin LGADs – beam test

- Measurements on thin LGADs confirm the predicted time resolution
- Thin LGADs produced by several manufacturers are available

Days of Dectection 2023

Reducing the dead area in LGADs: Trench Isolation

N-deep ring replaced with a trench: the no-gain area is reduced

G. Paternoster et al., IEEE Electron Dev. Lett., Vol. 41, No. 6, June 2020

R. Arcidiacono et al., NIMA 978 (2020) 164375

Single-Photon Avalanche Diodes (SPADs) and SiPMs: operation

- Triggered (Geiger-mode) operation
- Available devices designed for photon counting and timing
- The best devices have a photon timing resolution $\sigma_t < 20$ ps
- Dead time ~10 100ns
- High dark count rate: 20 - 200 kHz/mm² at room temperature

Large Si SPADs: SoA photon timing resolution

- Thin active region (a few μ m), saturated drift velocity, response free from diffusion tails \rightarrow Dedicated fabrication process
- Homogeneous electric field: circular area
- Low threshold: resolution independent from size

A. Gulinatti et al., Electronics Letters, Vol. 41 No. 5, 2005

SPAD with 100um diameter produced at FBK

Si SPADs: timing resolution with charged particles

- SPADs with very uniform electric field in SiGe process
- Very fast amplifier
- Sub-10ps coincidence timing resolution for MIPs

Gramuglia F, et al. 2022, Front. Phys. 10:849237. doi: 10.3389/fphy.2022.849237

Monolithic and hybrid SPAD arrays

- Many designs demonstrated, up to 3.2Mpixel (Canon)
- Granularity: down to a few μm
- SPAD arrays with 3D-stacked electronics demonstrated (STM, Canon, Sony)
- A few demonstrations of direct particle detection in SPADs/SiPMs
- Weakness: low radiation hardness DCR increases considerably at fluences > 10¹⁰- 10¹¹ 1MeVn_{eq}/cm²

Timing with 3D detectors: TimeSPOT

- Thick active volume but short drift length: combines large signal and large slope
- Trench geometry (**uniform electric field**): very narrow Time of Arrival distribution

Timing with 3D detectors: TimeSPOT

- Trench distance: ~20 μ m saturated velocity v_{sat} : t_{coll} = D/v_{sat} ~ 200ps
- Weakness: complex fabrication process, mechanical stability of wafers (yield)

L. Anderlini et al 2020 JINST 15 P09029

Timing with MAPS: challenges and opportunities

• Advantages:

- Potentially 100% efficiency
- Excellent radiation hardness demonstrated for several processes
- Cost-effectiveness
- Challenges:
 - Fast collection (100s of ps), uniform field and low noise at the same time
 - Low **jitter** with acceptable **power** consumption

CMOS with large collection electrode for timing: CACTUS

- Deep nwell collection diode
- FE electronics inside the pixel
- Fast and uniform charge collection
- Substrate thickness: 200 μ m, pixel size: 0.5 1 mm²
- Pixel capacitance: 1 1.5 pF
- Noise limited by the large diode capacitance

SiGe approach

- SiGe process modified (HR substrate) for the integration of planar silicon detector
- High speed low noise on-chip SiGe preamplifiers placed outside the pixels
- Hexagonal pixels with 130 and 75 μm side
- Depletion depth: $26\mu m$ at -140V
- Large detector capacitance (70 220 fF)
- Nearly 100% collection efficiency
- ~ 50ps timing resolution demonstrated with ⁹⁰Sr source

G. lacobucci et al., 2019 JINST 14 P11008

SiGe approach: Monolith chip

- Epitaxial silicon with 50 μm thickness
- 100 µm pixel pitch
- On-chip amplifiers with variable optical power
- 20ps time resolution can be reached at high power densities

S. Zambito et al 2023 JINST 18 P03047

Fastpix

- Evolution of the MAPS developed for the ALICE tracker: full depletion + speeding up the electron lateral drift
- Test chip with small pixel pitches (10 20 μ m)
- Very low electrode capacitance (< 1fF)
- Expected jitter (electronics): 20ps @ Q_{in} =1000 e⁻

Charge vs time for MIP incident at corner (worst case)

T. Kugathasan et al., Nucl. Inst. Meth. A Vol. 979, Nov. 2020

Fastpix – test beam results

- Time walk correction
- Pixel-by-pixel correction for best results
- 70e- threshold for 20µm and 50e- threshold for 10µm pixels

All events, largest ToT pixel, after individual timewalk correction, inner pixels

Test beam: timing resolution < 140 ps for both 10 and 20µm pitch

Monolithic avalanche detectors

Several recent examples of **avalanche gain integrated in CMOS** sensors:

- The feasibility of structures designed for **photonics applications** can be verified for particle detection
- Foundries may be available to implement simple process modifications, needed to add gain to CMOS sensors

LGADs on thick fully depleted substrates (Sensor Creations Inc.)

Fine-pitch avalanche pixels with 6um pitch (Panasonic)

CMOS-integrated APDs with > 1GHz bandwidth (University of Vienna)

W. Gaberl et al., Opt. Lett., Vol. 39, No. 3, 2014

S. Lauxtermann et al., Pixel 2018, Taiwan

Monolithic sensors with gain @ University of Geneva

Avalanche gain in monolithic CMOS sensors: may be the key for **combining very high** resolution and acceptable power consumption

Picosecond Avalanche Detector (PicoAD):

EU Patent EP18207008.6

Measurements of sensor gain using 55-iron source in climate chamber:

M. Munker et al., Vertex, September 2021

Monolithic sensors with gain @ University of Geneva

Test beam: time resolution of 30ps achieved with a power density < 0.5 W/cm²

G. lacobucci et al 2022 JINST 17 P10040

40

PicoAD proof-of-concept prototype (2022)

3

ARCADIA MAPS: gain add-on option

- Sensors can be biased at low voltage
- DC coupling with front-end amplifier is possible

- High voltage is needed on the top side
- AC coupling of front-end amplifier is needed

L. Pancheri, Proc. IEEE EUROCON 2023

Passive sensors with gain - test structures

Monolithic test devices with gain included in the last ARCADIA engineering run

8x8 active pixel matrix

Devices with different terminations

Rectangular pad sensors

Optical signal with NIR pulsed laser

Sensors test structures:

effect of Vtop - Bottom-side illumination

Test-beam with active pixels is on-going

Conclusion

Depleted Monolithic active pixel sensors:

- Several versions providing valid cost-effective alternatives to hybrid sensors for tracking applications
- Scaling to smaller process nodes is not straightforward: custom substrates and implants are not always granted by foundries
- Meanwhile 3D integration technologies are evolving...

Picosecond timing applications - several **alternative possibilities** are under investigation:

- LGADs with hybrid readout
- Monolithic or hybrid SPADs/SiPMs
- Hybrid sensors with 3D electrodes
- Monolithic sensors with gain (or CMOS LGADs?)

Thank you