Dark Matter (h) eats Young Planets

Djuna Lize Croon (IPPP Durham)

PADUA, September 2023

djuna.l.croon@durham.ac.uk djunacroon.com

DC, J Smirnov, arXiv:2309.02495

Your naked eyes

Tofino, August '20

are a dark matter detector

Your naked eyes

Tofino, August '20

2020.08.14

22:55:19

are a dark matter detector

zeV aeV feV peV neV µeV meV eV keV MeV GeV TeV PeV 30M_☉

Dark matter in extreme astrophysical environments

Baryakhtar, Caputo, DC, Perez et all, SNOWMASS summer study, arXiv:2203.07984 , arXiv:2209.08215

Baryakhtar, Caputo, DC, Perez et all, SNOWMASS summer study, arXiv:2203.07984 , arXiv:2209.08215

Baryakhtar, Caputo, DC, Perez et all, SNOWMASS summer study, arXiv:2203.07984 , arXiv:2209.08215

Dark matter heating

Sensitive to DM abundance \checkmark

Maximum injection for a non-depleting abundance: annihilation equilibrium

Dark matter heating

- Typically relevant for celestial objects without nuclear burning
- Sensitive to DM abundance √

Type of DM	signal	mass range	coupling range
DM with scattering and annihilation processes	Stars and planets overheating, or producing gamma rays/neutrinos	$\gtrsim O(\text{keV})$ (depending on object and particle model)	$\sigma_{n\chi} \gtrsim 10^{-47} \text{ cm}^2$ (depending on object and particle model)
DM mixing with neutrons	NS overheating	$\lesssim 1.5~{ m GeV}$	$10^{-17} \leq \epsilon_{nn'}/\mathrm{eV} \leq 10^{-9}$

Exoplanet heating

- First be identified by e.g. Doppler spectroscopy or gravitational lensing
- Infrared telescopes (such as JWST) may be able to measure their temperature

Assumption: annihilation equilibrium

Leane and Smirnov, PRD, arXiv:2010.00015

Exoplanet heating

Leane and Smirnov, PRD, arXiv:2010.00015

Formation of Jovian planets

... a sensitive process

"If we could not see Jupiter with our own eyes, we might not believe that such a planet could exist anywhere."

Formation of Jovian planets

... a sensitive process

"If we could not see Jupiter with our own eyes, we might not believe that such a planet could exist anywhere."

(Jupiter had less than ten million years to capture all of its gas because the Sun expelled most of the gas in the solar system shortly after thermonuclear fusion was initiated in its core)

Rob Field, lecture on the formation of Jupiter

Formation of Jovian planets Core accretion gas capture theory

Formation of Jovian planets Core accretion gas capture theory

Formation of Jovian planets

Core accretion gas capture theory

Formation of Jovian planets

• Kelvin-Helmholtz contraction: $\dot{Q} = -\frac{dU}{dt}$

Fills up, gas needs to contract Bondi sphere ($v_{\rm esc} = v_{\rm sound}$)

Formation of Jovian planets with DM

• Kelvin-Helmholtz contraction: $\dot{Q} - L_{\text{DM}}(R) = -\frac{dU}{dt}$

$$4\pi R^2 \times \sigma_{\rm SB} T^4 - L_{\rm DM}(R) = c_1 \frac{GM^2}{R^2} \frac{dR}{dt}$$

Proto-planet will have to heat up more to radiate enough energy to contract

Formation of Jovian planets with DM

• Kelvin-Helmholtz contraction: $\dot{Q} - L_{\text{DM}}(R) = -\frac{dU}{dt}$

$$4\pi R^2 \times \sigma_{\rm SB} T^4 - L_{\rm DM}(R) = c_1 \frac{GM^2}{R^2} \frac{dR}{dt}$$

Proto-planet will have to heat up more to radiate enough energy to contract

 But... the envelope is made up of light elements which can evaporate

A maximum temperature

Flux of escaping particles:

$$\Gamma_{\rm J}(T) = \frac{nv}{2\sqrt{\pi}} \left(1 + \frac{v_{\rm esc}^2}{v^2} \right) \exp\left(-\frac{v_{\rm esc}^2}{v^2} \right) \bigg|_{T}$$

$$I = \frac{nv}{2\sqrt{\pi}} \left(1 + \frac{v_{\rm esc}^2}{v^2} \right) \exp\left(-\frac{v_{\rm esc}^2}{v^2} \right) \right|_{T}$$

$$I = \frac{nv}{2T/m}$$

$$V = \sqrt{2T/m}$$

A maximum temperature

Flux of escaping particles:

Conservative assumption: C = 10

$$\Gamma_{\rm J}(T) = \frac{nv}{2\sqrt{\pi}} \left(1 + \frac{v_{\rm esc}^2}{v^2} \right) \exp\left(-\frac{v_{\rm esc}^2}{v^2} \right) \bigg|_{T=T_{\rm max}} = C\dot{M}$$

$$v = \sqrt{2T/m}$$
Growth of the plan

Growth of the planet in the absence of DM heat

e.g. Lissauer et al, Icarus 199, arXiv:0810.5186 d'Angelo et al, Icarus 355, arXiv:2009.05575

A maximum temperature

Flux of escaping particles:

ping particles:

$$\frac{av}{\sqrt{\pi}} \left(1 + \frac{v_{esc}^2}{v^2} \right) \exp\left(-\frac{v_{esc}^2}{v^2} \right) \bigg|_{T=T_{max}} = C.$$

Growth of the planet in the absence of DM heat

: C = 10

e.g. Lissauer et al, Icarus 199, arXiv:0810.5186 d'Angelo et al, Icarus 355, arXiv:2009.05575

 \rightarrow for 1H ,

 $\Gamma_{\rm J}(T)$

- In the core $T_{\rm max} \sim 10^3 \, {\rm K}$
- In the envelope, $T_{\rm max} \sim 8 \, {\rm K}$

 $v = \sqrt{2T/m}$

• Then, DM can halt accretion for injections with

 $L_{\rm DM} \ge 4\pi R^2 \sigma T_{\rm max}^4$

• Then, DM can halt accretion for injections with

$$L_{\rm DM} \ge 4\pi R^2 \sigma T_{\rm max}^4$$

$$\ge 4 \times 10^{-8} \times \left(\frac{R}{10^3 R_p}\right)^2 \left(\frac{T_{\rm max}}{8 {\rm K}}\right)^4 {\rm L}_{\odot}$$

Can we expect such injections to be reached?

• Then, DM can halt accretion for injections with

$$L_{\rm DM} \ge 4\pi R^2 \sigma T_{\rm max}^4$$

$$\ge 4 \times 10^{-8} \times \left(\frac{R}{10^3 R_p}\right)^2 \left(\frac{T_{\rm max}}{8 \rm K}\right)^4 L_{\odot}$$

• In capture-annihilation equilibrium,

 $L_{\rm DM} = m_{\rm DM} C_{\rm cap}$

• Then, DM can halt accretion for injections with

$$L_{\rm DM} \ge 4\pi R^2 \sigma T_{\rm max}^4$$

$$\ge 4 \times 10^{-8} \times \left(\frac{R}{10^3 R_p}\right)^2 \left(\frac{T_{\rm max}}{8 {\rm K}}\right)^4 {\rm L}_{\odot}$$

• In capture-annihilation equilibrium,

$$L_{\rm DM} = m_{\rm DM}C_{\rm cap} = m_{\rm DM}f_{\rm cap}\Phi \qquad \Phi = v_{\rm DM}\sqrt{\frac{8}{3\pi}}\frac{\rho_{\rm DM}}{m_{\rm DM}}\left(1 + \frac{3}{2}\frac{v_{\rm esc}^2}{v_{\rm DM}^2}\right)$$

$$\sim 2 \times 10^{-9}f_{\rm cap}\left(\frac{R}{10^3R_p}\right)\left(\frac{M}{10M_{\oplus}}\right)\left(\frac{v_{\rm DM}}{270\rm km\,s^{-1}}\right)^{-1}\left(\frac{\rho_{\rm DM}}{0.42\,{\rm GeV\,cm^{-3}}}\right)L_{\odot}$$

• Then, DM can halt accretion for injections with

$$L_{\rm DM} \ge 4\pi R^2 \sigma T_{\rm max}^4$$

$$\ge 4 \times 10^{-8} \times \left(\frac{R}{10^3 R_p}\right)^2 \left(\frac{T_{\rm max}}{8 K}\right)^4 L_{\odot}$$

P In capture-annihilation equilibrium

$$L_{\rm DM} = m_{\rm DM} C_{\rm cap} = m_{\rm DM} f_{\rm cap} \Phi$$

$$\Phi = v_{\rm DM} \sqrt{\frac{8}{3\pi}} \frac{\rho_{\rm DM}}{m_{\rm DM}} \left(1 + \frac{3}{2} \frac{v_{\rm esc}^2}{v_{\rm DM}^2}\right)$$

$$\sim 2 \times 10^{-1} f_{\rm cap} \left(\frac{R}{10^3 R_p}\right) \left(\frac{M}{10 M_{\oplus}}\right) \left(\frac{v_{\rm DM}}{270 {\rm km \, s^{-1}}}\right)^{-1} \left(\frac{\rho_{\rm DM}}{0.42 {\rm ~GeV \, cm^{-3}}}\right) L_{\odot}$$

Capture-annihilation equilibrium

Capture-annihilation equilibrium

• Boltzmann equation:
$$\frac{dN}{dt} = C_{cap} - C_{ann}N_{\chi}^{2}$$
$$\uparrow$$
$$C_{ann} = \langle \sigma_{ann}v \rangle / V_{eff} = \langle \sigma_{ann}v \rangle \frac{\int_{V} n_{\chi}^{2}}{\int_{V} n_{\chi}}$$

• In capture-annihilation equilibrium, $N_{\chi} \sim \sqrt{C_{\rm cap}/C_{\rm ann}}$, reached after

$$\tau \sim (C_{\text{cap}}C_{\text{ann}})^{-1/2} \approx \sqrt{\frac{m_{\chi}}{\text{GeV}} \frac{10^{-30} \text{cm}^3/\text{s}}{\langle \sigma_{\text{ann}}v \rangle}} \text{Myr}$$

The capture fraction

• Spin-independent: $\sigma_{\rm SI} = \sigma_{\chi N}^{\rm SI} A^2$

Reduced mass $\left(\frac{\mu(m_{\chi}, m_A)}{\mu(m_{\chi}, m_N)}\right)$

Atomic number

The capture fraction

- Spin-independent: $\sigma_{SI} = \sigma_{\chi N}^{SI} A^2 \left(\frac{\mu(m_{\chi}, m_A)}{\mu(m_{\chi}, m_N)} \right)^2$
- Spin-dependent:

The capture fraction

- Spin-independent: $\sigma_{SI} = \sigma_{\chi N}^{SI} A^2 \left(\frac{\mu(m_{\chi}, m_A)}{\mu(m_{\chi}, m_N)} \right)$
- Spin-dependent:

$$\sigma_{SD} = \sigma_{\chi N}^{SD} \frac{4\left(J_A + 1\right)}{3J_A} \begin{bmatrix} \swarrow & a_p = 1, a_n = 0\\ \downarrow & \downarrow \\ a_p \langle S_p \rangle + a_n \langle S_n \rangle \end{bmatrix}^2 \left(\frac{\mu(m_{\chi}, m_A)}{\mu(m_{\chi}, m_N)} \right)^2$$

Isotopes	¹⁷ O	²⁹ Si	$^{1}\mathrm{H}$
Abundance [%]	~ 0.4	~ 4.7	~ 100
J	5/2	1/2	1/2
$\langle S_p angle$	-0.036	0.054	0.5
$\langle S_n angle$	0.508	0.204	0

e.g. d'Angelo et al, Icarus 355, arXiv:2009.05575

The capture fraction spin-dependent example

Formation of Jovian planets

Constraints: spin-dependent DM

Constraints: spin-dependent DM

Constraints: spin-independent DM

Variation with distance from the GC

To conclude

- The formation of Jovian planets is very sensitive to extra heat sources
- (Relatively) strongly interacting dark matter may disrupt this formation at the onset of gas accretion, or at some point during its growth
 - The existence of Jupiter in our solar system can be used to constraint dark matter
 - Observations of Jovian planets in the Galactic Center lead to even stronger constraints
- Future work: simulations + direct observation of planet formation in the presence of DM heating

Thank you!

...ask me anything you like!

djuna.l.croon@durham.ac.uk | djunacroon.com