LIGHT DARK SECTORS AND NANO-HZ GRAVIATIONAL WAVES

Pedro Schwaller Mainz University

Based on work with: Eric Madge Enrico Morgante Cristina Puchades-Ibanez Nicklas Ramberg Wolfram Ratzinger Sebastian Schenk

PADUA 2023: Light Dark Sectors

Centro Universitario Padovano July 13, 2023 Gravitational waves as windows into the early Universe Searches for NanoHz GWs with pulsar timing arrays Implications for particle physics

Thermal history and particle physics

Thermal history and particle physics

Early universe holds the key to many fundamental open questions in particle physics

- What is dark matter, and how is it made
- What is the origin of matter
- What is the dynamics of inflation and reheating

Gravitational waves as messengers from the early Universe

- Travel undisturbed from earliest times
- Only produced by violent, non-equilibrium physics
 - Stochastic GW background

Relevant scale: Hubble radius ↔ GW wavelength

GW frequency

 $f_{\rm GW} \sim T_*$

Age of Universe

 \mathbf{C} PRiSMA⁺

PRISMA⁺

What is a Pulsar Timing Array?

© Tonia Klein

Pulsar timing arrays

NANOGrav has observed evidence for a stochastic GW background at nano-Hz frequencies: NANOGrav Collaboration,

Strong evidence for Hellings-Downs correlation

Also supported by new EPTA+InPTA, CPTA data (PPTA less)

Compatible with primordial GWs from new physics

NANOGrav Collaboration, 2306.16219, APJL 951

Thoughts:

This is a very strong signal!

 $\Omega_{\rm GW, today} \sim 10^{-9}$

Comparison: The photon density today is $\Omega_{\gamma} \sim 10^{-5}$, but photons were in thermal equilibrium in early Universe

Any source that can explain this must:

- ► Represent a significant fraction of the total energy density at the time of production, $T_* \sim (10 1000) \,\text{MeV}$
- ► Be very efficient at converting that energy to GW radiation
- Then disappear before onset of BBN, $T\sim 1\,{\rm MeV}$

Supercooled phase transitions

Benchmark model: Coleman-Weinberg model with vanishing tree level potential $\mathcal{L} = -\frac{1}{4}F_{\mu\nu}^2 + D_{\mu}\Phi^{\dagger}D^{\mu}\Phi - V(\Phi,T)$

Two parameter model: Mass scale M and coupling g

Signal dominated by colliding bubbles and sound shells

Simulated by Lewicki and Vaskonen, 2208.11697

Supercooled phase transitions

Madge et al, 2306.14856

Comparison with 12 year data

Large supercooling and reheating

- Dilution of baryons, dark matter
- Two BBNs

Pheno: Light scalar $m_{\phi} \approx M$, decay to electrons and photons

Higgs portal not viable, instead

FCC? Or low energy e+e- machine (e.g. MESA in Mainz)

$$\mathcal{L} \supset c_{ee} \frac{|\Phi|^2}{\Lambda^2} LH\bar{e} + c_{\gamma\gamma} \frac{|\Phi|^2}{\Lambda^2} F_{\mu\nu} F^{\mu\nu}$$

How about the other sources?

Axion/ALP domain walls

Domain walls appear when discrete symmetries are spontaneously broken to degenerate ground states

Long lasting GW source, until DWs annihilate, before dominating the Universe ideally

Axion DW: $U(1)_{PQ} \rightarrow Z_N$

Surface tension $\sigma = 8m_a f_a^2$

Annihilation triggered by QCD instantons

$$T_{\rm ann} \sim 1 \, {\rm GeV} \, \left(\frac{g_*(T_{\rm ann})}{80}\right)^{-\frac{1}{4}} \left(\frac{\Lambda_{\rm QCD}}{400 \, {\rm MeV}}\right)^2 \left(\frac{10^7 \, {\rm GeV}}{f_a}\right) \sqrt{\frac{10 \, {\rm GeV}}{m_a}}$$

Madge et al, 2306.14856

Axion/ALP domain walls

Madge et al, 2306.14856

Maybe room for improvement (FCC-hh?)

Invisibly decaying DWs

Madge et al, 2306.14856

One more: Primordial black holes

20

Depta et al,

2306.17836

Summary

GWs probe non-equilibrium physics in the early Universe

PTA experiments made first observation of a stochastic GW background

Consistent with SMBHB, but also can be (partially) explained by new physics

- Dark (but not decoupled) sector phase transition
- Domain walls
- ▶ ...

Combination of laboratory, GW and astro/cosmo measurements required to identify source

Exciting times :)

Extra slides :)

Axion/ALP domain walls

Madge et al, 2306.14856

Now what about the spectral distortions?

Spectral distortions?

Around $10^4 \leq z \leq 10^6$, photon number is frozen

Any energy added to the photons leads to a so called μ distortion

Energy source we consider here: Gravitational damping of dark sector fluctuations

Ramberg, Ratzinger & PS, 2209.14313

Spectral distortions as probes of low scale GWs

Tensor fluctuations (GWs) also source μ distortions

But difficult to test. Better to directly go for the scalar fluctuations (that also source the GWs)

Spectral distortions from dark sector anisotropies

Assume decoupled dark sector, $\Omega_d \ll 1$

Large fluctuations $\delta_d = \delta \rho_d / \rho_d \sim 1$

 Gravitationally induced sound waves in photons \(\epsilon_{ac}\)

Resulting μ distortions

$$\mu = \int d\log k \ \epsilon_{ac}^{\lim}(k) \mathcal{W}(k),$$

Example source I: Dark sector phase transition

Note: Ω_d fixed to satisfy $N_{\rm eff}$ constraints

Ramberg, Ratzinger & PS, 2209.14313

Example source II: Annihilating domain walls

Already probes allowed parameter space

Complementary to GW probes, can break degeneracy

Multi-messenger cosmology

Source III: (global) cosmic strings

Note: Local strings mainly radiate from small loops and are thus NOT an efficient source of spectral distortions

Example source IV: Audible axions...

Expect better sensitivity for axion fragmentation

Fit with broken power law signals

Wolfram Ratzinger & PS, 2009.11875

JG U 32

Fit with Phase Transition

Generic PT parameterisation, best fit with PT at temperatures in few MeV range

Challenge for model building \rightarrow Hint for dark sector

Fit with Phase Transition

Generic PT parameterisation, best fit with PT at temperatures in few MeV range

Some model parameters excluded by PTA data now!

At higher frequencies

LISA will probe above 10 GeV, colliders could fill gap

Standard model

The hot early Universe sources GWs!

- Classical picture: thermal fluctuations source tensor fluctuations
- Quantum picture: gluon + gluon -> graviton

From Ringwald, Schütte-Engel, Tamarit, 2020

Original computations: Ghiglieri, Laine, 2015 Ghiglieri, Jackson, Laine, Zhu, 2020

Composite DM / Hidden Sector

- SU(N) dark sector with neutral "dark quarks"
- Confinement scale
 - $\Lambda_{\rm darkQCD}$
- DM is composite "dark proton"

Bai, PS, PRD 89, 2014 PS, Stolarski, Weiler, JHEP 2015

Similar setup e.g.: Blennow et al; Cohen et al; Frandsen et al; Hidden Valleys: Strassler, Zurek;...

SU(N) - PT

Consider. $SU(N_d)$ with n_f massless flavours

PT is first order for

•
$$N_d \geq 3$$
 , $n_f = 0$

- $N_d \geq 3$, $3 \leq n_f < 4N_d$

Svetitsky, Yaffe, 1982 M. Panero, 2009

Pisarski, Wilczek, 1983

Not for:

- $n_f = 1$ (no global symmetry, no PT)
- ► $n_f = 2$ (not yet known)

Note: Nature of the PT does not depend on arbitrary model parameters

Combine lattice and holography

Improved holographic QCD

$$\mathcal{S}_5 = -M_P^3 N_c^2 \int d^5 x \sqrt{g} \left[R - \frac{4}{3} (\partial \Phi)^2 + V(\Phi) \right] + 2M_P^3 N_c^2 \int_{\partial M} d^4 x \sqrt{h} K$$

- ► AdS Einstein-dilator/g@Divity ↔ 4D CFT
- ► Dilaton potential $V(\Phi)$

Φ

- ► Dilaton $\lambda = \exp^{\lambda} \overline{\Phi} \stackrel{exp}{\leftrightarrow} \Phi_{t}$ Hooft coupling $\lambda_{t} \stackrel{\lambda}{=} \overline{N}_{c}^{N} \stackrel{g^{2}}{g}_{YM}^{2}$ $b(r) \qquad E = E_{0}b(r)$
- ► Solutions of EOM \leftrightarrow phases of SU(N)^{*c*})

Gürsoy, Kiritsis, Mazzanti, Nitti 0707.1324, 0707.1349, 0812.0792, 0903.2859, ...

Improved holographic QCD

 $\lambda \to 0$ $\lambda \to \infty$ Want this to reproduce SU(N) theories $V(\lambda) = \frac{1}{\ell^2} (1 + v_0 \lambda + v_1 \lambda^2 + ...)$ $\blacktriangleright \text{ Confinement in IR } (\lambda \to \infty)$ $V(\lambda) \sim \lambda^{4/3} (\log \lambda)^{1/2}$

• Yang Mills beta function in UV ($\lambda \rightarrow 0$)

$$V(\lambda) = \frac{12}{\ell^2} \left\{ 1 + V_0 \lambda + V_1 \lambda^{4/3} [\log(1 + V_2 \lambda^{4/3} + V_3 \lambda^2)]^{1/2} \right\}$$

Fix parameters:

- $\sim V_0, V_2$ to Keprod $V_{1/2}^{1/2}$ 2 loop YM running ifixed/by UV
- \blacktriangleright V₁, V₃ fit to reproduce SU(3) lattice thermodynamics in IR

The phase transition in ihQCD

Three solutions

- Big BH: Deconfined phase
- Small BH: Unstable, saddle point
- Thermal gas: Confined phase

The phase transition in ihQCD II

At $T = T_c$, deconfined phase becomes meta-stable

Morgante, Ramberg, PS, 2210.11821

The phase transition in ihQCD III

Interpolate between big and small BH solutions

- Do some hard work...
- ► Win :)

Morgante, Ramberg, PS, 2210.11821

GWs from Phase Transitions

QFT at finite temperature → symmetry restoration

GWs from Phase Transitions

First order PT \rightarrow Bubbles nucleate, expand

Bubble collisions → Gravitational Waves

PT signal

PT characterised by few parameters:

- Latent heat $\alpha \approx \frac{\Omega_{\text{vacuum}}}{\Omega_{\text{rad}}}$
- Bubble wall velocity $\,arcall^{\,}$
- Bubble nucleation rate eta
- PT temperature T_*

More details, see e.g.:

Can this be from the QCD phase transition?

QCD phase transition?

The short answer is NO

QCD PT is a smooth cross-over

 $m_{u,d}$

PS, 2016

QCD phase transition?

The short answer is NO

QCD PT is a smooth cross-over

The longer answer:

- QCD PT can be first order
 in presence of large lepton
 asymmetry
- Or if EWPT is delayed
- Or if it is not QCD but a
 QCD-like dark sector

QCD-like dark sectors

The new physics should be light and hidden

QCD-like dark sector can naturally have $\Lambda_d \sim {
m MeV}$

Confinement PT is first order for

- ▶ $N_d \ge 3$ and $n_f = 0$
- $\blacktriangleright N_d \geq 3 \text{ and } 3 \leq n_f \lesssim 4N_d$

Can this explain the NANOGrav/PTA data?

Difficult question in itself due to strong coupling

Combine lattice and holography

Improved holographic QCD

Gürsoy, Kiritsis, Mazzanti, Nitti 0707.1324, 0707.1349, 0812.0792, 0903.2859, ...

$$\mathcal{S}_5 = -M_P^3 N_c^2 \int d^5 x \sqrt{g} \left[R - \frac{4}{3} (\partial \Phi)^2 + V(\Phi) \right] + 2M_P^3 N_c^2 \int_{\partial M} d^4 x \sqrt{h} K$$

Want this to reproduce SU(N) theories

 $V(\lambda) = \frac{12}{\ell^2} (1 + v_0 \text{ confinement in IR } (\lambda \to \infty) \quad V(\lambda) \sim \lambda^{4/3} (\log \lambda)^{1/2})$

► Yang Mills beta flum dip of $\lambda_t = N_c g_{YM}^2$

$$V(\lambda) = \frac{12}{\ell^2} \left\{ 1 + V_0 \lambda + V_1 \lambda^{4/3} [\log(1 + V_2 \lambda^{4/3} + V_3 \lambda^2)]^{1/2} \right\}^{\frac{1}{2}} SU(N_c)$$

Parameters fit to match RGE in V₀, V₁V₂
UV and fattice in IR! fixed by UV
fit to lattice data (thermodyn. or glueballs)

 Γ/T_c

Effective potential and bounce action

Bounce action

$$\begin{split} \mathcal{S}_{\text{eff}} &= \frac{4\pi}{T} \int d\rho \rho^2 \left[c \frac{N_c^2}{18\pi^2} (\partial_r \lambda_h(r))^2 + V_{\text{eff}}(\lambda_h(r)) \right] \\ \mathcal{S}_{\text{eff}} &= \frac{4\pi}{T} \int d\rho \rho^2 \left[c \frac{N_c^2}{18\pi^2} (\partial_r \lambda_h(r))^2 + V_{\text{eff}}(\lambda_h(r)) \right] \\ C \frac{18\pi^2}{16\pi^2} (\partial_r \lambda_h(r))^2 + V_{\text{eff}}(\lambda_h(r)) \right] \\ \mathbf{Tunneling}_{\Gamma = T^4} \left(\frac{\mathbf{S}_B}{2\pi} \right)^{3/2} e^{-\mathcal{S}_B} \\ \Gamma \approx \mathbf{T} \\ \end{array}$$

Allows to compute α and β

	α	$\beta/H\left(v_w=1\right)$	$\beta/H(0.1)$	$\beta/H(0.01)$
$T_c = 50 \mathrm{MeV}$	0.343	9.0×10^4	8.6×10^4	8.2×10^4
$100{ m GeV}$	0.343	6.8×10^{4}	6.4×10^{4}	6.1×10^4

Morgante, Ramberg, PS, 2210.11821

GW spectrum

First prediction for GW spectra of QCD-like dark sectors from holography

- ▶ for $N_c = 3$, $n_f = 0$
- Some work remains (wall velocity)
- ► Larger signal possible for larger N_c , n_f
- Agrees with estimates based
 on effective theories and lattice data
 (e.g. Halverson+ 2012.04071, Huang+ 2012.11614, March-Russell+ 1505.07109)

Morgante, Ramberg, PS, 2210.11821

