Viable Indirect Detection For sub-GeV Thermal DM

Gordan Krnjaic Fermilab & University of Chicago

+ Asher Berlin & Elena Pinetti arXiv:2309.XXXXX

PADUA Workshop, Sept 7, 2023

Chemical equilibrium: DM production = annihilation just after the big bang when $T \gg m_{\rm DM}$

Was DM ever in equilibrium with SM?

Was DM ever in equilibrium with SM?

$$n_i^{\text{eq}} = \int \frac{d^3 p}{(2\pi)^3} \frac{g_i}{e^{E/T} \pm 1} \propto T^3 \quad (T \gg m)$$

In equilibrium, number density set by temperature All relativistic species have comparable numbers

We've measured the DM mass density so equilibrium predicts particle mass

 $m_{\chi} \approx \rho_{\chi}/n_{\chi} \sim 10 \,\mathrm{eV}$

Too hot, ruled out!

2) The **only** production scenario that is insensitive to unknown cosmic epochs

Any DM candidate outside this range is ruled out if theory allows thermalization with the SM

Generic Issue: CMB Limits

Planck Collaboration 1502.01589

Rare out-of-equilibrium DM annihilation ionizes hydrogen CMB photons encounter more plasma

Naively out thermal relic cross section for DM < 20 GeV...

CMB Safety: Two Strategies

Strategy 1: p-wave annihilation $\sigma v \propto v^2$ $v^2 \sim 0.1$ at FO

Suppressed CMB annihilation $\langle \sigma v \rangle_{\rm CMB} \ll \langle \sigma v \rangle_{\rm FO}$

Also suppresses annihilation today $\langle \sigma v \rangle_{\rm today} \sim 10^{-6} \langle \sigma v \rangle_{\rm FO}$

CMB Safety: Two Strategies

Strategy 2: Change the DM population

Example — coannihilation with heavier unstable partner χ^*

 e^{\pm}

Equal initial abundances

Heavier $\frac{h}{2}$ depleted before CMB

Same qualitative conclusion: CMB safe... but no indirect detection today

Gonzalez, Toro 2108.13422

Hard to have < GeV thermal freeze out and preserve indirect detection signals

Hard to have < GeV thermal freeze out and preserve indirect detection signals

Clever variation: two components with different histories

Stable
thermal
$$\longrightarrow \frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma_{\chi\chi} v_{\rm rel} \rangle_{(\rm F.O.)} \left[n_{\chi}^2 - n_{\chi}^{\rm eq\,2} \right]$$

Only annihilating species $\langle \sigma_{\chi\chi} v_{\rm rel} \rangle \gg \langle \sigma v \rangle_{\rm thermal}$

D'Eramo Profumo:1806.04745

Hard to have < GeV thermal freeze out and preserve indirect detection signals

Clever variation: two components with different histories

$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma_{\chi\chi} v_{\rm rel} \rangle_{\rm (F.O.)} \left[n_{\chi}^2 - n_{\chi}^{\rm eq\,2} \right]$$
$$\frac{dn_{\psi}}{dt} + 3Hn_{\psi} = \mathcal{C}_{\psi} ,$$

Dominant species Non-thermal production

Doesn't annihilate, but decays

 $\psi \to \chi$

D'Eramo Profumo:1806.04745

Hard to have < GeV thermal freeze out and preserve indirect detection signals

Clever variation: two components with different histories

$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma_{\chi\chi} v_{\rm rel} \rangle_{\rm (F.O.)} \left[n_{\chi}^2 - n_{\chi}^{\rm eq\,2} \right]$$
$$\frac{dn_{\psi}}{dt} + 3Hn_{\psi} = \mathcal{C}_{\psi} ,$$

Subdominant χ population = CMB safe Dominant population decays at later times $\psi \rightarrow \chi \cdots$ Increases χ abundance after CMB era = indirect detection D'Eramo Profumo:1806.04745 Lingering Question

Is there a predictive freeze-out model of sub-GeV DM with indirect detection signatures?

Goal: use only the ingredients required for freeze out

Four component fermion + dark photon

 $\mathcal{L} \supset g_D A'_\mu \bar{\psi} \gamma^\mu \psi + M \bar{\psi} \psi + H_D \bar{\psi}^c \psi$

Vector current Dirac mass Charge 2 dark Higgs

Four component fermion + dark photon

$$\mathcal{L} \supset g_D A'_\mu \bar{\psi} \gamma^\mu \psi + M \bar{\psi} \psi + H_D \bar{\psi}^c \psi$$

Break dark U(1) with dark Higgs VEV

$$\mathcal{L}_{\text{mass}} = M \bar{\psi} \psi + \langle H_D \rangle \bar{\psi}^c \psi$$

Dirac Majorana

Four component fermion + dark photon

$$\mathcal{L} \supset g_D A'_\mu \bar{\psi} \gamma^\mu \psi + M \bar{\psi} \psi + H_D \bar{\psi}^c \psi$$

Break dark U(1) with dark Higgs VEV

$$\mathcal{L}_{\rm mass} = M\bar{\psi}\psi + \langle H_D \rangle \bar{\psi}^c \psi$$

Diagonalizing to mass basis splits Dirac components

$$\psi \equiv (\xi, \eta^{\dagger}) \qquad \longrightarrow \quad (\chi, \chi^{\star}) \ , \ \delta \equiv m_{\chi^{\star}} - m_{\chi}$$

int. eigenstates

mass eigenstates

Vector current off-diagonal in mass basis

$$\mathcal{L} \supset g_D A'_\mu \bar{\chi}^* \gamma^\mu \chi + h.c.$$

Dominant process for relic abundance

Direct Coannihilation

$$m_{A'} > m_{\chi} + m_{\chi^{\star}}$$

Opposite regime is not predictive or CMB safe

 $\chi\chi \to A'A'$

7 \

power injected into CMB $\propto f_{\star} \langle \sigma v \rangle$, $f_{\star} \ll 1$

Compare with SIDM Halo

For canonical self-interacting DM (SIDM) halo profile gets cored

Kaplinghat, Tulin, Yu 1508.03339

Inelastic Halo Dynamics

Thermally averaged scattering rate to make heavy state

$$\Gamma_{\chi\chi\to\chi*\chi*}^{\text{gal}} \equiv n_{\chi} \int d^3 v_1 f(v_1, r) \int d^3 v_2 f(v_2, r) |\vec{v}_1 - \vec{v}_2| \sigma_{\chi\chi\to\chi^*\chi^*}$$

Inelastic Halo Dynamics

Thermally averaged scattering rate to make heavy state

$$\Gamma_{\chi\chi\to\chi*\chi*}^{\text{gal}} \equiv n_{\chi} \int d^3 v_1 f(v_1, r) \int d^3 v_2 f(v_2, r) |\vec{v}_1 - \vec{v}_2| \,\sigma_{\chi\chi\to\chi^*\chi^*}$$

Two regimes for heavy state production in the Galaxy

$$n_{\chi^*} \approx n_{\chi} \min\left(e^{-\delta/T_{\chi}}, \tau \Gamma_{\chi\chi \to \chi^*\chi^*}^{\text{gal}}\right)$$
$$\Gamma_{\chi\chi \to \chi^*\chi^*}^{\text{gal}} > \tau_{\text{gal}}^{-1} \qquad \Gamma_{\chi\chi \to \chi^*\chi^*}^{\text{gal}} < \tau_{\text{gal}}^{-1}$$

Inelastic Halo Dynamics

Step 1: revive heavier state

Indirect Detection χ e^+ A'A' γ

 χ

 e^{\pm}

a) b)

 e^{-}

Step 2: coannihilation in the galaxy

 χ^*

Indirect Detection

eAstrogam/AMEGO projection Bartels Gaggero Weniger 1703.02546

Berlin, GK, Pinetti 2309.XXXX

Indirect Detection

All points correspond to predictive thermal freeze out origin via $\chi \chi^* \to SM$

Berlin, GK, Pinetti 2309.XXXX

Our indirect detection results use parameters along the relic curve This is the same reference model for accelerator benchmarks

Berlin, Blinov, GK, Schuster, Toro 1808.05219

Model Discrimination?

Berlin, Blinov, GK, Schuster, Toro 1808.05219

Concluding Remarks

Conventional Wisdom: no indirect detection for sub-GeV annihilation Planck limits require little annihilation during recombination

Pseudo-Dirac DM w/ coannihilation is naturally CMB safe Heavier state is cosmologically depleted by CMB

Heavier state revived by Galactic upscahttering This population co-annihilates to yield MeV indirect signal

Unique halo profile

Isothermal profile for intermediate radial region ("donut") Requires numerical N-body simulation to fully characterize

Potential gain from slower heavier state Might drift to smaller radii, enhance J-factor in Galactic center

Direct Detection?

Gonzalez, Toro 2108.13422