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What can GW interferometers tell us about
the nature of dark matter (more specifically ultralight dark matter)?



Ultralight dark matter (ULDM)



Terminology:

Ultralight (wave) dark matter
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* characteristic soliton at the center has been observed

* small scale structures are erased
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Veltmaat, Niemeyer, Schwabe (18)




The granule structure
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An intuitive understanding of the granule structure:

Quasiparticle
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m ~ 107 eV

meg ~ O(10°%) kg

¢ ~ O(10%)km
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GW interferometers



mirror

+

Jolw

laser

P = P,sin®(kAL)

photodetector






S/2(f) ~ SX;

n

——  LIGO Hanford
——— LIGO Livingston

Strain |1/

Frequency [Hz|




Imagine placing these sensitive GW interferometers
In the sea of ultralight dark matter
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Two questions:

1. Do we have to worry about ULDM-induced noise
In the current and future gravitational waves?

2. Gan current and future GW interferometers
probe ultralight dark matter gravitationally?
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A =1/mv Back-of-envelope estimation
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Back-of-envelope estimation
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Two questions:

1. Do we have to worry about ULDM-induced noise
In the current and future gravitational waves?

2. Gan current and future GW interferometers
probe ultralight dark matter gravitationally?

to completely answer these questions, we need
detailed computation for noise power spectrum from ultralight dark matter



Some statistical properties of ULDM

- - Operators
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One can start from field theory
define density operator under certain assumptions
to completely specify the statistical properties of the scalar field [Kim and Lenoci 21]
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Some statistical properties of ULDM

- - random #
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More conveniently
we can just take operators to complex random variables
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where each of them is distributed according to the following p.d.f.
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Once we obtain one particular realization of the field
and compute the density of the field
it would look like the following

t/teon = 0.




an order-one density fluctuation
IS very common




The statistical properties of these density clumps
can be analytically investigated

For instance
the density-density correlator of space-like separation iIs

(5(2)3(y)) o< exp [~|Aa]?/N]

t/teon = 0.

two patches are
statistically uncorrelated




the density-density correlator at the same position is
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the density-density correlator at the same position is
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the density-density correlator at the same position is
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the next step would be to investigate
how a test mass evolves in the sea of ULDM

t/teon = 0.

how will the test mass fluctuate?
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acceleration on test mass is related to the density contrast
through Newton's equation of motion & Poisson equation

a—=—Vo
VQCI) — 47TG,0()5

In Fourier space

leading to
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test mass acceleration spectrum inherits its properties from 6(w,k)
logarithmic divergence at small frequencies Is due to long-range nature of gravitational force




the spectrum of acceleration allows us
to estimate the rms fluctuation of the position of a test mass

t/teon = 0.

0.0 02 04 0.6 0.8 1.0




it also constitutes a basic building block
to study the response of the interferometers
with respect to the ultralight dark matter
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Michelson Interferometer (LIGO, VIRGO, etc) Time-delay Interferometer (LISA and etc)



In Michelson interferometers
the change of arm-length due to ULDM
will lead to fluctuations in output power
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to see how Michelson interferometer responds to ULDM
let us investigate how light travels in one arm

o (%)
t — 2L
t
Beam End
Splitter Mirror

laser enters BS at (t - 2L )

laser hits Mirrorat (t - L)

laser returnsto BS at ( t)

Distance traveled by laser
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Quasiparticle will perturb the position of test mass and beam splitter
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Perturbed distance traveled by laser
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response of the system to QP
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Combining the effects along the two arms
one finds response of Mich. Interferometer
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one can find a similar expression for other types of interferometer
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when ULDM signal is translated into
strain power spectrum

Preliminary LISA
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Even for space-borne interferometers, ULDM-induced noise are subdominant



Two questions:

2. Can current and future GW interferometers
probe ultralight dark matter gravitationally?

more specifically
can we constrain dark matter density in the solar system
through gravitational interaction with GW interferometers?



behaves as a stochastic signal
with W < mo? (cross-correlation)
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behaves as a deterministic signal
oscillating at W = 2m (matched filter)




the deterministic signal

we have seen coherently oscillating mode in p
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As we know the shape of the signal
we can ‘filter’ the detector output such that it coherently picks up the signal
by choosing the optimal filter K(t)

/ dt d(t) K (t)

d(t) = s(t) + n(t)
K (t) o< cos(2mt)

the signal is coherently added up
while the noise is added incoherently
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the stochastic signal

we have seen random changes in p over coherent time scale tcon
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the form of the signal is unknown, and hence, matched filter cannot be used



the stochastic signal

If we have more than two detectors
we can cross-correlate the signals

Y = /dt/dt’sl(t)SQ(t,)Q(t—t/)

detector 2

detector 1

Sl(t)

S9 (t)

the noise Is expected to be uncorrelated
the correlated signal can be picked up by choosing an optimal filter Q(t)



the stochastic signal

If we have more than two detectors
we can cross-correlate the signals
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the noise Is expected to be uncorrelated
the correlated signal can be picked up by choosing an optimal filter Q(t)
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A few remarks on local dark matter density

Po — 0.4 GGV/CHIS

IS a measured value over the volume V > [O(102) pc|3

see reviews e.g. [Read (14)]; [de Salas, Widmark (20)]

currently no direct measurement of dark matter density in the solar system
but only constraints exist

< 4 From solar system ephemerides
/0//00 ~ 10 [Pitjev, Pitjeva (13)]

< 11 From geodetic satellite and LLR
,0/ po S 10 [Adler (08)]



In addition we have seen that there could be easily O(1)
density fluctuation in the wave DM halo




the probability of finding p/po > 5 is small (~ 1%)
but it happens quite often because there are many of such patches

consider e.qg. m~10-15 eV where the wavelength is ~AU scale
in the volume of V = (10 kpc)3 there are 1028 AU-sized patches

10 kpc

statistically speaking
there will be ~ 100 patches

In this volume with p > 60 po!

Npatches — (10 kpC/AU)S — 1028

P(p > 60pg) = e % ~1072°






