Two surprises in axion and hidden photon physics

Martin Bauer

MB, Guillaume Rostagni, hep-ph/2307.09516 MB, Patrick Foldenauer, Phys. Rev. Lett. 129, 171801 (2022).

Padua, Sept 6, 2023

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}^5 + \dots$$

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}^5 + \dots$$
 $\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_X + \dots$

If these states are light they can be DM or mediators

But why should there be *any* new physics that is light and weakly coupled?

Light new physics ?

First example: Goldstone bosons

Every spontaneously broken continuous symmetry gives rise to massless spin-0 fields.

$$V(\phi) = \mu^2 \phi \phi^{\dagger} + \lambda \, (\phi \phi^{\dagger})^2$$
$$\phi = (f+s)e^{ia/f}$$

$$m_s^2 = 4\lambda f^2 = |\mu^2|$$
$$m_a^2 = 0$$

Since the GB corresponds to the phase of a complex field, it is protected by a shift symmetry

$$\phi = (\mathbf{f} + s)e^{ia/\mathbf{f}}$$

it is protected by a shift symmetry

$$e^{ia(x)/f} \rightarrow e^{i(a(x)+c)/f} = e^{ia(x)/f}e^{ic/f}$$

This symmetry forbids a mass term, and all couplings are suppressed by the UV scale

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} a \, \partial^{\mu} a + c_{\mu} \frac{\partial^{\nu} a}{4\pi f} \, \bar{\mu} \gamma_{\nu} \mu + \dots$$

An exactly massless boson is very problematic.

The global symmetry can be broken by explicit masses or anomalous effects

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} a \, \partial^{\mu} a + c_{\mu} \frac{\partial^{\nu} a}{4\pi f} \, \bar{\mu} \gamma_{\nu} \mu + \ldots + \frac{1}{2} m_a^2 a^2$$
$$m_a = \frac{\mu_a^2}{f}$$

Small couplings correspond to small masses and a decoupled NP sector.

The most famous example is the pion

$$\mathcal{L}_{\text{QCD}} = \bar{q}_L i \not \!\!\!D \, q_L + \bar{q}_R i \not \!\!\!D \, q_R + m_q \bar{q}_L q_R$$

$$\langle \bar{q}_L q_R \rangle = \Lambda_{\rm QCD}^3 \approx {\rm GeV}^3$$

The pion mass is controlled by the explicit breaking through light quark masses

$$m_{\pi}^2 = \frac{m_u + m_d}{f_{\pi}^2} \Lambda_{\text{QCD}}^3 \approx (140 \,\text{MeV})^2$$

 π

 ρ, P, N

The most famous example is the pion

NP at f

$$\mathcal{L}_{\text{QCD}} = \bar{q}_L i \not \!\!\!D \, q_L + \bar{q}_R i \not \!\!\!D \, q_R + m_q \bar{q}_L q_R$$

$$\langle \bar{q}_L q_R \rangle = \Lambda_{\rm QCD}^3 \approx {\rm GeV}^3$$

The pion mass is controlled by the explicit breaking through light quark masses

$$m_{\pi}^2 = \frac{m_u + m_d}{f_{\pi}^2} \Lambda_{\text{QCD}}^3 \approx (140 \,\text{MeV})^2$$

axion

Most general dimension five Lagrangian at the UV scale

$$\mathcal{L}_{\text{eff}}^{D \le 5} = \frac{1}{2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) - \frac{m_{a,0}^{2}}{2} a^{2} + \frac{\partial^{\mu} a}{f} \sum_{F} \bar{\psi}_{F} c_{F} \gamma_{\mu} \psi_{F} + c_{\phi} \frac{\partial^{\mu} a}{f} \left(\phi^{\dagger} i D_{\mu} \phi + \text{h.c.} \right) + c_{GG} \frac{\alpha_{s}}{4\pi} \frac{a}{f} G_{\mu\nu}^{a} \tilde{G}^{\mu\nu,a} + c_{WW} \frac{\alpha_{2}}{4\pi} \frac{a}{f} W_{\mu\nu}^{A} \tilde{W}^{\mu\nu,A} + c_{BB} \frac{\alpha_{1}}{4\pi} \frac{a}{f} B_{\mu\nu} \tilde{B}^{\mu\nu} .$$

All couplings are suppressed by the UV scale f

Georgi, Kaplan, Randall, Phys. Lett. 169B, 73 (1986)

Most general dimension five Lagrangian at the UV scale

All couplings are suppressed by the UV scale f

Georgi, Kaplan, Randall, Phys. Lett. 169B, 73 (1986)

For the purpose of this talk I will focus on the fermion couplings

$$\mathcal{L}_{ ext{eff}}^{D \leq 5} \supset rac{\partial_{\mu} a}{2f} \sum_{\psi} c_{\psi} \bar{\psi} \gamma_{\mu} \gamma_{5} \psi$$

The derivative coupling can be rewritten as a pseudoscalar coupling using the anomaly equation for the axial-vector current (or the equations of motion)

$$\frac{c_{\psi}}{2}\frac{\partial_{\mu}a}{f}\bar{\psi}\gamma_{5}\gamma^{\mu}\psi = -c_{\psi}im_{\psi}\frac{a}{f}\bar{\psi}\gamma_{5}\psi + c_{\psi}\frac{\alpha Q_{\psi}^{2}}{4\pi}\frac{a}{f}F_{\mu\nu}\tilde{F}^{\mu\nu} \cdot$$

If you calculate axion production, these two bases are equivalent

$$\frac{c_{\psi}}{2}\frac{\partial_{\mu}a}{f}\bar{\psi}\gamma_{5}\gamma^{\mu}\psi = -c_{\psi}im_{\psi}\frac{a}{f}\bar{\psi}\gamma_{5}\psi + c_{\psi}\frac{\alpha Q_{\psi}^{2}}{4\pi}\frac{a}{f}F_{\mu\nu}\tilde{F}^{\mu\nu} + c_{$$

E.g. an axion radiated off an electron

Same for the axion decay rate into photons

There are many ways to search for axions...

MB, Neubert, Renner, Schnubel, Thamm, JHEP 09 (2022) 056

At very low energies, axion exchange induces a spin-dependent force

$$V(r) = \frac{g_P^1 g_P^2}{16\pi M_1 M_2} \left[(\hat{\sigma}_1 \cdot \hat{\sigma}_r) \left[\frac{m_{\varphi}}{r^2} + \frac{1}{r^3} + \frac{4\pi}{3} \delta^3(r) \right] - (\hat{\sigma}_1 \cdot \hat{r}) (\hat{\sigma}_2 \cdot \hat{r}) \left[\frac{m_{\varphi}^2}{r} + \frac{3m_{\varphi}}{r^2} + \frac{3}{r^3} \right] \right] e^{-m_{\varphi} r}$$

Constraints e.g. from hyperfine splitting corrections

Ledbetter, Romalis, Kimball, Phys. Rev. Lett. 110, 040402 (2013)

If there is a theta angle the axion has a tiny scalar coupling as well

$$H_{\text{int}} = \frac{a}{F} \frac{m_u m_d}{m_u + m_d} \theta(\bar{u}u + \bar{d}d + \bar{s}\bar{s})$$

Any such force would depend on the size of the theta angle, which acts like a spurion for the shift symmetry

$$\begin{array}{ll} \text{monopole}^2 & \text{monopole x dipole} & \text{dipole}^2 \\ V(r) = \frac{-g_S^1 g_S^2 e^{-m_{\varphi} r}}{4\pi r} & V(r) = (g_S^1 g_P^2) \frac{\hat{\sigma}_2 \cdot \hat{r}}{8\pi M_2} \left[\frac{m_{\varphi}}{r} + \frac{1}{r^2} \right] e^{-m_{\varphi} r} & V(r) = \frac{-g_P^1 g_P^2}{16\pi M_1 M_2} (\hat{\sigma}_1 \cdot \hat{r}) (\hat{\sigma}_2 \cdot \hat{r}) \left[\frac{m_{\varphi}^2}{r} \right] \\ \sim (\theta/F)^2 & \sim \theta/F^3 & \sim 1/F^4 \end{array}$$

J. E. Moody and F. Wilczek, Phys. Rev. D 30 (1984), 130

This can have interesting effects in situations where the nuclear density is large, because finite density effects change the axion potential

$$V = -m_{\pi}^2 f_{\pi}^2 \left\{ \left(\epsilon - \frac{\sigma_N n_N}{m_{\pi}^2 f_{\pi}^2} \right) \left| \cos \left(\frac{a}{2f_a} \right) \right| + \mathcal{O}\left(\left(\frac{\sigma_N n_N}{m_{\pi}^2 f_{\pi}^2} \right)^2 \right) \right\},$$

and then one can have

theta ~ pi

and a large force at small distances

A. Hook and J. Huang, JHEP 06 (2018), 036

The axion also mediates spin-independent forces via 2-axion exchange that is completely theta independent

If you calculate the potential you find

$$V_{ab}(r) = -\frac{c_{\psi_1}^2 c_{\psi_2}^2}{64\pi^3 f^4} \frac{m_{\psi_1} m_{\psi_2}}{r^3} \qquad \qquad \text{for} \qquad : -c_{\psi} i m_{\psi} \frac{a}{f} \bar{\psi} \gamma_5 \psi$$

The axion also mediates spin-independent forces via 2-axion exchange that is completely theta independent

If you calculate the potential you find

$$V_{ab}(r) = -\frac{c_{\psi_1}^2 c_{\psi_2}^2}{64\pi^3 f^4} \frac{m_{\psi_1} m_{\psi_2}}{r^3} \qquad \text{for} \qquad :-c_{\psi} i m_{\psi} \frac{a}{f} \bar{\psi} \gamma_5 \psi$$
$$V_{ab} = \frac{3c_{\psi_1}^2 c_{\psi_2}^2}{128\pi^3 f^4} \frac{1}{r^5} \qquad \text{for} \qquad \frac{c_{\psi}}{2} \frac{\partial_{\mu} a}{f} \bar{\psi} \gamma_5 \gamma^{\mu} \psi$$

This result can't possibly depend on the basis!

MB, Rostagni, hep-ph/2307.09516

The problem is that applying the equations of motion only accounts for a linear shift in the fermion fields. Since we have an 1/f⁴ effect we need to shift up to quadratic order

$$\psi \rightarrow \exp\left(i\frac{a}{f}\right)\psi = i\frac{a}{f}\psi - \frac{a^2}{2f^2}\psi + \dots$$

EoM account only for this term

or in terms of the anomaly equation

$$\frac{c_{\psi}}{2}\frac{\partial_{\mu}a}{f}\bar{\psi}\gamma_{5}\gamma^{\mu}\psi = -c_{\psi}im_{\psi}\frac{a}{f}\bar{\psi}\gamma_{5}\psi + c_{\psi}^{2}m_{\psi}\frac{a^{2}}{f^{2}}\bar{\psi}\psi + c_{\psi}\frac{\alpha Q_{\psi}^{2}}{4\pi}\frac{a}{f}F_{\mu\nu}\tilde{F}^{\mu\nu} + \mathcal{O}\left(\frac{a^{3}}{f^{3}}\right)$$

As a result the full calculation in the pseudoscalar basis has additional contributions

And the result agrees with the derivative basis

$$\begin{split} V(r) &= V_{ab}(r) + V_c(r) + V_d(r) + V_e(r) \\ &= \frac{3c_{\psi_1}^2 c_{\psi_2}^2}{128\pi^3 f^4} \frac{1}{r^5} \left[\left(x_a + \frac{x_a^3}{6} \right) K_1(x_a) + \frac{x_a^2}{2} K_0(x_a) \right] \\ &= \frac{3c_{\psi_1}^2 c_{\psi_2}^2}{128\pi^3 f^4} \left[\frac{1}{r^5} - \frac{1}{3} \frac{m_a^2}{r^3} + O(m_a^4) \right] \end{split}$$

MB, Rostagni, hep-ph/2307.09516

A delicate cancellation between the linear and quadratic interactions makes the spin-independent axion force extremely suppressed $\sim 1/r^5$

But there is a quadratic spurion in the ALP Lagrangian

$$\mathcal{L}_{\rm ssb} \ni \sum_{\psi} \frac{c_m}{f^3} \frac{m_a^2 a^2}{f^3} \bar{\psi} \psi$$

For a generic ALP this shift-symmetry breaking scales like $\sim 1/f^5$

But the QCD axion is special, because the shift symmetry is broken by the quark masses

The relevant interactions of the QCD axion in the chiral 2-flavor Lagrangian can be written as

$$\mathcal{L}^{(1)} = \bar{N} \left(i \not \!\!\!D - m_N + \frac{g_A}{2} \gamma^\mu \gamma^5 u_\mu + g_0 \gamma^\mu \gamma^5 a_\mu^{(s)} \right) N$$

and

$$\mathcal{L}^{(2)} = c_1 \text{tr}[\chi_+]\bar{N}N - \frac{c_2}{4m^2} \text{tr}[u_\mu u_\nu](\bar{N}D^\mu D^\nu N + \text{h.c.}) + \frac{c_3}{2} \text{tr}[u_\mu u^\mu]\bar{N}N - \frac{c_4}{4}\bar{N}\gamma^\mu\gamma^\nu[u_\mu, u_\nu]N$$

All terms are shift symmetric apart from

$$c_1 \operatorname{tr}[\chi_+] \bar{N}N = c_N \frac{a^2}{f^2} \bar{N}N + \dots$$

with

$$\chi_{+} = 2B_0 \left(\xi^{\dagger} m_q(a)\xi^{\dagger} + \xi m_q^{\dagger}(a)\xi\right) \qquad \tau_a = m_a^2/m_\pi^2$$

and the coefficient
$$c_N = c_1 \frac{m_\pi^2}{2} \frac{4c_{GG}^2 (1 - \tau_a)^2 + (c_u - c_d)^2 \tau_a^2}{(1 - \tau_a)^2}$$

This term breaks the shift symmetry at the same order in 1/f as the leading shift-invariant interactions even though it's induced by a higher order operator

The leading contributions to the potential read

$$V_{\rm sp.}(r) = -\frac{c_{N_1}c_{N_2}}{64\pi^3 f^4} \frac{1}{r^3} + O\left(\frac{m_a^2}{r^3}, \frac{1}{r^5}\right)$$

This force acts only between nuclei, because the shift-symmetry breaking quadratic coupling doesn't exist for leptons

The leading constraints arise from "Casimir-less" fifth force searches and the force is purely attractive for an axion only coupled to gluons

Chen, Tham, Krause, Lopez, Fischbach, Decca, Phys. Rev. Lett. 116 (2016) no.22, 221102

Second example: gauge bosons (local symmetry breaking)

$$\mathcal{L} = -\frac{1}{4} X_{\mu\nu} X^{\mu\nu} - \frac{1}{2} D_{\mu} \phi D^{\mu} \phi - V(\phi) + g_X \bar{\psi} \gamma_{\mu} \psi X^{\mu}$$
$$\phi = (f+s) e^{ia/f} \qquad \longrightarrow \qquad m_X = g_X f$$

Interactions with the SM are either directly set by the gauge coupling or through kinetic mixing

$$B_{\mu} \sim \sum X_{\mu} \qquad \epsilon \propto \frac{g_X e}{8\pi^2} \log \frac{\Lambda^2}{m^2}$$

Small gauge couplings imply small masses

The hidden photon can be either a secluded gauged group, or one of the anomaly free global symmetries of the SM (unless you add more matter fields)

$$U(1)_{B-L} \quad U(1)_{L_{\mu}-L_{e}} \quad U(1)_{L_{\tau}-L_{e}} \quad U(1)_{L_{\mu}-L_{\tau}}$$

If you calculate the kinetic mixing between the photon and the hidden photon

Bounds on hidden photons

Bounds on hidden photons

The hidden photon can be either a secluded gauged group, or one of the anomaly free global symmetries of the SM (unless you add more matter fields)

$$U(1)_{B-L} \quad U(1)_{L_{\mu}-L_{e}} \quad U(1)_{L_{\tau}-L_{e}} \quad U(1)_{L_{\mu}-L_{\tau}}$$

If you calculate the kinetic mixing between the photon and the hidden photon

In some cases the loop induced mixing is finite, e.g. $U(1)_{L_{\mu}-L_{\tau}}$

In this case the muon, tau and the corresponding neutrinos are charged under a new gauge group

33

$$\epsilon_B = \frac{g' g_{\mu-\tau}}{24\pi^2} \left[3 \log\left(\frac{m_{\mu}}{m_{\tau}}\right) + \log\left(\frac{m_{\nu_{\mu}}}{m_{\nu_{\tau}}}\right) \right]$$

 $\epsilon_W = \frac{gg_{\mu-\tau}}{24\pi^2} \left[\log\left(\frac{m_{\mu}}{m_{\nu_{\mu}}}\right) - \log\left(\frac{m_{\tau}}{m_{\nu_{\tau}}}\right) \right]$ MB, Foldenauer, Phys. Rev. Lett. 129, 171801 (2022)

But this is not always the case, e.g. for a charged B-L group

$$B_{\mu} \sim O \sim X_{\mu} \qquad \epsilon \propto \frac{g_X e}{8\pi^2} \log \frac{\Lambda^2}{m^2}$$

So some hidden photon gauge groups have finite kinetic mixing, others are sensitive to a UV scale

What's the implication of this UV divergence in kinetic mixing?

Consider the photon-Z mixing in the SM

Needs 3 counterterms:

$$\mathcal{L} \supset \frac{1}{4} Z_{AA} F^{\mu\nu} F_{\mu\nu} + \frac{1}{4} Z_{ZZ} Z^{\mu\nu} Z_{\mu\nu} + \frac{1}{2} Z_{ZA} F_{\mu\nu} Z^{\mu\nu}$$

But there can be only 2:

$$\mathcal{L} \supset \frac{1}{4} Z_{BB} B^{\mu\nu} B_{\mu\nu} + \frac{1}{4} Z_{WW} W^{a,\mu\nu} W^a_{\mu\nu}$$

Consider the photon-Z mixing in the SM

The only way 3 divergences can be absorbed in 2 counterterms is when the couplings aren't independent

$$R(\theta) \begin{pmatrix} Z_{AA} & Z_{ZA} \\ Z_{ZA} & Z_{ZZ} \end{pmatrix} R(\theta)^{-1} = \begin{pmatrix} Z_{BB} & 0 \\ 0 & Z_{WW} \end{pmatrix}$$

If the kinetic mixing term is UV divergent there must be a symmetry breaking in the UV that mixes the gauge bosons

Without knowing anything else we know that G_{UV} can't be a direct product

$$G_{UV} \rightarrow SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_{B-L}$$

Whereas for $U(1)_{L_{\mu}-L_{\tau}}$ it must be possible to find a direct product

Two Surprises

1. For QCD axions interacting with quarks and gluons the leading term in the spin-independent force is induced by higher-order shift-symmetry breaking operators

2. The divergence of any loop-induced kinetic mixing term for hidden photons tells us whether the underlying gauge group in the Uv can be written as a direct product or must be a GUT