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Motivation and Overview

Ultra-light scalar dark matter (1072%eV < m, < keV), generically produced via the
g b g YP

misalignment mechanism, is a theoretically well-motivated and phenomenologically
distinctive scenario.

A minimal model realization consists of a scalar field coupled through the super-

renormalizabe Higgs portal. [Piazza, Pospelov ’10]

The cosmology of this scenario is rich and distinctive, involving the dynamical
misalignment of the scalar field during the radiation era through two competing
mechanisms: thermal misalignment and VEV misalignment.

Under certain conditions, the DM relic abundance is insensitive to initial
conditions and thus controlled by the DM mass and Higgs portal coupling. This
leads to a relic density target that can be compared with experimental tests.
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The standard misalighment mechanism

[Preskill, Wise, Wilczek; Abbott, Sikivie; Dine,Fischler, ’83]

Consider a massive scalar field in early universe:
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Initially, the scalar field is held up by Hubble
friction at its initial field value ¢,

Scalar oscillations commence when the Hubble
rate falls below the scalar mass

The oscillating scalar forms a pressureless, non-

'
tOSC
relativistic fluid and is thus a good DM candidate 5 :
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Super-renormalizable Higgs portal model

[Piazza, Pospelov "1 0]

Add a real scalar singlet ¢ to the SM, with scalar potential (note H! = (O,h/\/a) )
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Two parameters: scalar mass 7, and dimensionful Higgs portal coupling A

Scalar vaccum expectation values (VEVs):
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Cosmology overview

* Our study starts in the radiation era at high temperatures, T > v

* The feeble coupling of the scalar to the Higgs leads to non-trivial dynamical
evolution of ¢ during the radiation era through two effects:
[Piazza, Pospelov | 0]

* Thermal misalignment ¢ : The scalar experiences a finite temperature potential
and is driven towards its high temperature minimum at large field values.

[BB, Ghalsasi "21]
[for related work see also Buchmuller, Hamaguchi, Lebedev, Ratz '04; Lillard, Ratz,
Tait, Trojanowski ’[8; Chun ’21; Cheek Osinski, Roszkowski, Trojanowski '22]

e VEV misalignment qgv: During the electroweak phase transition the Higgs
VEV turns on and induces a shift in the ¢ VEV.

[see also Arkani-Hamed, Tito D’Agnolo, Kim ’20]

* We study two choices for the initial conditions

* ¢, = ¢, : the scalar begins at its zero temperature VEV

o ¢, =0 :|¢;| is significantly different than | ¢, ]| .
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Scalar effective potential

At high temperatures, I' > v, the scalar fields experience an effective potential
with the following contributions

%ff(¢7 h7 T) — Vb(gba h’) T VCW(¢7 h) T VT(qba h7 T)

Coleman-

Tree-level . ——
Weinberg Finite-Temperature

Of particular importance is the finite temperature effective potential
[See, e.g., M. Quiros, 9901312]

1 m2(6, b, T)] 3 m2 (¢, h, T)
VT(¢7 h’) T) 2 ﬁTLlJB [ n T2 ] + 2—7.‘.2T4JB [ : T2 ] +

2
The ¢-dependent masses of the Higgs and 0
Nambu-Goldstone bosons are (z)’x(gb, h) = 2 ARE L AS,

The functions Jp 5 are defined as  Jp r(w?) = / dz z° log [1 T exp (_\/xz T w2 wz) ]
’ 0
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Scalar field evolution and relic abundance

We find it convenient to work with the following dimensionless variables:

¢ Mg Mpi
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In terms of these dimensionless variables, the scalar equation of motion reads (prime
denotes derivative wrt.y = T/u)
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As the universe expands, the Hubble parameter decreases until it eventually falls
below the effective ¢p mass, marking the onset of scalar oscillations:

Tosc K
[3H(y080)]2 — mgs(yosc) =~ mgg » Yosc = — _

p 3

We estimate the oscillation amplitude, ¢,.. = @(V,..), and from here we can estimate
the relic abundance



Higgs field and EWPT

* The electroweak phase transition (EWPT) is a smooth crossover characterized
by the critical temperature T, ~ O(v), [y, =T./u ~ O(1)].

* Assume the Higgs field tracks its potential minimum throughout the EVWPT. Thus,
the evolution of i(¢, y) is determined by the minimization condition 0V +/0h = 0

viy ——

o : : EWPT
ho = h(d = 0,9) | — (v, ~ 1.6)




Temperature-dependent ¢ VEV

* Much insight can be gained by studying the shape of the potential and the ¢ VEV as a
function of temperature. The ¢ VEV is obtained from the condition, V, ff/dgb 0,
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Temperature-dependent ¢ potential

High temperatures Just above the EWPT
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Analytic estimate of relic abundance

* The scalar evolution exhibits qualitatively distinct behavior depending on its mass:

* (i) thermal misalignment dominates at large masses, (ii) VEV misalignment is
important at small masses, (iii) both are relevant at intermediate masses
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Region | (higher masses)
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Region |, Analytic Estimate

e At high temperatures,y > y_, the scalar undergoes thermal misalignment. The
approximate equation of motion and solution is

(ﬁﬂ(y) + 7r252y4 =0 * Qg(y) = = 2 + ng

672~ 2y2
Hf-"
* Oscillations start at high temperatures. thermal misalignment
Using y . = 1/k/3y, we estimate the
oscillation amplitude to be 06(y) = dy) — [=Bh3(y)/(26”)
’ A b . 105,
¢osc — ¢(yosc) — _2 9 + ¢z
TYK 0.
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Region 3 (lower masses), qgl-
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e VEV misalignment — ¢y =~ ¢, , requires only small coupling

e See Backup Slides for analytic estimate of relic abundance
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Region 3 (lower masses), qgl- = g@o

Loy A V() 2. V2R

* VEV misalignhment induces displacement from zero temperature minimum

e See Backup Slides for analytic estimate of relic abundance
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e See Backup Slides for analytic estimates of relic abundance
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Region 2

In Region 2, the scalar evolution is the result of a competition between thermal
misalignment and VEV misalignment.

Initially, thermal misalignment occurs at high temperatures and oscillations begin before the
EWPT

At the EWPT, the Higgs field rapidly moves from the origin towards 7 — v, simultaneously
inducing a shift in the ¢ VEV towards its zero-temperature value.

This acts as a step-like forcing term in the scalar equation of motion, causing a suppression or
enhancement in the oscillation amplitude

: 1 1077

* In the example at right, ' - ” | ”
the scalar field is near its ) -
. o o ¢ -7 L
oscillation maximum as My T W (\ E |

the shift in the ¢ VEV | TINBRErS,
occurs. W A ‘ }
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Relic abundance results
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Experimental and observational probes

Equivalence principle / inverse square law tests

Stellar cooling

Extragalactic background light and X-rays

Resonant absorption in molecules

[Piazza, Pospelov,’ 1 0]
[Graham, Kaplan, Mardon, Rajendran, Terrano ’| 6]

[Hardy, Lasenby,’ | 6]

[Cadamuro, Redondo,’| 1]
[Flacke, Frugiuele, Fuchs, Gupta, Perez,’ | 7]

[Essig, Kuflik, McDermott,Volansky, Zurek,’ | 1]

[Fradette, Pospelov, Pradler, Ritz,’ 1 8]

[Arvanitaki, McDermott,Van Tilburg 1 7]

At lower masses: atomic & nuclear clocks, atom interferometers, black hole

superradiance, Lyman-alpha, ...
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Comparison to WIMP scalar singlet DM

1 b b
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N h N\ h
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/ /
S* V S* f

150 200 250 300
mg |GeV]
[Feng, Profumo, Ubaldi ’14]

Relic Density Target
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Outlook

Ultralight bosons represent a well-motivated and phenomenologically distinctive
class of DM models.

We have studied the cosmology of a light scalar coupled through the super-
renormalizable Higgs portal.

The cosmology of this scenario is rich and distinctive, involving the dynamical
misalignment of the scalar field during the radiation era through two competing
mechanisms: thermal misalignment and VEV misalignment.

Under certain conditions, a relic density target can be defined which is not
insensitive to initial conditions.

New ideas are needed to probe much of the cosmologically interesting regions of
parameter space.
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Backup
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Region 3, ¢, = 0 — Analytic Estimate

* Thermal misalighment is negligible. The scalar is held up by Hubble friction at its
initial value, ¢ = ¢, = 0.

o After the EWPT, the scalar VEV rapidly transitions to its zero temperature
minimum, generating misalighment.

* Eventually, oscillations begin, with amplitude AN BB SRR SR BRI

0.05[ -

given by the VEV misalighment : {\ ¢i=0 ;
ol s

. . K B ]
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* Scalar relic abundance: 0.02F E
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Region 3, qgi = ggo — Analytic Estimate

* Thermal misalignment is negligible. As the temperature approaches the EVV scale,
the scalar mass term dominates. The equation of motion and solution is

721y6 (/{’2&) - * éﬂ(y) 2*}/2)\y * ¢ 44052)\ + 0

e Aty ~ I,the Higgs is Boltzmann suppressed
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