Dark Matter, Sky and Earth

Fabío Iocco

ICTP-SAIFR, São Paulo Federíco II, NAPOLI

International Centre for Theoretical Physics South American Institute for Fundamental Research Dip. Galileo Galilei 16/4/2019, Padova

Part I:

The Dark Matter distribution of the Milky Way (its uncertainties and consequences on the determination of new physics)

Fabío Iocco

ICTP-SAIFR, São Paulo Federíco II, NAPOLI

International Centre for Theoretical Physics South American Institute for Fundamental Research Dip. Galileo Galilei 16/4/2019, Padova

Dark Matter Evidence over large range of scales

NATURE STILL UNKNOWN

A story of LCDM I: structure formation

age of Universe

A story of LCDM II: the single halo

A "universal" DM profile?

NAVARRO-FRENK-WHITE

 $\rho(R) \propto \frac{R_s}{R} \left(1 + \frac{R}{R_s} \right)^{-2}$

A story of LCDM III: the dark matter distribution

generalized NFW

$$\rho_{DM}(R) \propto \rho_0 \left(\frac{R}{R_s}\right)^{-\gamma} \left(1 + \frac{R}{R_s}\right)^{-3+\gamma}$$

A story of LCDM IV: the small scale problems

Cusp vs core

Missing satellite

Many gxpgrts hgrg in Durham, ask <u>thgm</u>!

And now for something completely different: the Milky Way

The road to Zeus' home on Olympus The sacred path of Iberian pilgrims An average-sized 10^12 Msun spiral, but the truth is

DM density at the Sun =? (the path to Stockholm goes through the skies)

Determining the relevant astrophysical quantities Local DM density

Local determination of ρ_0

Vertical motion of stars, determining the whole local potential

Local determination of ρ_0

Subtracting local baryonic (stellar) contribution to get DM (no implicit assumption on DM presence)

Inferring the DM density structure

Fitting a pre-assigned shape on top of luminous

[many autors, e.g. locco et al. 2011]

gNFW

$$\rho_{DM}(R) \propto \rho_0 \left(\frac{R}{R_s}\right)^{-\gamma} \left(1 + \frac{R}{R_s}\right)^{-3+\gamma}$$

 $\rho_{DM}(R) \propto \rho_0 \exp\left[-\frac{2}{\gamma}\left(\left(\frac{R}{R_s}\right)^{\gamma} - 1\right)\right]$
Einasto

Global determination of $\rho(r)$

Fitting a DM profile to the Rotation Curve, on top of other components

Underlying assumption on DM presence and distribution shape

The case of the Milky Way

Courtesy of Miguel Pato

Dark Matter in the Milky Way: a purely observational approach

Fabío Iocco

Work started with: *Míguel Pato, G. Bertone* And continued with: *María Beníto, Ekaterína Karukes*

The case of the Milky Way: ingredients

- The observed rotation curve
- The "expected" rotation curve
- Some "grano salis"
- Working hypothesis (later on)

The Milky Way: testing expectactions (with no additional assumptions)

[Iocco, Pato, Bertone, Nature Physics 2015]

The case of the Milky Way: the question

$$\Phi_{\text{tot}} = \Phi_{\text{bulge}} + \Phi_{\text{disk}} + \Phi_{\text{gas}} ??$$

[can the observed, luminous components make up to the whole gravitational potential?]

$$v_c^2 = r rac{d \phi_{
m tot}}{dr}$$

Rotation curve as a tracer of the total potential

...and if not...

The Milky Way: observed rotation curve III. curve

Data compilation by [Sofue et al, '08]

The Milky Way: observed rotation curve II'. data again (a new compilation)

	Object type	$R \; [kpc]$	quadrants	# objects
	HI terminal velocities			
	Fich+ '89	2.1 - 8.0	1,4	149
	Malhotra '95	2.1 - 7.5	1,4	110
	McClure-Griffiths & Dickey '07	2.8 - 7.6	4	701
	HI thickness method			
	Honma & Sofue '97	6.8 - 20.2	-	13
	CO terminal velocities			
	Burton & Gordon '78	1.4 - 7.9	1	284
	Clemens '85	1.9 - 8.0	1	143
gas	Knapp+ '85	0.6 - 7.8	1	37
	Luna+ '06	2.0 - 8.0	4	272
	HII regions			
	Blitz '79	8.7 - 11.0	2.3	3
	Fich+ '89	9.4 - 12.5	3	5
	Turbide & Moffat '93	11.8 - 14.7	3	5
	Brand & Blitz '93	5.2 - 16.5	1.2.3.4	148
	Hou + '09	3.5 - 15.5	1.2.3.4	274
	giant molecular clouds		-,-,-,-	
	Hou+ '09	6.0 - 13.7	1,2,3,4	30
	open clusters			
stars	Frinchaboy & Majewski '08	4.6 - 10.7	1,2,3,4	60
	planetary nebulae			
	Durand+ '98	3.6 - 12.6	1,2,3,4	79
	classical cepheids			
	Pont+ '94	5.1 - 14.4	1,2,3,4	245
	Pont+ '97	10.2 - 18.5	2,3,4	32
	carbon stars			
	Demers & Battinelli '07	9.3 - 22.2	1,2,3	55
	Battinelli+ '13	12.1 - 24.8	1,2	35
masers	masers			
	Reid+ '14	4.0 - 15.6	1,2,3,4	80
	Honma+ '12	7.7 - 9.9	1,2,3,4	11
	Stepanishchev & Bobylev '11	8.3	3	1
	Xu+ '13	7.9	4	1
	Bobylev & Bajkova '13	4.7 - 9.4	1,2,4	7

The Milky Way Rotation Curve as observed

All tracers, optimized for precision between R=3-20 kpc

Dissecting the Milky Way: morphological observations

The Milky Way: expected rotation curve

$$\Phi_{\text{baryon}} = \Phi_{\text{bulge}} + \Phi_{\text{disk}} + \Phi_{\text{gas}}$$

$$ho_i(x,y,z) o \phi_i(r, heta,arphi) o v_{c,i}^2(R) = \sum_arphi R rac{d\phi_i}{dr}(R,\pi/2,arphi)$$

Constructing the curve expected from observed mass profiles

The Milky Way: expected rotation curve 1. the baryonic components

The luminous Milky Way: observations of morphology

2. BARYONS: ST	ELLAR BULGE	0	•						
$ ho_{ m bulge}= ho_0f(x,y,z)$									
morphology $f(x, y, z)$									
Stanek+'97 (E2)	e^{-r}	0.9:0.4:0.3	24°	optical					
Stanek+ '97 (G2)	$e^{-r_{s}^{2}/2}$	1.2:0.6:0.4	25°	optical					
Zhao '96	$e^{-r_s^2/2}+r_a^{-1.85}e^{-r_a}$	1.5:0.6:0.4	20°	infrared					
Bissantz & Gerhard '02	$e^{-r_s^2}/(1+r)^{1.8}$	2.8:0.9:1.1	20°	infrared					
Lopez-Corredoira+ '07	Ferrer potential	7.8:1.2:0.2	43°	infrared/optical					
Vanhollebecke+ '09	$e^{-r_s^2}/(1+r)^{1.8}$	2.6:1.8:0.8	15°	infrared/optical					
Robin+ '12	${ m sech}^2(-r_s)+e^{-r_s}$	1.5:0.5:0.4	13°	infrared					

normalisation ρ_0 microlensing optical depth: $\langle \tau \rangle = 2.17^{+0.47}_{-0.38} \times 10^{-6}$, $(\ell, b) = (1.50^{\circ}, -2.68^{\circ})$ (MACHO '05) The luminous Milky Way: observations of morphology

2. BARYONS: STELLAR DISK

$$ho_{
m disk}=
ho_0f(x,y,z)$$

morphology f(x, y, z)

Han & Gould '03	$e^{-R} \mathrm{sech}^2(z) \ e^{-R- z }$	2.8:0.27 2.8:0.44	$ extsf{thin}$	optical
Calchi-Novati & Mancini '11	$e^{-R- z } e^{-R- z }$	2.8:0.25 4.1:0.75	thin thick	optical
deJong+ '10	$e^{-R- z } e^{-R- z } (R^2+z^2)^{-2.75/2}$	2.8:0.25 4.1:0.75 1.0:0.88	thin thick halo	optical
Jurić+ '08	$e^{-R- z } e^{-R- z } (R^2+z^2)^{-2.77/2}$	2.2:0.25 3.3:0.74 1.0:0.64	thin thick halo	optical
Bovy & Rix '13	$e^{-R- z }$	2.2:0.40	single	optical

normalisation ρ_0

local surface density: $\Sigma_* = 38 \pm 4 M_{\odot}/pc^2$ [Bovy & Rix '13]

The luminous Milky Way: observations of morphology

uncertainties

CO-to-H₂ factor: $X_{\rm CO} = 0.25 - 1.0 \times 10^{20} \text{ cm}^{-2} \text{ K}^{-1} \text{ km}^{-1} \text{ s for } r < 2 \text{ kpc}$ $X_{\rm CO} = 0.50 - 3.0 \times 10^{20} \text{ cm}^{-2} \text{ K}^{-1} \text{ km}^{-1} \text{ s for } r > 2 \text{ kpc}$

[Ferrière+ '07, Ackermann '12]

The luminous Milky Way: expected rotation curve

$$egin{aligned} egin{aligned} \phi_i(r, heta,arphi) = -4\pi G \sum_{l,m} rac{Y_{lm}(heta,arphi)}{2l+1} \left[rac{1}{r^{l+1}} \int_0^r
ho_{i,lm}(a) a^{l+2} da + r^l \int_r^\infty
ho_{i,lm}(a) a^{1-l} da
ight] \end{aligned}$$

The Milky Way: testing expectactions

The Milky Way: testing expectactions (with no additional assumptions)

[Iocco, Pato, Bertone, Nature Physics 2015]

The Milky Way: testing expectactions (with no additional assumption) ((and some technical detail))

The Milky Way: testing expectactions (with no additional assumptions) ((and some technical detail))

- Computing the "badness-of-fit" (discrepancy) of each baryon rot. curve (no DM!!) to observed one
- One COULD bin (and we have done it) but loss of information: using 2D chi-square (uncertainties on R, as well)

$$\chi^2 = \sum_{i=1}^{N} d_i^2 \equiv \sum_{i=1}^{N} \left[\frac{(y_i - y_{b,i})^2}{\sigma_{y,i}^2} + \frac{(x_i - x_{b,i})^2}{\sigma_{x,i}^2} \right]$$

Do the baryon-only curves fit with the observed RC?

[Iocco, Pato, Bertone, Nature Physics 2015]

Systematic uncertainties (luminous component)

[Benito, Bernàl, Bozorgnia, Calore, Iocco, JCAP 2017]

[Iocco, Pato, Bertone, Nature Physics 2015]

Extracting the DM density structure

Dark Matter Evidence over large range of scales

NATURE STILL UNKNOWN

Direct and indirect searches of WIMP DM complementary to colliders

Direct detection: DM scattering against nuclei, recoil

Indirect detection: Annihilation in astrophysical envir. Observation of SM products of annih.

Production at LHC

Roundabout of complementarity (for WIMP DM)

Indirect Detection: principles and dependencies

$\chi + \chi \rightarrow q\bar{q}, W^+W^-, \ldots \rightarrow \gamma, \bar{p}, \ \bar{D}, \ e^+ \& \nu's$

 $F_i \propto \frac{1}{4\pi d^2} B_i \frac{\langle \sigma v \rangle}{m_{\chi}} \int \rho^2(r) dV$

Direct Detection: principles and dependencies (to go...)

you need this

dR $\overline{dE} \propto$ v, t

Velocity distr. f(v) not even talking about that

Extracting the DM density structure

But do Galactic uncertainties affect PP, for real?

 $J_{annih} \propto \int_{los} \rho^2(r) dV$

It is well known that uncertainties affect Direct Detection

Current LUX limits, but varying astrophysical uncertainties

The effect of astrophysical uncertainties on the determination of new physics

Uncertainties accounted for:

Calore analysis:

observed GC signal (only stat. on gamma flux)

Let's quantify this effect in a specific case: Singlet Scalar DM

$$V = \mu_H^2 |H|^2 + \lambda_H |H|^4 + \mu_S^2 S^2 + \lambda_S S^4 + \lambda_{HS} |H|^2 S^2$$

$$egin{aligned} v_H &= 246 ext{ GeV } \langle S
angle &= 0 \ m_S^2 &= 2\,\mu_S^2 + \lambda_{HS}\,v_H^2 \end{aligned}$$

"WIMP phenomenology" entirely dictated by the Higgs coupling and physical DM mass.

[Mc Donald, 1994] [Burgess, Pospelov, Velthuis, 2001]

Singlet Scalar DM Constraints and interplay of experiments

Singlet Scalar DM Constraints and interplay of experiments

$$V = \mu_H^2 |H|^2 + \lambda_H |H|^4 + \mu_S^2 S^2 + \lambda_S S^4 + \lambda_{HS} |H|^2 S^2$$

Let's look at the effect of astrophysics uncertainties: Direct Detection

Let's look at the effect of astrophysics uncertainties: Direct Detection

Let's look at the effect of astrophysics uncertainties: Indirect Detection

Dark Side of the Universe July 15-19, 2019

15-19 JULY 2019

BUENOS AIRES, ARGENTINA

THE 15TH INTERNATIONAL CONFERENCE ON THE

DARK SIDE OF THE UNIVERSE REGISTRATION IS OPEN

Campus Universidad de Buenos Aires Argentina

Cuncta stricte

- The existence of a gravitational/non-EM interacting species is solid on vaste range of scales.
- Astrophysics and Cosmology are in very good agreement with the scenario of a warm/cold particle constituting the backbone of cosmic structures.
- We are still ignorant over the very nature of this particle(s), but there's plenty of options.
- We are starting now to achieve sensitivity with a host of probes (not only colliders) on the core region of one of the most popular scenarios.
- Astrophysical uncertainties are actually affecting determination of PP, in virtuous interplay with collider physics, direct and indirect probes.

High Energy DM photons: CTA & the LMC

Fabío Iocco

ICTP-SAIFR, São Paulo Federíco II, NAPOLI

International Centre for Theoretical Physics South American Institute for Fundamental Research Dip. Galileo Galilei 16/4/2019, Padova

Which targets for DM gamma-ray searches?

Clusters

Dwarf Spheroidals satellites

CTA has its agenda...

Spiral satellites

The Large Magellanic Cloud a Milky Way satellite

Bulge, disk, spiral satellite

 $M_{LMC} \sim 10^{10} M_{\odot}$ $d \sim 50 kpc$

The Large Magellanic Cloud a gamma-rich region

Extensively studied by *Fermi* individual sources plus a diffuse within

The Large Magellanic Cloud Key Science Project of CTA

Very interesting object due to its remarkably high star formation activity for its small volume, proximity to the Milky Way (so it's very well resolved), presence of many high energy gamma-ray sources... Magellanic Spiral Galaxy, satellite of the Milky Way.. Distance: 50kpc Mass: 5.3 ±1.0 · 10¹⁰ Mo (Alves and Nelson, 2000) Diameter: 4.3 kpc (~10°) Position(RA,dec): 80.0, -69.5 Known y ray sources: 30 Dor. C superbubble **PWN N157B SNR N 132D** Undetected in Gamma-Rays. **SNR 1987A**

What we know it's there: previous observations

Gamma-Ray sources detected by Fermi LAT and H.E.S.S.:

- Supernova Remnant N132D
- Pulsar Wind Nebulae N157B
- 30 Doradus C superbubble
- Gamma-Ray Binary CXOU 053600.0-673507. Pulsar PSR J0540–6919 ★
- ★
- 4+1 Extended sources detected by Fermi.

LAT collaboration, Ackermann et al. 2015

H.E.S.S. collaboration 2015

Individual Point and Extended sources

1987A, the Great Expectation

CTA LMC's working group homework

The individual sources

Source Catalogs:

- <u>3FGL(2015)</u>: 3rd Fermi LAT source catalog (3FGL) of sources in the 100MeV–300 GeV range. Based on the first four years of science data from the Fermi Gamma-ray Space Telescope mission.
- ★ <u>3FHL(2017)</u>: 3rd catalog of Hard Fermi-LAT sources characterized in the 10 GeV-2 TeV energy range.
- ★ <u>Ackermann et al.(2015)</u> arXiv:1509.06903 [astro-ph.HE] from Fermi Collaboration.
- ★ <u>H.E.S.S. Collaboration(2015)</u> arXiv:1501.06578 [astro-ph.HE]
 - Komin, Haupt (2017) from H.E.S.S. Collaboration.

The diffuse emission

Hadronic emission from CR protons/nuclei interacting with interstellar gas in the LMC and producing pions.

Leptonic emission from CR electrons inverse-Compton scattering off the radiation field.

200

Let's get things done I. individual spectra

We don't have real data from CTA, so we take the observations from *Fermi* LAT/H.E.S.S. and extrapolate their results to CTA energies.

From catalogs we obtain spectral shapes (usually a power law) with parameters (spectral index and normalization):

$$M_{\text{spectral}}(E) = k_0 \left(\frac{E}{E_0}\right)^{\gamma}$$

only 3 sources with known redshift (more to be done for EBL)

Let's get things done II. observation settings

We use software ctools to simulate LMC observations.

Observation settings:

- ★ Pointing: 6 Pointings around LMC center.
- ★ Exposure time: 50h per pointing, 300h.

Analysis settings:

- ★ 3D binned maximum-likelihood analysis.
- ★ Energy: 0.03 TeV to 100 TeV.

Let's get things done III. statistics and significance

Statistics reminder

$L = \prod_{i}^{N} \frac{m_i^{n_i}}{n_i!} e^{-m_i}$

 $n_{
m i}$ = number of observed counts in the bin i (simulated data)

 m_i = number of predicted number of counts in the bin i (model):

 $m_i = K_0 Srcmodel_{0,i} + K_1 Srcmodel_{1,i} + \ldots + K_N Srcmodel_{N,i}$

Parameters "K" (Normalization) maximize the likelihood.

Significance:

$$TS = 2\log \frac{L}{L_{null}}$$

"Detection" TS > 25

Point sources

Source name	Significance(σ)
J0500.9-6945e	163,64
J0530.0-6900e	$35,\!62$
J0531.8-6639e	$127,\!15$
J0537-691	550,33
J0524.5-6937	226,74
J0534.1-6732	$68,\!37$
J0525.2-6614	$94,\!64$
J0535.3-6559	$73,\!95$
J0454.6-6825	$79,\!38$
J0537.0-7113	$17,\!07$
J0535-691	$46,\!32$
J0525-696	$96,\!43$

Direct detection: DM scattering against nuclei, recoil

Indirect detection:

Annihilation in astrophysical envir. Observation of SM products of annih.

Production at LHC

Motivated by cosmological/PP arguments but not only DM candidate!

$$F_i \propto rac{1}{4\pi d^2} B_i rac{\langle \sigma v
angle}{m_\chi} \int
ho^2(r) dV$$

 $J_{annih} \propto \int_{los}
ho^2(r) dV$

 $W^+W^-\,$ annihilation channel, 100 realizations of LMC data.

• School on High Energy Astrophysics August 5-16, 2019

ICTP-SAIFR São Paulo, Brazil (not Rio de Janeiro!)

Cuncta stricte

- Characterization of all known sources in LMC ROI: completed.
- Some refinement for diffuse components possible, but not crucial at this stage.
- DM potentially detectable above thermal cross section, as expected.
- A Consortium paper under way, corresponding authors: M.I. Bernardos(student), FI, P. Martin