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If these states are light they can be DM or mediators

But why should there be any new physics that is light and weakly
coupled?
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Light new physics ?
First example: Goldstone bosons

Every spontaneously lbroken
continuous symmetry gives rise to
massless spin-0 fields.

V(p) = 12pd" + A (¢pg')?




Goldstone bosons

Since the GB corresponds to the phase of a complex field, it is
protected by a shift symmetry

6= (f+s)e/]
it is protected by a shift symmetry
pia(@)/f _y gila(@)+e)/f _ jia(@)/f jic/f

This symmetry forbids a mass term, and all couplings are
suppressed by the UV scale
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Goldstone bosons

An exactly massless boson is very problematic.

The global symmetry can be broken by
explicit masses or anomalous effects
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Small couplings correspond to small masses and a
decoupled NP sector.




Goldstone bosons

The most famous example is the pion

Lacp = qril) qr + qril) qr + myqrar

<quR> = A3QCD ~ G6V3

The pion mass is controlled by the explicit breaking
through light quark masses

p, P, N



Goldstone bosons

The most famous example is the pion NP at f

Lacp = qril) qr + qril) qr + myqrar

<quR> — ASQCD ~ G6V3

The pion mass is controlled by the explicit breaking
through light quark masses

axion
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Axionlike particles

Most general dimension five Lagrangian at the UV scale
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All couplings are suppressed by the UV scale f

Georgi, Kaplan, Randall, Phys. Lett. 169B, 73 (1986)
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Axionlike particles

Most general dimension five Lagrangian at the UV scale

coupling to the Higgs current
couplings to fermions

explicit mass term \ F—Qudl
— 7u7 ) 7e
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coupling to hypercharge

coupling to gluons coupling to SU(2)r, gauge bosons

All couplings are suppressed by the UV scale f

Georgi, Kaplan, Randall, Phys. Lett. 169B, 73 (1986)
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Axionlike particles

For the purpose of this talk | will focus on the fermion couplings

D<5 (%a —
Lar' D 57 %jcwmw

The derivative coupling can be rewritten as a pseudoscalar
coupling using the anomaly equation for the axial-vector current
( or the equations of motion)
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Axionlike particles

It you calculate axion production, these two bases are equivalent

v Oua - Q3
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E.g. an axion radiated off an electron
02 0 0 0
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Axionlike particles

There are many ways to search for axions...
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Axionlike particles

At very low energies, axion exchange induces a spin-dependent force
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Constraints e.g. from hyperfine splitting corrections

0.01F
N )
N e
\/ zw,l 107
=)
ks S
. on
N a B 106
N 2
B
5 1078}
N ]0—10 1 2 al

0.1 1 10 100 1000 10* 10°

Axion (ALP) mass (eV)
J. E. Moody and F. Wilczek, Phys. Rev. D 30 (1984), 130

Ledbetter, Romalis, Kimball, Phys. Rev. Lett. 110, 040492 (2013)



Axionlike particles

It there is a theta angle the axion has a tiny scalar coupling as well

Hi=2-"2"4 07y +dd +5

int = 7 m, +my iu +dd +355)
Any such force would depend on the size of the theta angle, which
acts like a spurion for the shift symmetry

monopole? monopole x dipole dipole?
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J. E. Moody and F. Wilczek, Phys. Rev. D 30 (1984), 130
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Axionlike particles

This can have interesting effects in situations where the nuclear density

IS large, because finite density effects change the axion potential

/\_ nucleon number density

and then one can have

theta ~ pi

and a large force at small
distances

A. Hook and J. Huang, JHEP 06 (2018), 036
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Axionlike particles

The axion also mediates spin-independent forces via 2-axion exchange

that is completely theta independent

It you calculate the potential you find

2 2
Vv (7‘) _ Cipy Copy Mgy My,
WOV T ean3fe 3

for
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MB, Rostagni, hep-ph/2307.09516



Axionlike particles

The axion also mediates spin-independent forces via 2-axion exchange
that is completely theta independent
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It you calculate the potential you find

012/)1 C?Pz M)y TNy : a —
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This result can't possibly depend on the basis!
20 MB, Rostagni, hep-ph/2307.09516



Axionlike particles

The problem is that applying the equations of motion only accounts for
a linear shift in the fermion fields. Since we have an 1/t4 effect we need
to shitt up to quadratic order

2

Y — exp (i%)zb:i%w 26}21#—%

\/ EoM account only for this term

or in terms of the anomaly equation
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Axionlike particles

As a result the full calculation in the pseudoscalar basis has additional
contributions

a) ' b) ¢) | d) ‘e)'
And the result agrees with the derivative basis

V(1) = Vap(r) + Ve(r) + Va(r) + Ve(r)
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22 MB, Rostagni, hep-ph/2307.09516



Axionlike particles

A delicate cancellation between the linear and quadratic interactions
makes the spin-independent axion force extremely suppressed ~1/rd
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But there is a quadratic spurion in the ALP Lagrangian

2 2
m,a“ -
[fssb = Zcm f3 ¢¢
Y
For a generic ALP this shift-symmetry breaking scales like ~1/t°

23 MB, Rostagni, hep-ph/2307.09516



Axionlike particles

But the QCD axion is special, because the shift symmetry is broken by
the quark masses

The relevant interactions of the QCD axion in the chiral 2-flavor
Lagrangian can be written as

=N (Zw — MmN + %47”’75’% + 907“750’/88)) N
and
C2

L = citr[x+|NN Str[u,u, | (ND*DYN + h.c.)
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24 MB, Rostagni, hep-ph/2307.09516



Axionlike particles

All terms are shitt symmetric apart from

2
crtr[x s | NN = CN%NN T

Wi xe = 2Bo(€mg()E + Emb(@)E) 7o = m2/m?

m2 4ct (1 — 74)% + (cy — ca)?72

and the coefficient CN = C1 5 (1—17,)2

This term breaks the shift symmetry at the same order in 1/f as the
leading shift-invariant interactions even though it's induced by a higher
order operator

25 MB, Rostagni, hep-ph/2307.09516



Axionlike particles

The leading contributions to the potential read

6473 f4 13 r3 7S

1 2 1
‘/Sp.(,r) _ CN.:CN, | O (ma )

This force acts only between nuclei, because the shift-symmetry
breaking quadratic coupling doesn't exist for leptons

26 MB, Rostagni, hep-ph/2307.09516



Axionlike particles

The leading constraints arise from “Casimir-less” fifth force searches
and the force is purely attractive for an axion only coupled to gluons
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Hidden Photons

Second example: gauge bosons (local symmetry breaking)

1 1 _
L= — ZXMVXMV _§DM¢DM¢ o V(Qb) ‘|‘9X¢7,u¢X'u

¢ = (f + s)e'/ S —_— mx = gxJ

Interactions with the SM are either directly set by the gauge
coupling or through kinetic mixing

gxe A?
BMVWQVWXM € X S?IOgW

Small gauge couplings imply small masses
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Hidden Photons

The hidden photon can be either a secluded gauged group,
or one of the anomaly free global symmetries of the SM
(unless you add more matter fields)

U)p-r UMp,—. UMp,—.  U)r, -1,

It you calculate the kinetic mixing between the photon and the
hidden photon

by,
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Bounds on hidden photons
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Bounds on hidden photons
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Hidden Photons

The hidden photon can be either a secluded gauged group,
or one of the anomaly free global symmetries of the SM
(unless you add more matter fields)

U)p-r UMp,—. UMp,—.  U)r, -1,

It you calculate the kinetic mixing between the photon and the
hidden photon

by,
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Hidden Photons

In some cases the loop induced mixing is finite, e.g. U(1)r, 1.,

In this case the muon, tau and the corresponding neutrinos
are charged under a new gauge group

B Xy W O,

_67B B,LLVXMV OWX — ‘WX HTO'zH W;VX“U

With the result

g,gu—f m, my, _ 99u— m,, myr
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33 MB, Foldenauer, Phys. Rev. Lett. 129, 171801 (2022)




Hidden Photons

But this is not always the case, e.g. for a charged B-L group
gxe A?
BM‘\/\/\/‘Q'\/\/\/\ X,LL € X 8? l()g m

S0 some hidden photon gauge groups have finite kinetic
mixing, others are sensitive to a UV scale

What's the implication of this UV divergence in kinetic mixing”?

34



Hidden Photons

Consider the photon-Z mixing in the SM

’YVWQVW”Y Zwv@vwW ZVWQVWZ

A2 A? A2
10g ) log — log _
m™m

Needs 3 counterterms:

1 1 1
LD ZZAAFW/F/H/ + ZZZZZW/Z/M/ -+ §ZZAFM,/Z'LW

But there can be only 2:

1 1
LD ZZBBBMVB,LU/ -+ ZwaWa’MVWSV
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Hidden Photons

Consider the photon-Z mixing in the SM

’YVWQVW”Y Zwv@vwW ZVWQVWZ

A2 A2 A2

log — log — log —
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The only way 3 divergences can be absorbed in 2
counterterms is when the couplings aren't independent

R(0) (ZAA ZZA) R(6)" = (ZgB 0 >

Lza Zzz LWw

36



Hidden Photons

If the kinetic mixing term is UV divergent there must be a
symmetry breaking in the UV that mixes the gauge bosons

Without knowing anything else we know that Guv can'’t be a
direct product

GUV — SU(3)C X SU(Q)L X U(l)y X U(l)B_L

Whereas for U(1)r,—r, it must be possible to find a direct product

Gsm X GL,—L,

l |

SU3)c x SU(2)r x Uy (1) X U1)L,—L,
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Two Surprises

1. For QCD axions interacting with quarks and gluons the
leading term in the spin-independent force is induced by
higher-order shift-symmetry breaking operators

2. The divergence of any loop-induced kinetic mixing term for
hidden photons tells us whether the underlying gauge group
in the Uv can be written as a direct product or must be a GUT
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