‡Fermilab

All the X in one basket: X-ray constraints on sub-GeV dark matter Elena Pinetti

PADUA – 7th September 2023

This talk is based on...

INTEGRAL X-ray constraints on sub-GeV Dark Matter

Marco Cirelli^{*a*}, Nicolao Fornengo^{*b*}, Bradley J. Kavanagh^{*c*}, Elena Pinetti^{*a,b*}

^a Laboratoire de Physique Théorique et Hautes Energies (LPTHE), UMR 7589 CNRS & UPMC, 4 Place Jussieu, F-75252, Paris, France

^b Dipartimento di Fisica, Università di Torino & INFN, Sezione di Torino, via P. Giuria 1, I-10125 Torino, Italy

> ^c Instituto de Física de Cantabria, (IFCA, UC-CSIC), Av. de Los Castros s/n, 39005 Santander, Spain

Putting all the X in one basket: Updated X-ray constraints on sub-GeV Dark Matter

Marco Cirelli^{*a*}, Nicolao Fornengo^{*b*},

Jordan Koechler^a, Elena Pinetti^{c,d}, Brandon Roach^e

Phys.Rev.D 103 (2021) 6, 063022

JCAP 07 (2023) 026

This talk is based on...

INTEGRAL X-ray constraints on sub-GeV Dark Matter

Marco Cirelli^{*a*}, Nicolao Fornengo^{*b*}, Bradley J. Kavanagh^{*c*}, Elena Pinetti^{*a,b*}

^a Laboratoire de Physique Théorique et Hautes Energies (LPTHE), UMR 7589 CNRS & UPMC, 4 Place Jussieu, F-75252, Paris, France

^b Dipartimento di Fisica, Università di Torino & via P. Giuria 1, I-10125 Tor

> ^c Instituto de Física de Cantab Av. de Los Castros s/n, 390

Putting all the X in one basket: Updated X-ray constraints on sub-GeV Dark Matter

Marco Cirelli^{*a*}, Nicolao Fornengo^{*b*},

Koechler^a, Elena Pinetti^{c,d}, Brandon Roach^e

Phys.Rev.D 103 (2021) 6, 063022

JCAP 07 (2023) 026

 $1 \text{ MeV} \leq m_{\chi} \leq 5 \text{ GeV}$

Outline

Motivation for sub-GeV dark matter

□ Theoretical prediction of dark matter flux

□ X-ray telescopes

Dark matter costraints

Uncertainties & Prospects

Indirect detection of sub-GeV dark matter

MeV gap

Figure adapted from Tatischeff+ arxiv:1805.06435

MeV gap

Figure adapted from Tatischeff+ arxiv:1805.06435

Production channels

 $1 \text{ MeV} < m_{\chi} < 5 \text{ GeV}$

3 decay/annihilation channels:

 $\chi(\chi) \longrightarrow e^+e^ \chi(\chi) \longrightarrow \mu^+\mu^ \chi(\chi) \longrightarrow \pi^+\pi^-$

Kinematically open:

 $m_{\chi} > (2)m_i \ i = e, \mu, \pi$

Total Flux

 $\phi_{TOT} = \phi_{FSR} + \phi_{Rad} + \phi_{ICS}$

$$\chi \chi \longrightarrow \mu^{+} \mu^{-} \gamma \qquad \text{FSR}$$
$$\chi \chi \longrightarrow \mu^{+} \mu^{-} \qquad \text{Rad}$$
$$\downarrow \qquad e^{+} \nu_{e} \overline{\nu}_{\mu} \gamma$$

Inverse Compton Scattering

$$\chi \chi \longrightarrow (...) \rightarrow e^+ e^-$$

 $e^- + \gamma \rightarrow e^- + \gamma$

Prompt components

Decaying dark matter:

$$\frac{d\phi}{dE_{\gamma} d\Omega} (E_{\gamma}, \theta) = \frac{1}{4\pi} \frac{1}{\tau m_{\text{DM}}} \frac{dN}{dE_{\gamma}} (E_{\gamma}) D(\theta) \qquad D(\theta) = \int_{l.o.s} \rho(s(r, \theta)) ds$$
Particle Energy D-factor
properties spectrum
Annihilating dark matter:
$$\frac{d\phi}{dE_{\gamma} d\Omega} (E_{\gamma}, \theta) = \frac{1}{4\pi} \frac{\langle \sigma_{ann} v \rangle}{2m_{DM}^2} \frac{dN}{dE_{\gamma}} J(\theta) \qquad J(\theta) = \int_{l.o.s} \rho^2(s(r, \theta)) ds$$

Inverse Compton scattering

 $\chi\chi \longrightarrow (...) \rightarrow e^+ e^-$

3 kind of photons:

- CMB
- IR (dust)
- Optical (starlight)

Inverse Compton scattering

 E_{e}

 m_e

Туре	E_0 [eV]	E_e [GeV]	E_{γ} [keV]	_
CMB	10^{-4}	5	40	
IR	10^{-2}	0.5	40	🔶 X rays
Opt	10	0.05	400	12

Inverse Compton scattering

$$\frac{d\phi_{IC}}{dE_{\gamma}d\Omega} = \frac{1}{4\pi E_{\gamma}} \int_{l.o.s.} ds \, j\left(E_{\gamma}, \vec{x}(s, b, l)\right)$$

$$j(E_{\gamma}, \vec{x}) = 2 \int_{m_e}^{m_{\chi}} dE_e P_{IC}(E_{\gamma}, E_e, \vec{x}) \frac{dn_e}{dE_e}(E_e, \vec{x})$$

$$e^{\pm} \qquad \text{Differential} \qquad \text{Number}$$

$$e^{\text{power}} \qquad \text{density}$$

Emissivity

Photon energy distribution

As implemented in GALPROP code

ICS Power

Energy losses

16

Electron number density

Energy losses $b_{tot}(E_e, \vec{x})$

Energy loss coefficient b [GeV/sec]

Total flux

X-ray telescopes

INTEGRAL

XMM-Newton

Energy range

Observations

X-ray constraints

Constraints on electron channel

Constraints on muon and pion channel

Comparison with the literature

Diffusive gamma-ray constraints

Voyager constraints

CMB constraints

Slatyer, Phys. Rev. D 93 (2016) 023527 Lopez-Honorez et al., JCAP 07 (2013) 046 Diamanti et al., JCAP 02 (2014) 017 Liu et al., arXiv:2008.01084 29

Leo T constraints

Wadekar and Wang, Phys. Rev. D 106 (2022) 7, 075007

Final state radiation with INTEGRAL

Calore+, Mon. Not. Roy. Astron. Soc. 520 (2023) 4167–4172 ³¹

Comparison with bounds

Uncertainties

DM density profile

Profile	$ ho_s$ (GeV/cm ³)	r _s (kpc)	γ
NFW	0.184	24.42	1
Cusped	0.184	24.42	1.26
Burkert	0.712	12.67	-

$$\rho(r) = \frac{\rho_s}{\left(\frac{r}{r_s}\right)^{\gamma} \left(1 + \frac{r}{r_s}\right)^{3-\gamma}}$$

$$\rho_B = \frac{\rho_s}{\left(1 + \frac{r}{r_s}\right) \left[1 + \left(\frac{r}{r_s}\right)^2\right]}$$

DM density profile

Density of the interstellar medium

PPPC 4 DM secondary, Buch et al., arXiv:1505.01049

Density of interstellar medium

Density of gas

Cirelli+, Matter, JCAP 11 (2013)

Density of gas

Magnetic field

$$B_{\rm tot} = B_0 \exp\left(-\frac{r - r_{\odot}}{R_D} - \frac{|z|}{z_D}\right)$$

Model	$B_0~(\mu{ m G})$	r_D (kpc)	z_D (kpc)
MF1	4.78	10	2
MF2	5.1	8.5	1
MF3	9.5	30	4

PPPC 4 DM secondary, Buch et al., arXiv:1505.01049 40

Overall uncertainties

An eye toward the future

Sensitivity compared to XMM-Newton

Better angular resolution but smaller field of view

Energy range: 0.1 keV-10 keV

eROSITA

Primary instrument on-board SRG X-ray band up to 10keV Developed by Max Planck Institute for Extra-terrestrial Physics (MPE)

ART-XC

Secondary instrument on-board SRG X-ray band up to 30keV Developed by Russian Space Research Institute (IKI)

All-sky survey

Energy range: 0.2 keV-10 keV

2nd data release in 2023

Beyond the Milky Way

Conclusions

X-ray telescopes can help in closing the MeV gap

2

3)

Inverse-Compton scattering on the photon bath is a powerful tool to study sub-GeV dark matter

Strongest bounds on

• Annihilating DM (if p-wave): $m_{DM} \ge 20 \text{ MeV}$

 $m_{DM} \ge 100 \text{ MeV}$

Decaying DM:

Vov 10^{-26} ov [cm³/s] 10^{-27} 10^{-28} MB 5-Wave 10^{-29} 10-30 10^{1} 10² 10³ 1028 1027 Voyager Leo T 1026 S Diffuse γ -rays ► 10²⁵ 1024 FSR CMB 1023 100 10¹ 10² 10³ m_{DM} [MeV]

 10^{-24}

 10^{-25}

Conclusions

Thank you for your attention!

X-ray telescopes can help in closing the MeV gap

2

3

Inverse-Compton scattering on the photon bath is a powerful tool to study sub-GeV dark matter

Strongest bounds on

- Annihilating DM (if p-wave): $m_{DM} \ge 20 \text{ MeV}$
- Decaying DM:

 $m_{DM} \ge 100 \; {
m MeV}$

Back-up slides

Data sets

Annihilation constraints

Decay constraints

Optimistic constraints

Transport equation

54

On-the-spot approximation

$$\frac{dn_{e^{\pm}}}{dE_{e}}(E_{e},\vec{x}) = \frac{1}{b_{tot}(E_{e},\vec{x})} \int_{E_{e}}^{m_{\chi}} d\tilde{E}_{e} Q_{e}(\tilde{E}_{e},\vec{x})$$

On-the-spot approximation

Energy spectrum for FSR

Channels *e*, *μ*:

$$\frac{dN}{dE_{\gamma}} = \frac{\alpha}{\pi\beta(3-\beta^2)m_{\chi}} \left[A \ln \frac{1+R(v)}{1-R(v)} - 2B \cdot R(v) \right]$$

Channel π :

$$\frac{dN}{dE_{\gamma}} = \frac{2\alpha}{\pi\beta m_{\chi}} \left[\left(\frac{\nu}{\beta^2} - \frac{1-\nu}{\nu} \right) R(\nu) + \left(\frac{1+\beta^2}{2\nu} - 1 \right) \ln \frac{1+R(\nu)}{1-R(\nu)} \right]$$

$$u = rac{E_{\gamma}}{m_{\chi}} \qquad \beta^2 = 1 - 4\mu^2 \qquad \mu = rac{m_i}{2m_{\chi}}$$

Bystritskiy et al, PRD 72 (2005) 114019

Energy spectrum for radiative decay

$$\frac{dN_{Rad}^{\pi}}{dE_{\gamma}} = \frac{\alpha \left[f(x) + g(x)\right]}{24\pi m_{\pi} f_{\pi}^2 (r-1)^2 (x-1)^2 r x}$$

$$x = rac{2E_{\gamma}}{m_i}$$
 $r = \left(rac{m_e}{m_i}
ight)$

 $E_* = \frac{\left(m_{\pi}^2 + m_{\mu}^2\right)}{2m_{\pi}}$

Essig et al, PRD 80 (2009) 023506 Kuno and Okada, Rev. Mod. Phys 73 (2001) 151-202

In-flight annihilation

Figure 2: γ -ray spectrum resulting from $\chi\chi \to e^+e^-$ with $\langle \sigma v \rangle = 10^{-28} \text{ cm}^3 \text{ s}^{-1}$ in the inner $10^\circ \times 10^\circ$ of the Galaxy. The DM signal is broken up into individual components: IfA (green), FSR (magenta), bremsstrahlung (red) and ICS (blue). Black lines indicate the various diffuse-background components.

 $m_{\chi} = 60 \text{ MeV}$

Bartels et al, JCAP 05 (2017) 001

Sensitivity X-ray experiments

Table 28: Comparison of XMM-Newton with other X-ray satellites						
Satellite	Mirror PSF	Mirror PSF	E range	$A_{\rm e}$ at 1 keV	Orbital target	Energy resolution
	FWHM ["]	HEW ["]	[keV]	[cm ²] ^a	visibility [hr]	at 1 keV [eV]
XMM-Newton	6	15	0.15 - 12	4650 ^b	36.7 <i>°</i>	4 (RGS)
<u>Chandra</u>	0.2 ^{<i>d</i>}	0.5 ^d	0.1 - 10	555 (ACIS-S)	44.4 <i>°</i>	1 (HETG)
ROSAT	3.5	7	0.1 - 2.4	400	1.3 e	500
<u>ASCA</u>	73	174	0.5 - 10	350	0.9 <i>e</i>	100
<u>Suzaku</u>	96 - 120	108 - 138	0.2 - 600	1760 (XIS)	0.72 <i>e</i>	50
<u>RXTE</u>	n.a.g	n.a.g	2-250	n.a.g	1 e	n.a. ^g
<u>Swift</u>	8.8	18 ^f	0.2-10 (XRT)	133.5	~0.8 °	70
<u>NuSTAR</u>	18	58	3-79	n.a.g	~0.8 °	n.a.g

Velocity distribution

XMM-Newton Telescope

Observation time: 1999-2018

Energy range: 2.5 keV – 8 keV

Data set: 30 concentric rings around the GC

Dessert+, Science 367 (2020) Foster+, Phys. Rev. Lett. 127 (2021) 051101 https://github.com/bsafdi/XMM_BSO_DATA

INTEGRAL Space Telescope

Observation time: 2003-2009

Energy range: 27 keV – 1.8 MeV

- Hard X rays
- Soft gamma rays

Data are provided in two forms:

- Energy flux
- Angular flux

Bouchet et al. (2011), APJ. 739 (2011) 29

Suzaku Telescope

Observation time: 2006-2008 Energy range: 0.4 keV - 5 keV Energy flux in 11 fields of view Large Galactic longitudes

Yoshino+, Publ. Astron. Soc. Jap. 61 (2009) 805

NuSTAR Telescope

Observation time: 2012-2018

Energy range: 3 keV - 20 keV

Three datasets:

- GC observations
- Off-plane observations
- Blank-sky fields

Krivonos+, MNRAS. 502 (2021) 3966–3975 Perez+, Phys. Rev. D 95 (2017) 123002 Roach+, Phys. Rev. D 101 (2020) 103011

Theory motivations for sub-GeV dark matter

- 511 keV line
- Light scalar dark matter
- SIMP scenarios
- WIMPless idea
- Axinos

Boehm and Fayet, J. Phys. G 30 (2004) 279-286 Boehm and Fayet, Nucl. Phys. B 683 (2004) 219-263 Fayet, PRD 75 (2007) 115017 Boehm+, PRL 92 (2004) 101301 Ahn and Komatsu, PRD 72 (2005) 061301 Boehm+, PRD 77 (2008) 043516 Ema, Sala and Sato, arxiv:2007.09105 Prantzos+, Rev. Mod. Phys. 83 (2011) 1001-1056 Hochberg+, PRL 113 (2014) 171301 Boddy+, PRD 89 (2014) 115017 Hochberg+, PRL 115 (2015) 021301 Choi+, JHEP 10 (2017) 162 Berlin+, PRD 97 (2018) 055033 Feng and Kumar, PRL 101 (2008) 231301 D'Agnolo and Ruderman, PRL 115 (2015) 061301 Covi+, PRL 82 (1999) 4180-4183 Choi+, JHEP 04 (2012) 106 Arhrib+, JCAP 04 (2016) 049 Boehm, Fayet and Silk, PRD 69 (2004) 101302 Hooper and Zurek, PRD 77 (2008) 087302 Essig+, arxiv:1004.0691