Lepton Number Violation in Effective Field Theory

Jordy de Vries, University of Amsterdam, Nikhef

Collaborators: V. Cirigliano, W. Dekens, M. Graesser, M. Hoferichter, E. Mereghetti, U. van Kolck, G. Zhou

Lepton Number Violation in Effective Field Theory

Part I: LNV and neutrinoless double beta decay

- Part II: An effective field theory approach
 - 1. Light Majorana mass (the Weinberg operator)
 - 2. Non-standard mechanisms in EFT

The puzzle of the neutrino mass

- The Standard Model does not allow for a neutrino mass
- But of course neutrino oscillations

$$P_{i \to j} \sim \sin^2 \left(\frac{\Delta m_{ij} L}{2E} \right)$$

• Easiest solution: add the gauge singlet v_R and use Higgs mechanism

$$L_{v} = -y_{v} \,\overline{L}\tilde{\varphi}v_{R} + h.c. \rightarrow -\frac{y_{v} \,v}{\sqrt{2}}\overline{v}_{L}v_{R} \qquad y_{v} \sim 10^{-12} \rightarrow m_{v} \sim 0.1 \,eV$$

• Nothing wrong with this!

The puzzle of the neutrino mass

- The Standard Model does not allow for a neutrino mass
- But of course neutrino oscillations

$$P_{i \to j} \sim \sin^2 \left(\frac{\Delta m_{ij} L}{2E} \right)$$

• Easiest solution: add the gauge singlet v_R and use Higgs mechanism

$$L_{v} = -y_{v} \,\overline{L}\tilde{\varphi}v_{R} + h.c. \rightarrow -\frac{y_{v} \,v}{\sqrt{2}}\overline{v}_{L}v_{R} \qquad y_{v} \sim 10^{-12} \rightarrow m_{v} \sim 0.1 \,eV$$

• Nothing wrong with this! But nothing forbids a new mass term !

 $L_v = -M_R v_R^T C v_R$ New mass scale not linked to EW scale

- 'Everything that is not forbidden is compulsary'
- Does such a Majorana mass term exist in nature ?

See-saw type I + Leptogenesis

- Imagine we have both Dirac and Majorana mass term
- See-saw type I: pick

$$M_R >> y_v v$$

• The neutrinos then split into a light (active) and heavy (sterile) sector

$$M_{diag} \approx \begin{pmatrix} (y_v v)^2 / M_R & 0 \\ 0 & M_R \end{pmatrix} \qquad \begin{array}{c} v = v_L + v_L^c \\ N = v_R + v_R^c \end{pmatrix}$$

- If $y_v \sim 1$, then $M_R \sim 10^{15}$ GeV to get neutrinos masses
- But M_R could be much lower as well (essentially any mass scale)
- Heavy right-handed neutrinos (from GeV to > 10⁶ TeV) appear in leptogenesis scenarios.

Experimental tests

- Can we measure if neutrinos are Majorana?
- Easy thought experiment (B. Kayser): generate v beam from pion decays

1. A Dirac neutrino will not produce anti-muons at target

- 2. A Majorana neutrino with right-handed helicity will do that
- But it is hopeless experimentally ! Fraction of R-helicity neutrinos

$$\left(\frac{m_{\nu}}{E_{\nu}}\right)^2 \sim 10^{-18}$$

Cut out the middle man

- More promising: look at 'neutrinoless' processes
- Produce 2 charged leptons (violate L by two units)

• Many probes imaginable: $K^- \rightarrow \pi^+ + 2e^-$

 $pp \rightarrow 2e^+ + jets$ $X(Z, N) \rightarrow Y(Z + 2, N - 2) + 2e^-$

• Last process the strongest probe because of Avogadro's number !

Double beta decay with and without v's

• Double beta decay is a double-weak process $nn \rightarrow pp + ee + \overline{v}_e \overline{v}_e$

 $Q \sim 2 MeV$

• Normally **swamped** by single beta decay (additional factor G_F^2)

Double beta decay with and without v's

• Normal double beta decay $(2\nu\beta\beta)$ has been observed

$$(A,Z) \rightarrow (A,Z+2) + 2 e^{-} + 2 \overline{v}_{e}$$

$$T_{1/2}^{2\nu} \left({}^{76}Ge \rightarrow {}^{76}Se \right) = \left(1.84_{-0.10}^{+0.14} \right) \times 10^{21} yr$$

Double beta decay with and without v's

• Normal double beta decay $(2\nu\beta\beta)$ has been observed

$$(A,Z) \rightarrow (A,Z+2) + 2 e^- + 2 \overline{\nu}_e$$

$$T_{1/2}^{2\nu} \left({}^{76}Ge \rightarrow {}^{76}Se \right) = \left(1.84_{-0.10}^{+0.14} \right) \times 10^{21} yr$$

• Neutrinoless double beta decay $(0\nu\beta\beta)$ looks similar

$$(A,Z) \rightarrow (A,Z+2) + 2 e^{-}$$
 Furry '39 $\Delta L = 2$

• Violates Lepton Number by two units and never been observed (yet) ...

	Life time	Collaboration	year
⁷⁶ Ge	8.0 x 10 ²⁵ yr	GERDA	2018
¹³⁰ Te	3.2 x 10 ²⁵ yr	CUORE	2019
¹³⁶ Xe	1.1 x 10 ²⁶ yr	KamLAND-Zen	2016

Improvements upcoming

The history of $0\nu\beta\beta$ decay experiments in one slide

Slide courtesy of G. Gratta Data courtesy of S.Elliott and the PDG. Not all results are necessarily shown.

The history of OvBB decay experiments in one slide

Standard interpretation

• $0\nu\beta\beta$ induced by exchange of 3 light Majorana neutrinos

• Proportional to neutrino mass (source of LNV)

$$\frac{1}{T_{1/2}^{0\upsilon}} \sim \Gamma \sim m_{\beta\beta}^2$$

'Effective Neutrino Mass'

$$m_{\beta\beta} = \sum U_{e\,i}^2 m_i$$

Probing the neutrino Majorana mass

$$m_{\beta\beta} = m_{\nu 1} c_{12}^2 c_{13}^2 + m_{\nu 2} s_{12}^2 c_{13}^2 e^{2i\lambda_1} + m_{\nu 3} s_{13}^2 e^{2i(\lambda_2 - \delta_{13})}$$

• Unknowns: lightest mass, hierarchy, and Majorana phases

Probing the neutrino Majorana mass $m_{\beta\beta} = m_{v1}c_{12}^2c_{13}^2 + m_{v2}s_{12}^2c_{13}^2e^{2i\lambda_1} + m_{v3}s_{13}^2e^{2i(\lambda_2 - \delta_{13})}$

• Unknowns: lightest mass, hierarchy, and Majorana phases

- Interpretation of experiments requires particle/hadronic/nuclear theory
- Large theoretical uncertainties

Tonne-scale goal 10²⁸ y

- Tremendous theoretical/experimental effort
- Cosmology and beta-decay experiments provide complementary input

Non-Standard interpretation

- Many models induce lepton-number violation in different ways
- Example: LR symmetry, supersymmetry, leptoquarks...

• No direct link to neutrino mass. But Schechter-Valle theorem '82

• Observation of 0vbb implies neutrinos are Majorana states

The anatomy of the decay

• Decay can be roughly factorized into

Energy

$$\frac{1}{T_{1/2}^{0\upsilon}} \sim m_{\beta\beta}^2 \cdot g_A^4 \cdot \left| M \right|^2 \cdot G$$

$$> ? \qquad m_{\beta\beta}^{2} \qquad \text{Lepton-number-violating (LNV) source (not necessarily neutrino mass). (Particle Physics)} \\ \sim GeV \qquad g_{A}^{4} \qquad \text{quarks} \rightarrow \text{hadrons (Hadronic Physics)} \\ \sim 100 MeV \qquad \left| M \right|^{2} = \left| \left< 0^{+} |V_{v}| 0^{+} \right> \right|^{2} \qquad \text{Nuclear transition matrix element (Nuclear Physics... oh no)} \\ \sim 10 MeV \qquad G \qquad \text{Phase space factor (Atomic Physics)}$$

Neutrinoless double beta decay in EFT

Part I: What is neutrinoless double beta decay and why bother?

- Part II: An effective field theory approach
 - 1. Light Majorana mass (the Weinberg operator)
 - 2. Non-standard mechanisms in EFT
 - 3. Light sterile neutrinos

Heavy BSM physics: SM-EFT framework

• Assume BSM physics exists but is heavy → Integrate it out

Fermi's theory:

• We don't need 'high-energy details', the W boson, at low energies !

Effective lepton number violation

- Lepton number = **accidental** symmetry in Standard Model (at zero T)
- But no longer once we allow for operators of dim>4

• SM as an EFT
$$L_{new} = L_{SM} + \frac{1}{\Lambda}L_5 + \frac{1}{\Lambda^2}L_6 + \cdots$$

- Contain SM fields and obey SM gauge and Lorentz symmetry
- At energy E, operators of dim $(4+n) \sim (E/\Lambda)^n$

Effective lepton number violation

- Lepton number = **accidental** symmetry in Standard Model (at zero T)
- But no longer once we allow for operators of dim>4

• SM as an EFT
$$L_{new} = L_{SM} + \frac{1}{\Lambda}L_5 + \frac{1}{\Lambda^2}L_6 + \cdots$$

- At energy E, operators of dim $(4+n) \sim (E/\Lambda)^n$
- Gauge symmetry is restrictive: only 1 dim-5 operator

$$L_5 = \frac{c_5}{\Lambda} (L^T C \tilde{H}) (\tilde{H}^T L) \qquad L^T = (\upsilon_L \ e_L)$$

• Contains **two** lepton fields and **no** anti-lepton fields \rightarrow Weinberg '79 $L_5 \rightarrow c_5 \frac{v^2}{\Lambda} v_L^T C v_L \rightarrow$ Majorana neutrino mass term $m_v \sim 0.1 \, eV \qquad \Lambda \sim c_5 \cdot 10^{15} GeV$

Higher-order in the SM-EFT

 $\Delta L = 2$ operators only appear at odd dimensions 5, 7, Kobach '16

• Seems crazy to go to dim-7 if expansion parameter is

$$\left(\frac{v}{\Lambda}\right)^2 \sim 10^{-24}$$

- Example: in LR symmetry $c_5 \sim y_e^2 \sim 10^{-10}$ $c_7 \sim y_e \sim 10^{-5}$ $c_9 \sim y_e^0 \sim 1$
- Then if scale is low ~ $\Lambda \sim (10-100) TeV$ dim 5 ~ dim 7 ~ dim 9

Crossing the electroweak scale

Dimension-7, -9 operators

How do we hadronize ?

• Use the symmetries of QCD to obtain chiral Lagrangian

$$L_{QCD} \rightarrow L_{chiPT} = L_{\pi\pi} + L_{\pi N} + L_{NN} + \cdots$$

- Quark masses = $0 \rightarrow \text{QCD}$ has $SU(2)_L x SU(2)_R$ symmetry
 - Spontaneously broken to SU(2)-isospin (pions are Goldstone)
 - Explicit breaking (quark mass) \rightarrow pion mass
- ChPT gives systematic expansion in

$$Q/\Lambda_{\chi} \sim m_{\pi}/\Lambda_{\chi} \qquad \Lambda_{\chi} \cong 1 \, GeV$$

- Form of interactions fixed by symmetries
- Price to pay: chiral interactions have coupling constants (LECs) not predicted from symmetries alone

Weinberg, Gasser, Leutwyler, and many many others

~ GeV $L = L_{QCD}$ light quarks and gluons + electrons + neutrinos ~100 MeV Chiral limit $L_{\chi} = L_{kin} - m_N \bar{N}N + \frac{g_A}{f_{\pi}} D_{\mu} \vec{\pi} \cdot \bar{N} \gamma^{\mu} \gamma^5 \vec{\tau} N + C_0 \bar{N} N \bar{N} N$ m_N, g_A, C_0 are 'LECs' and must be **measured** or **lattice QCD**

~ GeV $L = L_{QCD} + L_{Fermi}$ light quarks and gluons + electrons + neutrinos

~100 MeV Chiral limit $L_{\chi} = L_{kin} - m_N \overline{NN} + \frac{g_A}{f_{\pi}} D_{\mu} \vec{\pi} \cdot \overline{N} \gamma^{\mu} \gamma^5 \vec{\tau} N + C_0 \overline{NNN} N$ m_N, g_A, C_0 are 'LECs' and must be measured or lattice QCD

$$\sim \text{GeV} \quad L = L_{QCD} + L_{Fermi} - m_{\beta\beta} v_L^T C v_L + C_{\Gamma} \overline{e} \Gamma \overline{v}^T O_{2q}^{\Gamma} + C_{\Gamma'} \overline{e} \Gamma' e^c O_{4q}^{\Gamma'}$$

~100 MeV Neutrinos are still degrees of freedom in the low-energy EFT

Lepton Number Violation in Effective Field Theory

Part I: LNV and neutrinoless double beta decay

- Part II: An effective field theory approach
 - 1. Light Majorana mass (the Weinberg operator)
 - 2. Non-standard mechanisms in EFT
 - 3. Light sterile neutrinos (very briefly)

~ GeV $L = L_{QCD} + L_{Fermi} - m_{\beta\beta} v_L^T C v_L$ light quarks and gluons + electrons + neutrinos

~100 MeV Neutrinos are still degrees of freedom in the low-energy EFT

~ GeV $L = L_{QCD} + L_{Fermi} - m_{\beta\beta} v_L^T C v_L$ light quarks and gluons + electrons + neutrinos

~100 MeV Neutrinos are still degrees of freedom in the low-energy EFT

`Hard' neutrino exchange $(E, |\vec{p}| > \Lambda_{\chi}) \rightarrow$ short-range operators

Expected at N²LO (Weinberg counting/Naive $\sim \frac{m_{\beta\beta}}{\Lambda_{\chi}^2}$ Dimensional Analysis)

Majorana mass contribution

- Apply chiral EFT to construct a 'neutrino potential'
- Standard mechanism: leading order

In ¹S₀
$$V_{v} = (2G_{F}^{2}m_{\beta\beta})\tau_{1}^{+}\tau_{2}^{+}\frac{1}{\vec{q}^{2}}\left[(1+2g_{A}^{2})+\frac{g_{A}^{2}m_{\pi}^{4}}{\left(\vec{q}^{2}+m_{\pi}^{2}\right)^{2}}\right] \otimes \overline{e}_{L}e_{L}^{c}$$

- LO potential very simple and long-range $\sim 1/q^2$
- All other contributions are higher order (known up to N^2LO)
- Crucial: no unknown hadronic input (only unknown is m_{ββ})

The neutrino amplitude

• At LO the 'standard' mechanism is long-range

$$n \xrightarrow{p} e$$

$$V_{\nu} = (2G_F^2 m_{\beta\beta})\tau_1^+ \tau_2^+ \frac{1}{\vec{q}^2} \left[(1+2g_A^2) + \frac{g_A^2 m_\pi^4}{\left(\vec{q}^2 + m_\pi^2\right)^2} \right] \quad \otimes \ \overline{e}_L e_L^c$$

- Insert between initial- and final-state nuclear wave functions
- Different methods have roughly a factor 3 spread

How confident are we about all of this ?

- Size of short-range piece was estimated by perturbation theory (NDA)
- Let's test this by studying the most simple process: $nn \rightarrow pp + ee$

"A new leading contribution to $0\nu\beta\beta$ ", 1802.10097, PRL 120

• To describe NN scattering we need to solve a LS equation

 $T = V + VG_0T$

$$T(p', p, E) = V(p', p) + \int dl V(p', l) \frac{l^2}{E - l^2/m_N + i\varepsilon} T(l, p)$$

- To describe NN scattering we need to solve a LS equation $T = V + VG_0T$
- The potential itself calculated in **perturbation theory**

LO
$$V_{strong}^{1S_0}(LO) = C_0 - \frac{g_A^2}{4f_\pi^2} \frac{m_\pi^2}{\vec{q}^2 + m_\pi^2} + \frac{1}{2}$$

- Observables should be regulator independent!
- The counter term $C_0(\Lambda)$ fitted to low-energy data (scattering lengths)
- Predictions are made for nucleon-nucleon phases shifts (all energies)

- Counter term shows a logarithmic dependence on cut-off
- Without counter term the calculations makes no physical sense !

50 MeV 100 MeV 190 MeV

Nogga et al '05

The neutrino amplitude

• Now insert the neutrino potential

$$V_{v} = (2G_{F}^{2}m_{\beta\beta})\tau_{1}^{+}\tau_{2}^{+}\frac{1}{\vec{q}^{2}}\left[(1+2g_{A}^{2})+\frac{g_{A}^{2}m_{\pi}^{4}}{\left(\vec{q}^{2}+m_{\pi}^{2}\right)^{2}}\right] \otimes \overline{e}_{L}e_{L}^{c}$$

 $A_{v} = V_{v} + V_{v}G_{0}T_{LO} + T_{LO}G_{0}V_{v} + T_{LO}G_{0}V_{v}G_{0}T_{LO}$

• Can be measured in principle \rightarrow should be independent of regulator !!

The new neutrino amplitude

• Now re-insert the 0vbb current in nuclear wave functions

- The amplitude is logarithmically dependent on the regulator !
- The nuclear force has a short-distance component →
 'amplitude is sensitive to short-range neutrino exchange'

Non-perturbative renormalization

- Divergence is **nothing scary** in an EFT calculation
- It just signals dependence on hard scales \rightarrow need a counter term

- Contact term comes with new LEC ~ QCD dynamics at $< (\Lambda_{\gamma})^{-1}$
- Neutrino mass $m_{\beta\beta}$ not directly connected to decay rate
- Not expected to be a small correction. It is leading order !
- How to determine the value of the new LEC?

Determining the LEC

• Determine the counter term in absence of data ?

Strategies to get g_{v}^{NN}

1. Lattice QCD calculations of $nn \rightarrow pp + ee$ (obvious but hard). Interesting progress on $\pi\pi \rightarrow ee$ Nicholson et al '18, Feng et al '18 '19 Murphy/Detmold '20

Can this be done for two-nucleon processes?

2. Calculate contributions from virtual neutrinos in soft and hard regime + interpolate Cirigliano, Dekens, JdV, Hoferichter, Mereghetti '20 '21

A matching strategy

• Hadronic part of LNV amplitude given by

$$\mathcal{M} = 2g^{\mu\nu} \int \frac{d^4k}{(2\pi)^4} \frac{\langle f | \hat{\Pi}^{LL}_{\mu\nu}(k) | i \rangle}{k^2 + i\epsilon}$$

$$\hat{\Pi}^{LL}_{\mu\nu}(k) = \int d^4r \ e^{ik \cdot r} \ T\Big(\bar{u}_L \gamma_\mu d_L(r/2) \ u_L \gamma_\nu d_L(-r/2)\Big)$$

- Idea: do energy integral through Cauchy and split d³k integral
- Compute with chiral EFT and asymptotic QCD in appropriate regions.
- Glue regions together using resonance interpolation.
- Extension of single nucleon analysis of Cottingham (1963)

$$\mathcal{M} = \int \frac{d\mathbf{k}}{(2\pi)^3} \langle f_- | \, \hat{O}^{LL}(\mathbf{k}) \, | i_+ \rangle$$

• Initial- and final-state wave functions are scattering states

$$\mathcal{M} = \int \frac{d\mathbf{k}}{(2\pi)^3} \langle f_0 | \left(\hat{T}(E') \hat{G}^{(0)}_+(E') + I \right) \hat{O}^{LL}(\mathbf{k}) \left(I + \hat{G}^{(0)}_+(E) \hat{T}(E) \right) | i_0 \rangle$$

- Split M in a "<" and ">" part for $|\mathbf{k}| < \Lambda$ and $|\mathbf{k}| > \Lambda$ ($\Lambda \sim \text{GeV}$)
- For $|\mathbf{k}| \ll \Lambda$, we can use chiral EFT for the integrand reliably.
- At leading order, only NN intermediate states (NNpi at higher orders)

- In full theory, use single nucleon form factors (e.g. $g_A(q^2)$) to extend integrand to intermediate region: $m_{\pi} < k < \Lambda$
- Modify strong T-matrix at larger k
- Use high-quality 1S0 NN potentials in intermediate range

Large-k regime

• For $|\mathbf{k}| \gg \Lambda$ we use operator-product expansion

$$\hat{O}^{LL}_{>}({\bf k}) = \frac{3g_s^2}{4} \frac{1}{|{\bf k}|^5} ~ O_1$$

Effective contact operator

$$O_1 = \bar{u}_L \gamma_\mu d_L \, \bar{u}_l \gamma^\mu d_L$$

• Asymptotic behaviour ensures amplitude converges

$$\mathcal{M}^{>} = \frac{3\alpha_s}{2\pi} \int_{\Lambda}^{\infty} d|\mathbf{k}| \frac{1}{|\mathbf{k}|^3} \langle f_{-}| O_1(0) |i_{+}\rangle$$

• Dependence on matrix element of O_1 turns out to be small

Let's finally match

• Want to obtain a value for rescaled counter term g_v^{NN}

$$G_{\nu}^{NN} = \left(\frac{m_N}{4\pi}C\right)^2 \tilde{g}_{\nu}$$

$$2\,\tilde{g}_{\nu}(\mu_{\chi}) = \frac{1+2g_{A}^{2}}{2} - \int_{0}^{\mu_{\chi}} d|\mathbf{k}| \ a_{\chi}(|\mathbf{k}|) + \int_{0}^{\Lambda} d|\mathbf{k}| \ a_{<}(|\mathbf{k}|) + \int_{\Lambda}^{\infty} d|\mathbf{k}| \ a_{>}(|\mathbf{k}|)$$

• Here μ_{χ} is the renormalization scale (dim reg in MS-bar)

Let's finally match

• Want to obtain a value for rescaled counter term $g_v^{NN} =$

$$v_{\upsilon}^{NN} = \left(\frac{m_N}{4\pi}C\right)^2 \tilde{g}_{\upsilon}$$

$$2\,\tilde{g}_{\nu}(\mu_{\chi}) = \frac{1+2g_{A}^{2}}{2} - \int_{0}^{\mu_{\chi}} d|\mathbf{k}| \, a_{\chi}(|\mathbf{k}|) + \int_{0}^{\Lambda} d|\mathbf{k}| \, a_{<}(|\mathbf{k}|) + \int_{\Lambda}^{\infty} d|\mathbf{k}| \, a_{>}(|\mathbf{k}|)$$

• Here μ_{χ} is the renormalization scale (dim reg in MS-bar)

$$\tilde{g}_v(\mu_{\chi} = m_{\pi}) = (1.3 \pm 0.1 \pm 0.2 \pm 0.5)$$

- Errors from Λ & local matrix elements, form factors, and inelastic intermediate states
- Same strategy used to calculate electromagnetic corrections to NN scattering
- Agrees with data within (sizeable) errors

Partial success

• Recalculate amplitude with modified neutrino potential including CT

- Total amplitude is regulator independent: data-driven !
- For regulators $R_S \sim (0.3-0.8)$ fm about 50% corrections
- Need to do this for nuclei instead of nucleon-nucleon

Ab initio calculations of light nuclei

• Ab initio chiral calculations limited to light nuclei

 $^{12}Be \rightarrow {}^{12}C + e + e$

- `Quantum Monte Carlo' calculations with chiral potential
- The short-distance operator modifies the total amplitude by **(70-100)%**

Dimensionless NME	Long range	Short range
$^{12}Be \rightarrow {}^{12}C + e + e$	0.7	0.55

• Next goal: include this for large-scale nuclei used in experiments

Ab Initio Treatment of Collective Correlations and the Neutrinoless Double Beta Decay of $^{48}\mathrm{Ca}$

J. M. Yao, B. Bally, J. Engel, R. Wirth, T. R. Rodríguez, and H. Hergert Phys. Rev. Lett. **124**, 232501 – Published 11 June 2020

Exciting to see what will happen

Lepton Number Violation in Effective Field Theory

Part I: LNV and neutrinoless double beta decay

- Part II: An effective field theory approach
 - 1. Light Majorana mass (the Weinberg operator)
 - 2. Non-standard mechanisms in EFT
 - 3. Light sterile neutrinos (very briefly)

Crossing the electroweak scale

$$\sim \text{GeV} \quad L = L_{QCD} + L_{Fermi} - m_{\beta\beta} v_L^T C v_L + C_{\Gamma} \overline{e} \Gamma \overline{v}^T O_{2q}^{\Gamma} + C_{\Gamma'} \overline{e} \Gamma' e^c O_{4q}^{\Gamma'}$$

~100 MeV Neutrinos are still degrees of freedom in the low-energy EFT

Higher-dimensional LNV sources

- Certain dim-7 and dim-9 LNV operators lead to
- LECs calculated from SU(3) arguments or lattice

$$L_{\Delta L=2}^{(9)} = \left\{ C_1^{(9)} \overline{u}_L \gamma^{\mu} d_L \ \overline{u}_L \gamma^{\mu} d_L + C_4^{(9)} \overline{u}_L \gamma^{\mu} d_L \ \overline{u}_R \gamma^{\mu} d_R \right\} \frac{\overline{e}_L e_L^c}{v^5}$$
$$g_1 = -(1.9 \pm 0.2) \ GeV^2 \qquad g_2 = -(8 \pm 0.6) \ GeV^2$$

Cirigliano et al '17, Nicholson et al '18

e

 $\sim g_{1.2}$

 π

- Quite different from earlier 'vacuum factorization' estimates
- Additonal contributions to the neutrino potential

'The neutrinoless double-beta metro map'

Turn the Crank

 $C_i \sim (v/\Lambda)^3$

- KAMLAND experiment $T_{1/2}^{0\nu} \left({}^{136}Xe \rightarrow {}^{136}Ba \right) > 1.07 \times 10^{26} yr$
- Limits on dim-7 couplings at O(100) TeV
- Limits on dim-9 couplings at O(5) TeV $C_i \sim (\nu/\Lambda)^5$

Phenomenology

Example: dim-7 operator e.g. appearing in leptoquark models

Disentangling LNV sources

- A single measurement can be from any LNV operator
- Need several measurements to unravel the source
- However, total rates in different isotopes not very helpful....
- Similar Q values and all $0^+ \rightarrow 0^+$

Disentangling LNV sources

- A single measurement can be from any LNV operator
- Need several measurements to unravel the source
- Instead: angular & energy distributions of electrons (science fiction?)

Conclusion/Summary

Neutrinoless Double Beta Decay

- ✓ Powerful search for BSM physics (probe high scales)
- \checkmark Well motivated in order to probe nature of neutrino masses
- ✓ However, complicated low-energy observable

Standard Model EFT and chiral EFT frameworks

- ✓ Keep track of **symmetries** (gauge/lepton#/chiral) from Tev to nuclear scales
- ✓ Standard mechanism: LO contact nn→ pp + ee operator must be added

Phenomenology

- ✓ Current experiments set very strong limits (>500 TeV in some cases)
- ✓ Master formula to include all contributions up to dim-9
- ✓ Recent: add effects of light sterile neutrinos
- Connection to other probes: LHC, beamdump, Leptogenesis, in progress

Some phenomenology

- Consider a simple 'minimal' scenario 3 + 2 sterile neutrinos
- Can account for all neutrino mass splittings and mixing angles
- Leads to 1 massless neutrino
- But 0vbb decay rates too small to measure even with nEXO

