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C A P U T O ,  E S P O S I T O ,  P I C C I N I N I ,  A D P,  R O S S I ,   P R D 1 0 3  ( 2 0 2 1 )  5 ,  0 5 5 0 1 7  



L A N D A U  A R G U M E N T
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Let  be the rest frame of the superfluid, flowing with velocity  
with respect to the capillary, which defines the frame .  
Describe the effect of friction as the creation of an excitation  
of energy  in .  This must correspond, in , to a negative  
energy variation (friction is expected to decrease the kinetic  
energy of the fluid in the capillary):

K′ V
K

ε = csp K′ K

V >
ϵ
p

= cs

otherwise the flow is frictionless

V ≤ cs ⇒ frictionless flow

E = ε + V ⋅ p

ΔE<0

+
1
2

MV2



L A N D A U  A R G U M E N T
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The energy of the superfluid flowing in pipe is .  
Creating an excitation of momentum , the velocity of the  
superfluid mass decreases

1/2 MV2

p

1
2

MV2 ≥
1
2

M(V′ )2 + ε

MV = MV′ + p

This is possible if energy energy is available to make the excitation

Eliminating  we are left withV′ 

V ≥
ε
p

+
p

2M
≥

ε
p

⇒ V ≤ cs ⇒ frictionless flow



PA U C I T Y  O F  E X C I TAT I O N S
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The main aspect of the physics of superfluidity is the paucity of  
gapless excitation. The number density of excitations is 

n(E) dE ∝ d3k

Therefore 

n(E) ∝
k2

dE/dk
= {

∼ k2 ∼ E2  linear dispersion relation
∼ k ∼ E quadratic dispersion relation

So in the limit  there are way less excitations in the first case. 
This qualitatively means that there are few modes that a superfluid 
flowing in a can can loose momentum to: frictionless flow.

E → 0



S Y S T E M  O F  R E P E L L I N G  B O S O N S
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ℒ = − (∂μΦ†)(∂μΦ) − m2Φ†Φ−λ(Φ†Φ)2, λ > 0

In the non relativistic limit, taking  

and neglecting  and  

Φ(t, x) =
1

2m
e−imt φ(t, x)

··φ ·φ2

ℒ = iφ† ∂
∂t

φ −
1

2m
∇i φ† ∇i φ −

λ
4m2

(φ†φ)2

Require a finite density ( )[φ] = E3/2

ℒ = iφ† ∂
∂t

φ −
1

2m
∇i φ† ∇i φ−

λ
4m2

(φ†φ − ρ̄)2

In such a way the potential term (bottle bottom) forces φ ∼ ρ̄1/2



F I N I T E  D E N S I T Y
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ℒ =
i
2

d
dt

ρ

total der.

− ρ
∂
∂t

θ −
1

2m (ρ(∇i θ)2 +
1

4ρ
(∇i ρ)2) −

λ
4m2

(ρ − ρ̄)2

Since  is complex, in presence of finite density we can use the 
representation , where  is the #density

φ
φ(x) = ρ(x) eiθ(x) ρ

∂ℒ
∂ ·θ

= − ρ can. conjugate of θ

An isolated system w/ a definite number of particles does not have 
a definite phase  and viceversa. If two condensates come in contact 
and exchange particles, then they have a definite relative phase: phase 
coherence over space giving interference fringes (with space period )

θ

h/prel



F I N I T E  D E N S I T Y
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ℒ =
i
2

d
dt

ρ

total der.

− ρ
∂
∂t

θ −
1

2m (ρ(∇i θ)2 +
1

4ρ
(∇i ρ)2) −

λ
4m2

(ρ − ρ̄)2

Since  is complex, in presence of finite density we can use the 
representation , where  is the density

φ
φ(x) = ρ(x) eiθ(x) ρ

∂ℒ
∂ ·θ

= − ρ conjugate of θ

Ketterle 
at MIT



D E N S I T Y  F L U C T U AT I O N S
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The next step is to introduce ρ(x) = ρ̄ + η(x)

ℒ = −
ρ̄

2m
(∇i θ)2−η ( λ

m2
ρ̄ −

1
2m

∇2
i ) η

− 1
2 η⋅K⋅η

−η 2 ρ̄ ∂0θ

η⋅J

do the Gaussian integral on the fluctuation  — integrate out 
small fluctuation in the density

η(x)

ℒ = −
ρ̄

2m
(∇i θ)2 + ρ̄ (∂0θ)

1
λ

m2 ρ̄ − 1
2m ∇2

i

(∂0θ)

+ 1
2 J⋅K−1⋅J

+ …

and consider small wave-numbers , very long wavelengthk ≪
2λρ̄
m



T H E  L I N E A R  D I S P E R S I O N  F R O M  Q F T
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ℒ =
(∂0θ)2

λ/m2
−

ρ̄
2m

(∇i θ)2

from this write the equation of motion 

2
λ/m2

∂2
0θ −

ρ̄
m

∂2θ = 0

and seek a solution in the form  getting θ(x) ∼ ei(k⋅x−ωt)

−
2ω2m2

λ
+

ρ̄k2

m
= 0

or

ω =
λρ̄

2m3

cs

k “gapless mode”



P H O N O N S  &  R O T O N S
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ω =
λρ̄

2m3

cs

k

The sound velocity grows with repulsion and density. In superfluid 
helium it is .cs = 248 m/s
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B A C K  T O  T H E  R E L AT I V I S T I C  F O R M A L I S M

In the previous Lagrangian scale/adjust the  coordinates to writexμ

ℒ =
(∂0θ)2

λ/m2
−

1
2m /ρ̄

(∇i θ)2 =
m2

λ
((∂0θ)2 − c2

s (∇i θ)2)

t → cs t

ℒ = −
(csm)2

λ
(∂μθ ∂μθ) = −ξ2 (∂μθ ∂μθ)

Consider the case . In place of  we may use the  
new phase  which represents a family of solutions  
of the equations of motion; . 

θ(x) = θ(t) θ
ψ = m t ≃ μ t

ℒ = − ∂μψ ∂μψ



S S B
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The relativistic and non-relativistic lagrangians we discussed so far have  
a U(1)-global symmetry which, in  , is represented  
by translations .  

This internal symmetry is SB: in the condensate , at finite density. 

ℒ = − ξ2 (∂μθ ∂μθ)
θ(x) → θ(x) + α

⟨N⟩ ≠ 0
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At finite density it is customary to look for the ground state as the  
state which minimizes   where  is the U(1) conserved  
charge/particle number and  a Lagrange multiplier, which can be 
interpreted as chemical potential.   

Heisenberg operators evolve in time with , the true Hamiltonian.  

The internal symmetry generated by  is spontaneously broken.  
The vacuum we are seeking is   so can’t be eigenstate  
neither of  nor of : if  is spontaneously broken also  is. 

H̃ ≡ H − μN N
μ

H

N
H̃ |0⟩ = 0

N H N H



L O C A L  C H E M I C A L  P O T E N T I A L
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The implementation of a chemical potential goes through  
the introduction of a time-dependent phase in the U(1) direction.

ψ(x) = μ t + cs μ
1
μρ̄

π(x)

A. Nicolis, 1108.2513 [hep-th] A. Nicolis, R. Penco,  F. Piazza, R. Rattazzi,  JHEP (2015) 

A. Nicolis, R. Penco, Phys. Rev. B97, 134516 (2018) 

X ≡ −∂μψ ∂μψ

In place of  use   —  from pressure. In the absence 
fluctuations, , and  defines the equation of state. 
( )

ℒ(x) P(X) P
X = μ P(μ)

[π] = E, [ψ] = [θ] = E0, [X] = E
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E X PA N S I O N  O F   U P  T O  P(X) π(x)3

g1 = −
mHec2

s

ρ̄
1

mHe
g2 = ( mHec2

s

ρ̄ )
3/2

ρ̄′ ′ (μ)

P′ (μ) = ρ̄(μ) [P′ ] = E3 [P′ ′ ] = E2 [P′ ′ ′ ] = E

c2
s =

P′ (μ)
μP′ ′ (μ)

; In the NR limit μ ≃ mHe

ℒHe =
1
2

·π2 −
c2

s

2
(∇ π)2+

g1

2
·π(∇π)2 +

g2

3!
·π3

The last two terms vanish for qμ → 0



R A N G E  O F  VA L I D I T Y  O F  E F T

16

The linear dispersion relation featured by the field theory 
holds true for phonons with momenta , 
which means . Above this point linearity is lost: 
the EFT needs higher dimensional operators and predictive 
power decreases.

| p | < 1 keV
ε < 1 meV



D M  C O U P L I N G  T O  H E L I U M
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Introduce a mediator  assuming spin independent interactionsϕ

ℒI = gχ mχϕ | χ |2 +gHe ϕ ρ

where  is the Helium number density, acquiring a vev  in  
the condensate. In its passage through helium the DM  
particle has an effective mass lighter than the vacuum  
value  

ρ ρ̄

mχ

m2
χ − (

gχgHe

m2
ϕ )

Gχ

mχ ρ̄(μ)
⏟

P′ (μ)

≡ m2
χ (μ)

where  in the NR limit.μ ≃ mHe



D M  C O U P L I N G  T O  H E L I U M
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The floating effect of DM in its passage in Helium, is 
translated into an effective mass in 

ℒI = − |∂χ |2 − m2(X) | χ |2

where we have promoted  to the local chemical potential , 
and an expansion in powers of  leads to

μ X
π(x)

𝒢1 ≃ Gχmχ
n̄

mHec2
s

𝒢2 = − Gχmχ
1

mHe
𝒢3 = Gχmχ

mHec2
s

ρ̄
ρ̄′ ′ 

ℒI = 𝒢1
·π | χ |2 +

𝒢2

2
(∇π)2 | χ |2 +

𝒢3

2
·π2 | χ |2
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i𝒢1 ω

−(𝒢3 ω1ω2 + 𝒢2 q1 ⋅ q2)

−ig1(ω1 q2 ⋅ q3

(123)

+ (213) + (312)) − ig2 ω1ω2ω3
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Δπ =
i

ω2 − c2
s q2 + iϵ phonon propagator

We will require that momenta flowing in  do not exceed 
the cutoff of the EFT,  — this removes the  
divergence.

Δπ
|q | < 1 keV θ12 = 0
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A C O U S T I C  S C I N T I L L AT O R S

Quantum evaporation — angle wrt normal to the surface ≲ 25∘
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A C O U S T I C  S C I N T I L L AT O R S

Helium sticks more strongly to any surface than it does to itself
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A C O U S T I C  S C I N T I L L AT O R S

See S. Hertel et al. arXiv:2307.11877 

If helium reaches it, 
the sensor is gone.
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A C O U S T I C  S C I N T I L L AT O R S

See S. Hertel et al. arXiv:2307.11877 

There are very few  
surfaces that 
superfluid He  
does not wet.
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A C O U S T I C  S C I N T I L L AT O R S

See S. Hertel @ TAUP 23
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mχ +
p2

χ

2mχ
= mχ +

(p′ χ)2

2mχ
+csq

pχ = p′ χ + q

Let  be the angle between  and .  Since  we haveα pχ q pχ = mχvχ

cos α =
q

2mχvχ
+

cs

vχ

The recoil  is transformed into a phonon of energy q csq

εmax = csqmax = 2mχcs(vχ − cs) ≃ 2mχcsvχ ≃ 2mχ × 10−9 > 0.62 meV

need mχ ≈ 300 keV
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27

In calorimetric techniques, the minimum readable energy deposit is 
estimated to be 1 meV. By stopping the DM particle in medium

1
2

mχ × 10−6 ≥ 1 meV

or

mχ ≥ 1 keV

In principle we can probe dark matter masses much lower than 300 keV, 
and this can be done, not stopping the DM particle, but considering  
two-phonon ( ) emission processes. Kinematicallyq1, q2

|q1 + q2 | ≲ 2mχvχ

Consider  so that (way below the EFT cutoff) mχ = 1 keV

|q1 + q2 | ≃ 2 eV



T W O - P H O N O N  E M I S S I O N

28

Consider  so that . On the other  
hand we need , so that  
must be : can be done w/ back-to-back 3-momenta . 

The presence of the medium breaks boost invariance and the  
rate must be computed directly in the LAB frame.

mχ = 1 keV |q1 + q2 | ≃ 2 eV
csq1 + csq2 ≃ 10−6 × (q1 + q2) ≥ 1 meV

q1,2 ≈ 1 keV q1, q2



T W O - P H O N O N  E M I S S I O N
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Γ(χ → χ + 2π) =
1

8(2π)4c5
s E ∫ℛ

|ℳ |2

1 − 𝒜2

ω2

pχ
dω1 dω2 dθ12 dθ2

𝒜(θ12, θ2, ω1, ω2) =
1

sin θ12 sin θ2 (cos θ12 cos θ2 +
ω2

ω1
cos θ2−

ω2

cspχ
cos θ12 −

ω2
1 + ω2

2

2ω1cspχ )

The integration region  is defined by . In the limit ℛ |𝒜 | ≤ 1 mχ → 0

𝒜 ∼ −
1
pχ

(q1 + q2)2

|q1 × q2 |
∼ −

1
pχ
⏟

large

×
1 + cos θ12

sin θ12

small if θ12→π
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𝒜(θ12, θ2, ω1, ω2) =
1

sin θ12 sin θ2 (cos θ12 cos θ2 +
ω2

ω1
cos θ2−

ω2

cspχ
cos θ12 −

ω2
1 + ω2

2

2ω1cspχ )
Taking  and ω ≃ 1 meV cspχ ≃ 10−9 × mχ

ω
cspχ

≃ 1 for mχ ≃ 1 MeV

For higher values of the masses the yellow terms become less important 
and phase space (with no cuts) allows all  configurations. 
But we have cuts! .  Larger  hit this cut more often. 
Taking  and  we get 

2π
|q1 + q2 | < 1 keV pχ

q1 = q2 = ω/cs ω ∼ 1 meV

θ12 > 2π/3
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The lighter dark particle mass we want to probe, the more  
back-to-back is the two-phonon emission. Highly recoiling  
phonons are, in any case, preferred (EFT cuts). 

Now we will see that the more back-to-back is the two-phonon 
emission, the smaller is the matrix element . ℳ

+ = ℳ

(a) (b)
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T W O - P H O N O N  E M I S S I O N

ℳa = i1(−1)(𝒢3 ω1ω2 + 𝒢2 q1 ⋅ q2)

ℳb = i2(i𝒢1 ω) ×
i

ω2 − c2
s q2

× (ig1(ω1 q2 ⋅ q

(12⋄)

+ (21⋄) + (⋄12)) + ig2 ω ω1ω2)

From the couplings determined in the effective theory we observe that

𝒢1 g2 = 𝒢3 and 𝒢1 g1 = 𝒢2

ℳb = ω ×
i

ω2 − c2
s q2

× (𝒢2(ω1 q2 ⋅ q

(12⋄)

+ (21⋄) + (⋄12)) + 𝒢3 ω ω1ω2)

In the limit  (corresponding to the back-to-back case) there 
is a (perfect) cancellation of  and .   

q → 0
ℳa ℳb

change one of the momenta out → in
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T W O - P H O N O N  E M I S S I O N

𝒢1 g2 = 𝒢3 and 𝒢1 g1 = 𝒢2

The relations found in the effective theory 

are a manifestation of the conservation of the  current  
associated to the U(1) symmetry of the superfluid

Jμ(x)

qμ⟨π(q1)π(q2) |Jμ(x) |0⟩ = ω ⟨π(q1)π(q2) |ρ(x) |0⟩ + q ⋅ ⟨π(q1)π(q2) |J |0⟩

If , the second term vanishes and, to ensure the  
conservation of the current, one needs  
Given that  — the latter corresponds to 

q → 0
ω ⟨π(q1)π(q2) |ρ(x) |0⟩ = 0

ω ≠ 0 ℳa + ℳb → 0.

Argument due to A. Esposito



T H E  E X C L U S I O N  P L O T
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Excluded region corresponding to 3/evts/Kg/year @ zero bckg. Impose total energy released  >1meV

The previous discussion explains the rise below 1 MeV  
observed by other means by Schutz & Zurek PRL2016, 117

See also S. Knapen, T. Lin, K.M. Zurek, PRD95 (2017) 056019 
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Cygnus Shaped Events @ mχ ≈ 500 keV

For a good fraction of the events, DM releases most of its  to the fwd .p π
A. Caputo, A. Esposito, F. Piccinini, ADP, G. Rossi, PRD103 (2021) 5, 055017 
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A. Caputo, A. Esposito, F. Piccinini, ADP, G. Rossi, PRD103 (2021) 5, 055017 

Such  events are suppressed wrt  events but3π 2π

• The two back-to-back phonons may be used as a trigger to 
look for the third, forward phonon, which turns out to be 
strongly correlated with the direction of the incoming DM 

• this allows in principle background rejection, vertex 
reconstruction (remove multiple scatterings due to other 
sources e.g. neutrons) and directionality!

You simply need the perfect detector of phonons in Superfluid He….



C Y G N U S  E V E N T S
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A. Caputo, A. Esposito, F. Piccinini, ADP, G. Rossi, PRD103 (2021) 5, 055017 

σn = 10−42 cm2

R =
ρx( = 0.3 GeV/cm3)

mχn̄mHe
Γ3π
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The quartic phonon couplings ( ) have to be worked out  
from the EFT, as well as the couplings ( ) responsible for DM- .  

λ1, λ2, λ3
γ1, γ2 3π

For , q → 0 ℳa + ℳc → 0 and ℳb + ℳd → 0



T H R E E - P H O N O N  E M I S S I O N

39

The  process is factorized into three  processes 
by introducing two fictitious space-like 4-momenta . 

In its passage the DM particle releases a space-like momentum 
and the superfluid reacts producing two space-like phonons 

, with .  In the case of the two-phonon  
emission an analytic formula  can be determined.

1 → 4 1 → 2
q, k

qμ = (q, csq) cs = 10−6
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The  process is factorized into three  processes 
by introducing two fictitious space-like 4-momenta .

1 → 4 1 → 2
q, k

Calculations including M.E. are done numerically; we  
checked numerical phase space volumes against analytic  
calculations.
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Φ(χ → χ + 2π) =
1

8(2π)4c5
s E ∫ℛ

1

1 − 𝒜2

ω2

pχ
dω1 dω2 dθ12 dθ2

Set M.E. = 1

𝒜(θ12, θ2, ω1, ω2) =
1

sin θ12 sin θ2
(cos θ12 cos θ2 +

ω2

ω1
cos θ2 −

ω2

cs pχ
cos θ12 −

ω2
1 + ω2

2

2ω1cs pχ
)

Φ(χ → χ + 2π) =
1

2(pχ /cs)
I3

I3 =
p3

χ

96π3c3
s mχ

I4 =
p7

χ

53760π5c6
s m3

χ
In the  case the PS volume is3π
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A. Caputo, A. Esposito, F. Piccinini, ADP, G. Rossi, PRD103 (2021) 5, 055017 

-

-
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• There are recent good experimental reasons to talk again about 
Superfluid He as a light DM target. 

• The role of NR-EFT is vary promising. We have to recall that there 
exist a consolidated standard approach in condensed matter 
theory to do this sort of calculations — see original papers. 

• The other excitations in superfluid Helium (rotons, vortices) have 
not been mentioned.



B A C K U P
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B A C K  T O  T H E  R E L AT I V I S T I C  F O R M A L I S M

In the previous Lagrangian scale/adjust the  coordinates to writexi

with the constraint . This corresponds to θ(x) = θ(x) + 2π

ℒ = − (∂μΦ†)(∂μΦ) with Φ†Φ = ξ2 or Φ = ξeiθ(x)

which in turn corresponds to the strong coupling  ofλ → ∞

ℒ = − (∂μΦ†)(∂μΦ) − λ(Φ†Φ − ξ2)2

climbing the wall of the bottle bottom is very inconvenient.

ℒ = −ξ2 (∂μθ ∂μθ)



C H E M I C A L  P O T E N T I A L

46

The implementation of a chemical potential goes through  
the introduction of a time-dependent phase in the U(1) direction. 

This is like searching for the ground state of  evolving in time  
along the U(1) direction. 

The time-dependent phase  is propto  so   — these  
are solutions of the equations of motion parametrized by . 
  
A variation in  corresponds to exciting a configuration   of  
the Goldstone boson.

H

ψ(t) μ ψ(t) = μ t
μ

μ δμ t = π(x)



A C O U S T I C  S C I N T I L L AT O R
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χ χ

Superfluid He

The DM particle interacts in one point only, if it interacts at all. 
The velocity  is much larger than  
(but waves do not build a Cerenkov cone (with ))

vχ ≃ 220 Km/s cs = 248 m/s
tan θ = cs/vχ
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E X PA N S I O N  O F   U P  T O  P(X) π(x)3

Indeed, in general, the sum of all graphs with three external, 
zero 4-momentum Goldstone boson lines, vanishes

∑
ℓ,m,n

∂3V(ϕ)
∂ϕℓ∂ϕm∂ϕn

∑ (1PI diag. w/ ext. lines ℓ,m,n)

(taϕ̄)ℓ(tbϕ̄)m(tcϕ̄)n = 0

tnmϕ̄m ≠ 0 SB

ℒHe =
1
2

·π2 −
c2

s

2
(∇ π)2+

g1

2
·π(∇π)2 +

g2

3!
·π3

The last two terms vanish for qμ → 0
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E X PA N S I O N  O F   U P  T O  P(X) π(x)3

In general processes, to leading order in small Goldstone boson  
energies, low energy Goldstone bosons are not emitted from  
external low energy Goldstone boson lines.  

ℒHe =
1
2

·π2 −
c2

s

2
(∇ π)2+

g1

2
·π(∇π)2 +

g2

3!
·π3

The last two terms vanish for qμ → 0



C H E M I C A L  P O T E N T I A L
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The chemical potential  can be different from zero only 
if the total number of particles is conserved. At very low  
temperature  is sharply peaked at  such that .

μ

⟨Np⟩ p E(p) ≃ μ

⟨Np⟩ =
1

exp[(E(p) − μ)/KT ] − 1

In BEC one has a macroscopic number of  
particles with energy . Sort of BEC in liquid helium.μ



and take λ → ∞ and ρ̄ = const .  we get

ℒ = −
ρ̄

2m
(∇i θ)2

with eq. of motion 

Δθ = 0
The only way for it to be zero everywhere in the superfluid is θ = const.; not a Goldstone.

(recall cs =
λρ̄

2m3
so the limit λ → ∞ does not work.)

Conversely if we start from the NR Lagrangian 

ℒ = iφ† ∂
∂t

φ −
1

2m
∇i φ† ∇i φ −

λ
4m2

(φ†φ − ρ̄)2

ℒ = iφ† ∂
∂t

φ −
1

2m
∇i φ† ∇i φ with φ†φ = ρ̄ i.e. φ = ρ̄eiθ

dropping the total derivative ρ̄∂0θ

S T R O N G  C O U P L I N G  F R O M  N R  L A G R A N G I A N


