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What do we mean by inferring?

Definition of infer verb from the Oxford Learner's Dictionary of Academic English

® infer verb

OPAL
written

BrE /1n'f3:(r)/ ¢); NAME /1n'f3:r/ ¢

I 4+ Verb Forms

to reach an opinion or decide that something is true on the basis of information that is available
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What do we mean by inferring?

Definition of infer verb from the Oxford Learner's Dictionary of Academic English

® infer verb
written

BrE /1n'f3:(r)/ ¢{); NAME /1n'f3:1r/ 1¢{)

| 4+ Verb Forms

to reach ar{ opinionjor decide tha{ something)s true on the basis o Yhat is available

An opinion that has to be
quantified through the
instrument of probability and
statistics

A given " The data we
theoretical model have collected
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The Model All sheep are white
The data
The opinion The model is rejected
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The Model 1% of the sheep are black
F Out of 1 thousand  §
The data e A, Sheep 20 are black =
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Two approaches are used to quantify an opinion about a model given an
observation

- The Bayesian approach tries to answer the question:

Given our prior knowledge and the observed data, what is the probability that the
model is true?

- The Frequentist approach tries to answer the question:

If | repeat the experiment an infinite time, assuming the model is true, with which
frequency | would observe a value more extreme than the one actually observed?
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The Bayesian approach
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The Bayes theorem

- Marginalised probability

F(all) = / F (s ylT)dy

- Conditional probability

f(x,yll) = f(z|ly, I) - f(y|])

® / represents our prior knowledge

® f()is for a generic probability distribution (or mass) function
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The Bayes theorem

- Marginalised probability

F(all) = / F (s ylT)dy

- Conditional probability

f(x,yll) = f(z|ly, I) - f(y|])

® | represents our prior knowledge

® f()is for a generic probability distribution (or mass) function

10



Introduction to Statistical Inference ArQus School 2022 - Bergen, Norway

The Bayes theorem
- Marginalised probability LikeIiOOd Pror

F(all) = / F (s ylT)dy

- Conditional probability

f(x,yll) = f(z|ly, I) - f(y|])

Posterior L
Normalisation

® | represents our prior knowledge

® f()is for a generic probability distribution (or mass) function
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The Monty Hall problem

In two boxes there Is a goat and in the other a car

You have to choose one and only one box

12
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The Monty Hall problem

Imagine we randomly pick the first one, but without opening it

13
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The Monty Hall problem

Now the host of the game (who knows where the car is) shows us
the content of the third box, which does not contain the car

14
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The Monty Hall problem

S/He then give us the opportunity to change our box (n.1) with the
other (n. 2)

What would you do”” Would you accept the opportunity”?

15
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The Monty Hall problem

® [, The hypothesis “the car is in the i-th box”

16
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The Monty Hall problem

® [, The hypothesis “the car is in the i-th box”

® [/ The event “the host shows use the content of the third box”

17
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The Monty Hall problem

® [, The hypothesis “the car is in the i-th box”

® [/ The event “the host shows use the content of the third box”

® | Our prior knowledge

"3 boxes and 1 car” & “the host knows where the car I1s”

18
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The Monty Hall problem

® [, The hypothesis “the car is in the i-th box”

® [/ The event “the host shows use the content of the third box”

® | Our prior knowledge

"3 boxes and 1 car” & “the host knows where the car I1s”

—

Posterior f(Hz E, I)

19
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The Monty Hall problem

f(E|\Hy, I) f(H|T)

F(H|E, T) = — ..

f(E)
_ f(E|H2,I)f(H|I)
f(Ho|E,T) = FEID = ...
F(HS B T) = f(E|Hs, 1) f(Hs|I)

f(E|T)

20
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The Monty Hall problem

 f(EHL ) f(HI) 1/3
_ f(E|Ho, I)f(Ho|I) 1/3
_ f(E|H3,I)f(H3|I) 1/3

Priors === f(Hi|I) = f(Hy|I) = f(Hs|I) = %

21
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The Monty Hall problem

f(Hl‘Evl) — f(

B
F(H B, 1) = 1

E|Hs, I)f(H2|I) _

f(EIT)

f(E|Hs, 1) (Hs|T)

1/3

1/2
1/3

1/2
1/3

1/2

1
Normalisation == > f(E|H:, )f(H|I) = f(B|I) = 3

22
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f(E|Hy D) 1/2-1/3

The Monty Hall problem

D = B 12
(B DL 113

JURIE D ="""5@n — ~ 712~
 J(BHs D)D) 0-1/3

JED=""En— ~ 712

Likelihoods == f(EIH, )= f(E[H:T)=1  f(E|Hs ) =0

23
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The Monty Hall problem

_ FEHL DD 12013
- f(E|Hq, I)f(Ho|I)  1-1/3
_ J(E|Hs, Df(H|T) _ 0-1/3 _

If we want to win the ,
we should change the box!

24
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What if the TV-Show
The Monty Hall problem e
2/3 where the car is?
kS — Priors
“H H B 2/3
e L
1/2 —
O g ))
| observe” F ' PO
16
2/3 0
12 Likelihoods M1 My
13
1/6 Posteriors
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Another example: Covid-19 test

What'’s the probability that | am sick (S) ?

p(S|+) =7

20
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Another example: Covid-19 test

What'’s the probability that | am sick (S) ?

B P(+|S)P(S) - o
P3| +) = P(+|S)P(S)+ P(+|S)P(S) _— rrors
/ \
Probability of Probability of

True positive False positive

27
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Another example: Covid-19 test

What'’s the probability that | am sick (S) ?
P(+]5)P(S) -

S|+) = _ _ = Priors
P(51+) P(+|S)P(S) +P(+|S)P(S)/
/ \
Probability of Probability of
True positive False positive

Sensitivity = P(+|S)

Specificity = P(— | S)

28
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Another example: Covid-19 test

What'’s the probability that | am sick (S) ?

B 1-Sp. p(S)\
510 = (14552 7))

29
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Another example: Covid-19 test

What'’s the probability that | am sick (S) ?

1 — Sp. | p(S)
Se. p(S) Sp. = 97%

Comparison of Home Antigen Testing With Se . — 5 O %
RT-PCR and Viral Culture During the Course
of SARS-CoV-2 Infection

Victoria T. Chu, MD, MPH-2; Noah G. Schwartz, MD'2; Marisa A. P. Donnelly, PhD"2; et al

—1

p(S|+)=1{1

» Author Affiliations | Article Information
JAMA Intern Med. 2022;182(7):701-709. doi:10.1001/jamainternmed.2022.1827

@ COVID-19 Resource Center

Overall sensitivity of home antigen tests for detecting cases was 50% (95% Cl, 45%-55%)
(Figure 3), whereas specificity was 97% (95% Cl, 95%-98%). Sensitivity was higher for symp-
tomatic cases (53%; 95% Cl, 48%-57%) compared with asymptomatic cases (20%; 95% Cl,

30
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Another example: Covid-19 test

What'’s the probability that | am sick (S) ?

B 1-Sp. p(S)\
510 = (14552 )

Sp. = 97%
Se. = 50%

0.8 -

0.6 A

p(S| +)

0.4 -

0.2

0.0 1

0.0 0.2 0.4 0.6 0.8 10
p(S)
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Another example: Covid-19 test

What'’s the probability that | am sick (S) ?

1 —Sp. p(S)
p(S|+)= {1 '
Se. p(S) Sp. = 97%

| # Se. = 50%

—1

What’s instead the

Try to get the same
probability that | am plot but for a test
sick if the result is

negative?

whose Sp. is 98% and
Se. is 99%

0.2

0.0 1

0.0 0.2 0.4 0.6 0.8 10
p(S)
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Let’s go back to the “sheep” example

The Model 1% of the sheep are black =M

Out of 1 thousand
Thedata ————» :5/79 20 o ~_ -

3 .
L. e - v
. ',’ ‘\“ S : 2

The Opi NION s
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Let’s go back to the “sheep” example

The Model 1% of the sheep are black =M
Out of 1 thousand
sheep 20 are black

The data R, T Mgl ST ARSAR- A

The Opi NION s

34



Introduction to Statistical Inference ArQus School 2022 - Bergen, Norway

Let’s go back to the “sheep” example

p(M|D) =

Our prior knowledge:

- How much do you believe in your model before the
observation?

- Are there other models/hypotheses that might
explain the observation? How likely are they?

35



Introduction to Statistical Inference ArQus School 2022 - Bergen, Norway

Let’s go back to the “sheep” example

p(M|D) =

Our prior knowledge:

- We will assume for simplicity that there is only one
alternative model “2% of the sheep are black”

- Both models are equally probable

36
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Let’s go back to the “sheep” example

p(MID) = p(DIM)p(M) + p(DI M )p()

-, e Model
e Alternative Model
010 ] . ernatctive odade
b .00. :
o @ Try to reproduce this
[, o
= . o o plot and change the
AL 0.05 ° v values used in the
@ °. °. the model
b ° o
b o o
& .. .. .0
().0)) - 000ccoeee® °°Oooooooooo:300
0 10 20 30

Number of black sheep
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Let’s go back to the “sheep” example

p(M|D) =
1% of the sheep are black 2% of the sheep are black
p(D|M) = B(20 | p = 0.01, N = 10°) p(D|M) = B(20 | p = 0.02, N = 10°)

~ (.0013 ~ (.090

38
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Let’s go back to the “sheep” example

VD) — p(DIMp(M) oy

p(D|M)p(M) + p(D|M )p(M)

p(M|D) = 1 — p(M|D) ~ 98%

The alternative model is much more likely of
being true and the Bayesian approach let us
quantify this “likeliness”

39
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Let’s go back to the “sheep” example

The Model 1% of the sheep are black =M

Out of 1 thousand
T QU </ccp 20 2ro black.

The Opi A —.
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... but what if we do not know the priors of the models?

41
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... but what if we do not know the priors of the models?

p(M|D) p(D|M) p(M)

p(M|D) ~ p(DIND) * p(M)

Bayes factor BF Interpretation
> 100 Extreme evidence for M,
30 - 100 Very Strong evidence for M
Bayes Factor 10 - 30 Strong evidence for M
3 - 10 Moderate evidence for M,
1 - 3 Anecdotal evidence for M
1 No evidence
1/3 - 1 Anecdotal evidence for M,
What is the BF in our 1/10 - 1/3 Moderate.evidence for M »
exam ple 2 1/30 - 1/10 Strong evidence for M
1/100 - 1/30 Very Strong evidence for M>
< 1/100 Extreme evidence for M,

42
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The Frequentist approach

43
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- The Frequentist approach tries to answer the question:

If | repeat the experiment an infinite time, assuming the model is true, with
which frequency | would observe a value more extreme than the one actually
observed?

44
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- The Frequentist approach tries to answer the question:

If | repeat the experiment an infinite time, assuming the model is true, with
which frequency | would observe a value more extreme than the one actually
observed? s

The data “D” itself or a function of them known as the statistic

S = S(D)

45



Introduction to Statistical Inference ArQus School 2022 - Bergen, Norway

Let’s go back to the “sheep” example

We can use the number of sheep observed as statistics and ask ourselves:

If | repeat the observation an infinity of time, how frequently would | have observed 20 or
more sheep?

46
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Let’s go back to the “sheep” example

We can use the number of sheep observed as statistics and ask ourselves:

If | repeat the observation an infinity of time, how frequently would | have observed 20 or
more sheep?

e Model

0.10- " The answer is only 0.1% of
- i the time!
= . ,
0. 0.05- . S | o
: , Therefore the frequentist conclusion is
S that our model is excluded with a
R ' 99.9% confidence level.
0 10 20) 30

Number of black sheep
47
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Let’s go back to the “sheep” example

We can use the number of sheep observed as statistics and ask ourselves:

If | repeat the observation an infinity of time, how frequently would | have observed 20 or

more sheep?
P-VALUE

e Model

o1n: " The answer is only 0.1% of

’ the time!

PMF

0.05 - o e
’ . Therefore the frequentist conclusion is

. . that our model is excluded with a

0.00 1_e*° | 99.9% confidence level.
0 10 2() 30

Number of black sheep
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The P-VALUE is the frequency in which we would have observed
“something” more extreme assuming the null hypothesis to be true

p-value = p(x more extreme than x.,s|Hp)

49



Introduction to Statistical Inference ArQus School 2022 - Bergen, Norway

The P-VALUE is the frequency in which we would have observed
“something” more extreme assuming the null hypothesis to be true

p-value = p(x more extreme than x,,s|H

... but then, what are all these “sigmas”™?

PKS 1413+135: Bright GeV y-ray Flares with Hard-spectrum and Hints for First Detection of TeV

We therefore consider emission from the Sgr dSph as an alternative origin for the cocoon. In order to test this possibility, we v-rays from a Compact Symmetric Object
fit the y-ray emission observed by Fermi-LAT over a region of interest (ROI) containing the cocoon via template analysis. In our j : i i . |
baseline model these templates include only known point sources and sources of Galactic diffuse y-ray emission. We contrast YING-YING GAN," JIN ZHANGT,” SU YA0,” HAI-MING ZHANG,” YUN-FENG LIANG,” AND EN-WEI LiANG

the baseline with a baseline + Sgr dSph model that invokes these same templates plus an additional template constructed to be
spatially coincident with the bright stars of the Sgr dSph (Extended Data (E.D.) Figure 1 and S.I. Figure 1); full details of the
fitting procedure are provided in Methods and S.I. sec. 3. Using the best motivated choice of templates, we find that the baseline
+ Sgr dSph model is preferred at 8.1@ significance over the baseline model. We also repeat the analysis for a wide range of
alternative templates for both Galactic diffuse emission and for the Sgr dSph (Table 1) and obtain > 5o detections for all
combinations but one. Moreover, even this is an extremely conservative estimate, because our baseline model uses a structured
template for the FBs that absorbs some of the signal that is spatially coincident with the Sgr dSph into a structure of unknown
origin. If we follow the method recommended by the Fermi collaboration [2] and use a flat FB template in our analysis, the
significance of our detection of the Sgr dSph is always > 146. Despite this, for the remainder of our analysis we follow the
most conservative choice by using the structured template in our baseline model. In Methods, we also show that our analysis
passes a series of validation tests: the residuals between our best-fitting model and the data are consistent with photon counting
statistics (E.D. Figure 2 and Figure 3), our pipeline reliably recovers synthetic signals superimposed on a realistic background
(E.D. Figure 4), fits using a template tracing the stars of the Sgr dSph yield significantly better results than fits using purely
geometric templates (S.I. Table 1), and if we artificially rotate the Sgr dSph template on the sky, the best-fitting position angle
is very close to the actual one (E.D. Figure 5). By contrast, if we displace the Sgr dSph template, we find moderate (4.5

significance) evidence that the best-fitting position is ~ 4° from the true position, in a direction very closely aligned with the outbursts after MJD 58500. The confidence level of the flux variability is much higher than 5@, and
dwarf galaxy’s direction of travel (E.D. Figure 5); this plausibly represents a small, but real and expected (as explained below) the flux at 10 GeV varies ~ 3 orders of magnitude. The flux variation is accompanied by the clearly

e b S —

1School of Physics, Beijing Institute of Technology, Beijing 100081, People’s Republic of China; j.zhang@bit.edu.cn
2 Max-Planck-Institute fiir Radioastronomie, Auf dem Hiigel 69, 53121 Bonn, Germany
3School of Astronomy and Space Science, Nanjing University, Nanjing 210023, People’s Republic of China

4 Guangzi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangzi University, Nanning 530004,
People’s Republic of China

ABSTRACT

PKS 1413+135, a typical compact symmetric object (CSO) with a two-side pc-scale structure in its
miniature radio morphology, is spatially associated with the Fermi-LAT source 4FGL J1416.1+1320
and recently announced to be detected in the TeV ~-ray band with the MAGIC telescopes. We
present the analysis of its X-ray and GeV ~-ray observations obtained with Swift-XRT, XMM-Newton,
Chandra, and Fermi-LAT for revealing its high energy radiation physics. No significant variation
trend is observed in the X-ray band. Its GeV ~v-ray light curve derived from the Fermi-LAT 13.5-
year observations shows that it is in a low -ray flux stage before MJD 58500 and experiences violent

ro-ph.HE] 19 Jun 2022
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The P-VALUE is the frequency in which we would have observed
“something” more extreme assuming the null hypothesis to be true

ABSTRACT

It is usually thought that long-duration gamma-ray bursts (GRBs) are associated with massive star
core collapse whereas short-duration GRBs are associated with mergers of compact stellar binaries.
The discovery of a kilonova associated with a nearby (350 Mpc) long-duration GRB- GRB 211211A,
however, indicates that the progenitor of this long-duration GRB is a compact object merger. Here we
report the Fermi-LAT detection of gamma-ray (> 100 MeV) afterglow emission from GRB 211211A,
which lasts ~ 20000 s after the burst, the longest event for conventional short-duration GRBs ever
detected. We suggest that this gamma-ray emission results mainly from afterglow synchrotron emission.
The soft spectrum of GeV emission may arise from a limited maximum synchrotron energy of only a
few hundreds of MeV at ~ 20000 s. The usually long duration of the GeV emission could be due to
the proximity of this GRB and the long deceleration time of the GRB jet that is expanding in a low
density cricumburst medium, consistent with the compact stellar merger scenario.

p-value = p(x more extreme than x,,s|H

... but then, what are all these “sigmas”™?

Keywords: Gamma-ray bursts (629) — High energy astrophysics (739)

We therefore consider emission from the Sgr dSph as an alternative origin for the cocoon. In order to test this possibility, we
fit the y-ray emission observed by Fermi-LAT over a region of interest (ROI) containing the cocoon via template analysis. In our
baseline model these templates include only known point sources and sources of Galactic diffuse y-ray emission. We contrast
the baseline with a baseline + Sgr dSph model that invokes these same templates plus an additional template constructed to be
spatially coincident with the bright stars of the Sgr dSph (Extended Data (E.D.) Figure 1 and S.I. Figure 1); full details of the
fitting procedure are provided in Methods and S.I. sec. 3. Using the best motivated choice of templates, we find that the baseline
+ Sgr dSph model is preferred at 8.1@ significance over the baseline model. We also repeat the analysis for a wide range of
alternative templates for both Galactic diffuse emission and for the Sgr dSph (Table 1) and obtain > 5o detections for all
combinations but one. Moreover, even this is an extremely conservative estimate, because our baseline model uses a structured
template for the FBs that absorbs some of the signal that is spatially coincident with the Sgr dSph into a structure of unknown
origin. If we follow the method recommended by the Fermi collaboration [2] and use a flat FB template in our analysis, the
significance of our detection of the Sgr dSph is always > 146. Despite this, for the remainder of our analysis we follow the
most conservative choice by using the structured template in our baseline model. In Methods, we also show that our analysis
passes a series of validation tests: the residuals between our best-fitting model and the data are consistent with photon counting
statistics (E.D. Figure 2 and Figure 3), our pipeline reliably recovers synthetic signals superimposed on a realistic background
(E.D. Figure 4), fits using a template tracing the stars of the Sgr dSph yield significantly better results than fits using purely
geometric templates (S.I. Table 1), and if we artificially rotate the Sgr dSph template on the sky, the best-fitting position angle
is very close to the actual one (E.D. Figure 5). By contrast, if we displace the Sgr dSph template, we find moderate (4.5
significance) evidence that the best-fitting position is ~ 4° from the true position, in a direction very closely aligned with the
dwarf galaxy’s direction of travel (E.D. Figure 5); this plausibly represents a small, but real and expected (as explained below)
physical offset between the stars and the y-ray emission.

ro-ph.HE] 19 Jun 2022

)
PKS 1413-4+135: Bright (

YING-YING GaN,! JIN

1School of Physics, Beij

2 Maz-Pla
3School of Astrono
4 Guangzi Key Laboratory for Rela

PKS 1413+135, a t
miniature radio mor

Chandra, and Fermi
trend is observed in
year observations sho
outbursts after MJD
the flux at 10 GeV
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1. INTRODUCTION

Gamma-ray bursts (GRBs) are usually divided into
two populations (Kouveliotou et al. 1993; Norris et al.
1984): long GRBs that originate from the core-
collapse of massive stars (Galama et al. 1998) and short
GRBs formed in the merger of two compact objects
(Abbott et al. 2017). While it is common to divide
the two populations at a duration of 2s for the prompt
keV /MeV emission, classification based on duration only
does not always correctly point to the progenitor. Grow-
ing observations (Ahumada et al. 2021; Gal-Yam et al.
2006; Gehrels et al. 2006; Zhang et al. 2021) have shown
that multiple criteria (such as supernova/kilonova asso-
ciations and host galaxy properties) rather than burst
duration only are needed to classify GRBs physically.

GRB 211211A triggered the Burst Alert Telescope
(Barthelmy et al. 2005) onboard The Neil Gehrels Swift
Observatory at 13:09:59 UT (D’Ai et al. 2021), the
Gamma-ray Burst Monitor (Meegan et al. 2009) on-
board The Fermi Gamma-Ray Space Telescope at
13:09:59.651 UT (Mangan et al. 2021) and High energy
X-ray Telescope onboard Insight-HXMT (Xiao et al.
2022) at 13:09:59 UT on 11 December 2021. The
burst is characterized by a spiky main emission phase
lasting ~13 seconds, and a longer, weaker extended
emission phase lasting ~55 seconds (Yang et al. 2022).
The prompt emission is suggested to be produced by

the fast-cooling synchrotron emission (Gompertz et al.
2022). The discovery of a kilonova associated with
this GRB indicates clearly that the progenitor is a
compact object merger (Rastinejad et al. 2022). The
event fluence (10-1000 keV) of the prompt emission is
(5.4 0.01) x 10~* erg cm~2, making this GRB an ex-
ceptionally bright event. The host galaxy redshift of
GRB 211211A is z = 0.0763 £ 0.0002 (corresponding to
a distance of ~350 Mpc (Rastinejad et al. 2022)). At
350 Mpc, GRB 211211A is one of the closet GRBs, only
a bit further than GRB 170817A, which is associated
with the gravitational wave (GW)-detected binary neu-
tron star (BNS) merger GW170817. For GRB 170817A,
no GeV afterglow was detected by the LAT on timescales
of minutes, hours, or days after the LIGO/Virgo detec-
tion (Ajello et al. 2018).

As the angle from the Fermi-LAT boresight at the
GBM trigger time of GRB 211211A is 106.5 degrees
(Mangan et al. 2021), LAT cannot place constraints on
the existence of high-energy (£ > 100 MeV) emission
associated with the prompt GRB emission. We focus in-
stead on constraining high-energy emission on the longer
timescale. We analyze the late-time Fermi-LAT data
when the GRB enters the field-of-view (FOV) of Fermi-
LAT. We detect a transient source with a significance of
TSmax =~ 51, corresponding to a detection significance
over 6@. The result of the data analysis is shown in §2
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The P-VALUE is the frequency in which we would have observed
“something” more extreme assuming the null hypothesis to be true

p-value = p(x more extreme than x.,s|Hp)

.. but then, what are all these “sigmas”™?

It is common to express such probability in multiples S of the standard deviations of a
normal distribution via the inverse error function

Here the (in-)famous number
of “sigma”

S =+v2erf ! (1 — p-value)| —
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Let’s go back to the “sheep” example

The Model 1% of the sheep are black

Out of 1 thousand
T QU </ccp 20 2ro black.

The model is excluded at 3.2

The opi NION s |
sigma
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Issues of the frequentist approach:

It does not take into account the alternative hypothesis that might explain
the outcome of an event

0.40 1 Distiribution under

null hypothesis Conclusion:
- Observedvalue The null hypothesis is rejected with
a 2 sigma significance

0.35 -
0.30 -
0.25 -

.-

0O 0.20-

o
0.15

0.101

0.05-

0.00

4 _3 ) —1 0 1 2 3 4
Statistic
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Issues of the frequentist approach:

It does not take into account the alternative hypothesis that might explain
the outcome of an event

0.40 1 Distiribution under

null hypothesis ConCIUSIOn
observed value The null hypothesis is rejected with
a 2 sigma significance

S 0,20
But what about the alternative
hypothesis?

0.15-

0.101

0.05-

0.00

—4 _3 ) 1 0 1 2 3 4
Statistic
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Issues of the frequentist approach:

It does not take into account the alternative hypothesis that might explain
the outcome of an event

Distiribution under The Observed Value Of 2 |S
null hypothesis . .
05" Distiribution under aCtua”y maore pIaUS|b|e belng the
“ alternative hypothesis .
o beerved value outcome of the null hypothesis
5 0% By rejecting the null hypothesis
- we would have done the so-called
type I error
0.1-
o This Is why a value of sigma bigger than 3

" - ; 5 i z or even 5 is required for making a claim!
Statistic
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False negative: Cutoff

- _ Type-Il errory
Probability of accepting ‘ {

HO when H1 is true . /8 A
‘ 7 1 — (f = Specificity =  e————

Confidence level

105

Distribution of the S assuming H1 is true

Power of the test

1l — «

1 — ,8 — Sensitivity =
Distribution of the S assuming HO is true

;*—-‘

Unit of measure of the test

A

False positive: { Type-l error ‘
Probability of rejecting
HO when HO is true
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Issues of the frequentist approach:

It does not take into account the alternative hypothesis that might explain
the outcome of an event

0.40 1 Distiribution under

null hypothesis

0.351 observed value

0.30

So... with a significance of 4 we
should be safe?

0.25 1
(-
O 0.20+
o

0.15

0.10;

0.05-

0.00 1

Statistic
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Issues of the frequentist approach:

It does not take into account the alternative hypothesis that might explain
the outcome of an event

0.40 1 Distiribution under

null hypothesis

0.351 Distiribution under

" alternative hypothesis

—— observed value SO . Wlth d SlgnIfICanCe Of 4 we
should be safe?

0.30-
0.25-

.

O 0.20-

o

0.15;

The value of 4 is unlikely to be the
outcome also of the alternative
hypothesis, thus again we could
be doing a type I error

0.10;

0.05-

0.00

Statistic
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Issues of the frequentist approach:

It does not take into account the alternative hypothesis that might explain
the outcome of an event

The ideal statistic is the one that makes
you reject a hypothesis that is false!

0.40 | ¥ | Distiribution undgg 0=
o g null hypothegig*®"
0-357 e Y Distiriby®f under
. "W alterg#tive hypothesis 0.4
0.30 Ve ol
R, — aserved value
;i_ — ’.‘ . . .
0.25 e p - 24 Distiribution under
> il 0-31 null hypothesis
0 0.20] & Distiribution under
& & alternative hypothesis
0.21
0.15- o\ —— observed value
/ W
0.10 S ™
e 0.1
0.05- o :
0.00 1 0.01
—4 —2 0 2 4 —4 —2 0 2 4 6
Statistic Statistic

60



Introduction to Statistical Inference ArQus School 2022 - Bergen, Norway

Issues of the frequentist approach:

Distiribution under
null hypothesis

The probability of rejecting a
hypothesis that is false is called
the “power” of the statistic

Distiribution under
alternative hypothesis

—— observed value

Your statistic must be
POWERFUL!

Distiribution under
null hypothesis

Distiribution under
" alternative hypothesis

—— observed value

6 1 Statistic
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Issues of the frequentist approach:

Pages in category "Statistical tests"

Arbitrariness In the choice
of the statistic

A
* ABX test
e Analysis of similarities
e Analysis of variance
* Anderson-Darling test

B
o Bartlett's test
e Binomial test
« Breusch—Godfrey test
« Breusch—Pagan test
e Brown—Forsythe test

C
e Chauvenet's criterion
e Checking whether a coin is fair
« Closed testing procedure
e Cochran's C test
e Cochran's Q test
« Continuity correction
e Cramér—von Mises criterion

e Cuzick—Edwards test

D
« Dixon's Q test
« Duncan's new multiple range test
e Dunnett's test
e Durbin test

E
e Exact test

F
o F-test
» F-test of equality of variances
« False positive rate
e Fay and Wu's H
» Fisher's method
e Friedman test

G
« Goodman and Kruskal's gamma
o Glejser test
« Goldfeld—Quandt test
* GRIM test
« Grubbs's test

H
« Hartley's test

62

The following 104 pages are in this category, out of 104 total. This list may not reflect recent changes (learn more).

» Hoeffding's independence test
* Holm—Bonferroni method

e Hosmer-Lemeshow test

o Information matrix test

» [tem-total correlation

J

e Jonckheere's trend test

K
» Kaiser-Meyer—Olkin test
« Kendall rank correlation coefficient
* Kolmogorov—-Smirnov test
o Kruskal-Wallis one-way analysis of variance
o Kuiper's test

L
* Lepage test
e Levene's test
e Lexis ratio
e Likelihood-ratio test
* Wilks' theorem
e | ocation test
e Location testing for Gaussian scale mixture distributions

e Logrank test

M
e Mann-Whitney U test
e Mantel test
» Mauchly's sphericity test
e McNemar's test
e Median test
e Multinomial test

N
« Nemenyi test
e Neyman—Pearson lemma
* Normality test

(0]
e Omnibus test
® One- and two-tailed tests
* One-way analysis of variance

P
e P-rep
e Page's trend test
o Paired data

ArQus School 2022 - Bergen, Norway

https://en.wikipedia.org/wiki/Category:Statistical_tests

e Park test
e Permutation test
e Phillips—Perron test

Q

o Q-statistic
« QST (genetics)

R
* Ramsey RESET test
 Randomness test

S
e Sargan—Hansen test
« Scheirer-Ray—Hare test
e Score test
e Separation test
« Sequential probability ratio test
* Shapiro—-Francia test
e Shapiro-Wilk test
« Siegel-Tukey test
 Sign test
e Sobel test
e Spearman's rank correlation coefficient
e Squared ranks test
e Structural break test
e Student's t-test
« Surrogate data testing

T
e Tajima's D
 Test statistic
e Tukey—Duckworth test
» Tukey's range test
» Tukey's test of additivity

Vv
e Van der Waerden test
« Vuong's closeness test

w
« Wald test
o Wald-Wolfowitz runs test
* Welch's t-test
* White test
» Wilcoxon signed-rank test

e Durbin-Wu—-Hausman test

Z
e Z-test
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Thankfully the Neyman-Pearson Lemma tells us that the most “powerful” statistic is
the likelihood ratio:

Parameter of the Likelihood

null hypothesis e
£(0]Dops)
: | Dops )

Best fit or value <
that maximises
the likelihood

Observed data
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Example:

2400 ) 1 ) ' ' ) L ) ! I ) L\l ) L ] L) | 1 ) l ) ) ) ) I )

Selected diphoton sample

L Data 2011 and 2012
Sig + Bkg inclusive fit (mH = 126.5 GeV)

--------- 4th order polynomial

Events / GeV
N
o
o
o

This is the plot that led ATLAS to claim the
discovery of the HIGGS.

Let’s figure out how they were able to make
such a claim with a Toy Model and with the
theory we have learned so far

\s=7 TeV,J Ldt=4.81b"

\s =8 TeV,_[ Ldt=5.91b"

llllllllllllllllllIlllllllllllllllllll

lllIll Illlllll

Data - Bkg
o
—— T
S
»
+
——
-
+

IIIII'

L 1 A L l L 1 1 1 l A 1 'l L l L 1 1 1 I A L A L I L 1 1 [
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Example: Yy =mzr+q+a-G(xz;u=50,0=2,)

2400 ——— L L L L Z/ ™~ thfx:ll':::: Z/,7 ()- — 77())

Selected diphoton sample

® Data 2011 and 2012
Sig + Bkg inclusive fit (mwI = 126.5 GeV)

--------- 4th order polynomial

800

Toy Model

400 -

Events / GeV
N
o
o
o

\s =7 Tev,j Ldt=4.81fb"

\s = 8 TeV,j Ldt=5.91b"

200 A

Ill llllllll Illlllllll|lll|lll|lll|lll|lll|lll|lll

Data - Bkg
o
——
-+ T
»
+
+
-
+
111

ldlll'

Null hypothesis HO
a=0

b —
lllllllll

| T S ST ST SR NN S SR SR SN NN S S SR S R S S
100 110 120 130 140 150

P

fo

®
S5
o

Alternative hyp. H1
a=>5
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Example: Y =mzx+q+a-G(x;u=50,0=8)
Likelihood y~N(p=y,o="70)
L(a) = p(Z, yla) = HP(%;,?J?:W)

_l<y§(a)—yz‘>2 >
p(x;, yila) o< e 2 .

le—48

Null hypothesis HO
a=0

Alternative hyp. H1
a=>5

o HON W e T O N

2 00
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Example:

Likelihood
L(a) = p(Z, yla) = Hp(%,yim)

1 yfb-(a)—y7;>2
p(zi,yila) o< e 2< )

L(a = 0) —7
S fla=a) 3.9 0

How do we interpret this value of
the statistic?

6/

y/:m$+q—|—a-g(az;u:50,0=8)

y~N(u=1y,o="170)

Null hypothesis HO
a=0

Alternative hyp. H1
a=>5
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Example: Yy =mzr+q+a-G(xz;u=50,0=2,)

140 -
Distiribution under y~Np=1,0="70)
120 - null hypothesis: a=0

Distiribution under
100 - alternative hypothesis: a=5

—— observed value

800

600 |

400 -

200 A

Observed: 3.52- 10"

Null hypothesis HO
a=0

10714 10719 102 10-° 10-# 10 107

Alternative hyp. H1
a=>5

o
VR
&
|
Q>
N—"
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Example:
o e Distiribution under Such a value of the statistic is
20- null hypothesis: a=0 more luckily to have been
Distiribution under ]
wo] 0 alternative hypothesis: a=5 produced by the alternative
| — observed value hypothesis rather than by the null
hypothesis!

Observed: 3.52- 10"
Therefore, we can exclude the null

hypothesis and be quite sure of
avoiding a type | error.

But with what confidence?

69



Introduction to Statistical Inference ArQus School 2022 - Bergen, Norway

Example:
o Distiribution under Taking the —2 - 10g<8)
] N
o - null hypothesis: a=0 PRI :
Nietitibution under the blu distribution becomes a
wo| TN alternative hypothesis: a=5 X2 distribution

—— observed value

Observed: 3.52- 10"

This 1s known as the
Wilks’ theorem

o
N\
Q
|
Q
N—"
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Example:
120 1 m— Distiribution under TaKing th_e _2 lOg(S)
null hypothesis: a=0 the blu distribution becomes a
100 - Distiribution under 2 i :
"5 alternative hypothesis: a=5 X~ distribution

observed value

This 1s known as the
Wilks’ theorem

Observed: 29.7

20 A

—2 - log(S)
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Example:
b d -
120 - Distiribution under _ 2 ~ = 1038
“ null hypothesis: a=0 p-value = /29 . dz x*(z) =5 - 10
ol — Distiribution under
alternative hypothesis: a=5

" —— observed value Converting the p-value to a

. “Sigma”

o Observed: 29.7 V2-erf (1 -5-10"%) ~ 5.45
20 A

0- We are above the 5 sigmas, we

10 15 20 25 30 35 40

can therefore claim a discovery!
—2 - log(S)

/2
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Example:
b d -
120 - Distiribution under _ 2 ~5.10"°
“ null hypothesis: a=0 p-value = /29 . dz x*(x) =510
100 - — Distiribution under
alternative hypothesis: a=5

0 —— observed value Converting the p-value to a

o “Sigma”

o Observed: 29.7 V2-erf (1 -5-10"%) ~ 5.45
20

. -u—_-.-l-l-l-l-l—q_ Notice that /29.7 ~ 5.45

10 15 20 25 30 35 40

—2 - log(S) Why?

/3
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Recap:
1. The Bayesian approach allows us to quantify our “opinion” on a given model from the
observed data using the rules of probability theory

Pros: Alternative hypotheses are taken into account. No need to define a statistic
and to know its distribution.

Cons: One needs a prior distribution.

2. The frequentist approach makes us exclude a model with given confidence by looking
at infinity repetitions of the experiments in which the model is assumed to be true

Pros: No need for priors

Cons: Choice of the statistic is arbitrary. Alternative hypothesis not taken into
account. Type | and Il errors.
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DID THE SUN JUST EXPLODE?

(ITS NIGHT; 50 WERE NOT SURE.)

THIS NEUTRINO DETECTOR MERSURES
WHETHER THE SUN HAS GONE NOVA.

( THEN, TROWS TWO DICE. IF THEY

BOTH COME UP SIX, IT UES TO US.
OTHERWISE,, IT TELLS THE. TRUIH.
LETS TRY.

DETECTOR! HAS THE

) = Z
Y,
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Statistical inference
applied In gamma-ray
astronomy
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23°00°

-4 EBL-corrected

102

103
Energy (GeV)

Fig.2|Spectrumabove 0.2 TeV averaged over the periodbetweenT,+62s
and T, + 2,454 sfor GRB190114C. Spectral-energy distributions for the
spectrumobserved by MAGIC (grey opencircles) and theintrinsic spectrum
corrected for EBL attenuation® (bluefilled circles). The errors on the flux
correspond to one standard deviation. The upper limits at 95% confidence level
are shown for thefirst non-significant bin at high energies. Alsoshownisthe
best-fit modelfor theintrinsic spectrum (black curve) when assuming a power-
law function. The grey solid curve for the observed spectrumis obtained by
convolving this curve with the effect of EBL attenuation. The grey dashed curve
is the forward-folding fit to the observed spectrum with a power-law function
(Methods).

22°30°
E o
L
2 800F
5 - Time = 0.32 h
Z 700
i N, =895 N =17.6+1.9
600 |— off
5 Ny = 877.4 + 30.0
00 Significance (Li&Ma) = 51.46
400 | :
3005—5
C +-
200 — !
C
1001
Oy 0.1 0.2 03 0.4

0% [ deg® |
vertical line represents the value of the cut on 6. This defines the signal region,
where the number of events coming from the source (N,,) and from the
background (N,) are computed. The errors for ‘on’ events are derived from

Poissonianstatistics. From N,,and N,¢, the number of excess events (N.,) is
computed. The significanceis calculated using the Li & Ma method*.

R RREEEEEEECEE————m—mw
/8

Extended DataFig. 2| Significance of the y-ray signal between T, + 62sand
T,+1,227sfor GRB190114C. Distribution of the squared angular distance, 67,
for the MAGIC data (points) and background events (grey shaded area). 6%is
defined as the squared angular distance between the nominal position of the
source andthereconstructed arrival directionofthe events. The dashed
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These are the typical plots shown in a scientific

the product of statistical analysis.

10710 F
' Is “Li&Ma”
How do we interpret them? What is “Li&Ma”?
10-11 E N . £ 800F
= <> Observed : - Time =0.32 h
- 4 EBL-corrected < 700
. . I N,, =895 N =17.6+1.9
102 103 600 off
Energy (GeV) - N, =877.4 + 30.0
. . 500 :_ . T .

Fig.2|Spectrumabove 0.2 TeV averaged over the period between T, + 62 s C Significance (Li&Ma) = 51.4c

and T, + 2,454 sfor GRB190114C. Spectral-energy distributions for the 400 - !

spectrumobserved by MAGIC (grey opencircles) and theintrinsic spectrum C

corrected for EBL attenuation? (blue filled circles). The errors on the flux 300 | :

correspond to one standard deviation. The upper limits at 95% confidence level 200 -+

are shownfor the first non-significant bin at high energies. Alsoshownis the - +

best-fit modelfor theintrinsic spectrum (black curve) when assuming a power- 100 = 5

law function. The grey solid curve for the observed spectrumis obtained by - ++++

convolving this curve with the effect of EBL attenuation. The grey dashed curve S ==

: e . . 0 0.1 0.2 0.3 0.4

is the forward-folding fit to the observed spectrum with a power-law function ) A

(Methods). 6° [ deg” ]
Extended DataFig. 2| Significance of the y-ray signal between T, + 62sand vertical line represents the value of the cut on 6. This defines the signal region,
T,+1,227sfor GRB190114C. Distribution of the squared angular distance, 67, where the number of events coming from the source (N,,) and from the

— for the MAGIC data (points) and background events (grey shaded area). 6%is background (N,) are computed. The errors for ‘on’ events are derived from

defined as the squared angular distance between the nominal position of the Poissonian statistics. FromN,,and N, ¢ the number of excess events (N,,) is
source andthereconstructed arrival direction of the events. The dashed computed. The significanceis calculated using the Li & Ma method*.
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publication in gamma-ray astronomy and are all
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inference analysis

o >
Raw images Events Expected y-ray ~ Observed Intrinsic
Yesigars counts flux flux

e Energy, direction

e Energy, direction, ...
e Energy, direction, ...
| * Energy, direction, ...
e Energy, direction, ... 4 4 4
e Energy, direction, ...
L
L

Background —Exposure IRF LP Model g

arameters
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inference analysis

® >
Raw images Events Expected y-ray — Observed o  Intrinsic g
. counts flux % flux &
. e Energy, direction, ... . " .
e Energy, direction, ... ‘
e Energy, direction, ... S @ / < ‘
| * Energy, direction, ... '
e Energy, direction, ... 4 4 4 %
e Energy, direction, ... -
Background —Exposure IRE Model ¥, )
. parameterstg

We will skip the first and last part (being too technical and too instrument
dependent) and focus on the remaining part:

given a list of events how do we reconstruct the flux and with which
confidence can we claim that there is indeed a flux of gamma-ray?
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Events

Energy, direction,
Energy, direction,
Energy, direction,

Energy, direction,
Energy, direction,

Energy, direction,

Expected vy-ray }

Observed

counts

$r@

xXposure

Background | |
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Given your event list what’s the
expected number of gamma-ray?

In (4] from astropy.io import fits
from astropy.table import Table
In (5] name file = "run 05029747 DL3.fits"
Table.read(name file ,hdu=1)
out[51: Table length=6310
EVENT_ID TIME RA
s deg
int64 float64 float32
42  333778849.5267153 444.21463
67 333778849.61315054  443.5247
80  333778849.6690142 443.76956
116  333778849.7778549 443.71518
179 333778849.9826064 443.64136
198 333778850.0339344 444.84238
570 333780036.17792755 443.99866
599 333780036.2743846 444.22705
622 333780036.33778954 444.08524
660 333780036.47105366 443.41534
675 333780036.5179095 443.55164
924  333780037.3755159 444.85886
963 333780037.52476007 444.8693

DEC

deg
float32
23.44914
22.725792
22.451006
21.985115
22.041315
22.175398

22.431725
22.348415
22.571606
21.67344
22.772985
22.116222
21.290916

ENERGY
TeV

float32
0.08397394
0.10596932
0.19733498
1.0020943
0.10316629

0.118843034

0.14909887
0.19341666
0.07879259

0.2096362
0.17672835

0.123453744

0.13630114
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Events Expected y-ray ¥ Observed

counts flux

e Energy, direction, ...
e Energy, direction, ...
e Energy, direction, ...

* Energy, direction, ... A
e Energy, direction, ...

e Energy, direction, ...
L J

Background Xposure

We have 6310 events (in a given temporal,
energetic, and spatial window). Does that
mean that the gamma-ray flux is 63107

Consider this event at 1 TeV. Is it a signal

event (a gamma-ray) or a background

event (a muon, proton, etc...)?
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In [4]:

In [5]:

Out[5]:

from astropy.io import fits
from astropy.table import Table

name file = "run 05029747 DL3.fits"

Table.read(name file

Table length=6310

EVENT_ID

int64
42

67

80
116
179
198

570
599
622
660
675
924
963

TIME

3

float64
333778849.5267153
333778849.61315054
333778849.6690142
333778849.7778549
333778849.9826064
333778850.0339344

333780036.17792755
333780036.2743846
333780036.33778954
333780036.47105366
333780036.5179095
333780037.3755159
333780037.52476007

,hdu=1)

RA

deg
float32
444.21463
443.5247
443.76956
443.71518
443.64136
44484238

443.99866
444.22705
444.08524
443.41534
443.55164
444.85886

444.8693

DEC

deg
float32
23.44914
22.725792
22.451006
21.985115
22.041315
22.175398

22.431725
22.348415
22.571606
21.67344
22.772985
22.116222
21.290916

Given your event list what’s the
expected number of gamma-ray?

ENERGY

TeV

float32
0.08397394
0.10596932
0.19733498
1.0020943
0.10316629
0.118843034

0.14909887
0.19341666
0.07879259
0.2096362
0.17672835
0.123453744
0.13630114
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The “ingredients”

The flux
number N, of expected photons per unit energy (E), time (t), and area (A)
. 4N, (E,t,h)
PELR) = = IETAdr

— Expected signal events “s”
EXpeCted bac kg round events “b Taking into account the exposure of the observation

e can be assumed to be known given by the energetic (E), temporal (t) and solid angle () range (hereafter denote by A) in

e can be estimated from an OFE measurement which the events have been collected we have

(see next S|ide) g — / P (E A ,t)dE df dt
A

Total number of observed events “on source” . ,
Total number of observed events “off source

s+ b Non (s bNOFF B
| NO)N' e+t Norr ~ P(Norr|b) = e’

NON ~ P(NON‘S—FI?) — N '
OFF-
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On/0Off measurement

Non

T

On measurement

(S + Ozb)'N‘m o~ (s+ab)
Non !

Nofs

T

Signal event

. Background event

Off measurement

X

bNos s

—b

e

Noff!

In an On/Off experiment:

* a background-control (Off) region, which is supposedly void of any signal, is defined to estimate
the background rate (b)

* the On source measurement instead provides an estimate of the signal rate (s) plus b, with the
latter term supposed to be equal to that in the Off region.

The following variables are therefore introduced:

/

variable | description property
N,, number of events in the On region measured
Noss number of events in the Off region measured
a exposure in the On region over the one in the Off regions measured
b expected rate of occurrences of background events in the Off regions | unknown
S expected rate of occurrences of signal events in the On region unknown

| Ng number of signal events in the On region unknown -

i.i’vrolbability mass function of obse;vi ff ]
 Likelihood function of the signal (s) and background (b) rate |

—————— I —

l

= p(Non | s, ab) 'p(NOff | b) :p(NomNOff | s,b; )
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On/0Off measurement Signal estimation in the frequentist approach:

- - - _ (S + Ofb)Non —(s+ab) bNOff —b
Likelihood function: P(Non, Nofr | 8,0;0) = p(Nop | s,ab) - p(Nosr | b) = N e - Noff!e
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On/0Off measurement Signal estimation in the frequentist approach:

s : b)Non pNos s
Likelihood function: P(Non, Nofr | 8,0;0) = p(Nop | s,ab) - p(Nosr | b) = (s + ab) e~ (stab) . e "

N,y,! Ny s!
value of b that maximizes the

- : P(Non, Noss | 5,b=15; a) likelihood for a given s
lih ratio: A(S) =
Likelihood ratio (s) o(Now-Nogs [5=Non —aNurr . b=Norr: )

- N2+ /N2 +4(1+1/a)sNys¢
B 2(1+ )
N = Nop+ Nosr —s(1+1/a)
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On/0Off measurement Signal estimation in the frequentist approach:

s : b)Non pNos s
Likelihood function: P(Non, Nofr | 8,0;0) = p(Nop | s,ab) - p(Nosr | b) = (s + ab) e~ (stab) . e "

N,y,! Ny s!
value of b that maximizes the

- : P(Non, Noss | 5,b=15; a) likelihood for a given s
lih ratio: A(S) =
Likelihood ratio (s) o(Now-Nogs [5=Non —aNurr . b=Norr: )

- N2+ /N2 +4(1+1/a)sNys¢

2(1+ )
l N = Nop + Noss —s(1+1/a)

Non No 7
—2log A(s) = 2 N(mlog( A) +N0fflog( Aff) + s+ (1 4+ a)b— Nyop — Noyy
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On/0Off measurement Signal estimation in the frequentist approach:

_ Non No 7 |
_QIOg)\(S):Q N()nlog( A>+N0fflog< Aff> + 8"‘(1‘|‘04)b_N0n_Noff
i s + ab b ]
Example with: 6{ — log-likelihood
NOn — 57 — True value of signal
Noff =85 &

ol =0.5

which have been produced from
a Poissonian sampling with s=20

log likelihood

and b=90: 2 -
b)Y Non
NON -~ P(NON|S_|_b) _ (S_|_ ) 6—(S—|—b) 1 -
Non'!
pNorr ’ 0 10 20 30 40
Norp ~ 7)(]VOFFV?) — € signal

Norp!
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On/0Off measurement Signal estimation in the frequentist approach:

' Non N, : '
—2log A(s) = 2 N(mlog( A>+N0fflog< Aff> + s+ (1+a)b— Ny — Nogy
I s+ ab b _

Our statistic Is 61 — log-likelihood

—2log A(s = 20) ~ 0.38 N s=20

Which is an expected value for a
chi-squared variable

4.0 A

—— x? distribution

3.5 -

log likelihooc

3.0 -

2.5 -
5 2.0
Q.

1.5

1.0 7

0.5 -

0.0 -

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 Slgnal
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On/0Off measurement Signal estimation in the frequentist approach:

' Non N, : '
—2log A(s) = 2 N(mlog( A>+Nofflog< Aff> + s+ (1+a)b— Ny — Nogy
I s+ ab b _

Our statistic is Check that the variable above
—21og A(s = 20) ~ 0.38 defined is indeed a chi- s=20

= squared variable
Which is an expected value 10T'c
chi-squared variable

ikelthooc
w

—— x? distribution

log i

N
]

(-
|

o

signal
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On/0Off measurement Signal estimation in the frequentist approach:

Non =57 Noff = 85 a =0.5

In a real data aqalysis, \{ve.do not 6 - n |n o o "
know the true signal (this is what . - ' ; -
we want to estimate) but we only  s-
know the counts in the OFF and
ON regions.

4
|

3.84

So what can we do?

log likelihood
W

2.45

1.04
1- 0.37

0.00
15 20 25 30 35 40 45 50 55
signal

92



Introduction to Statistical Inference ArQus School 2022 - Bergen, Norway

On/0Off measurement Signal estimation in the frequentist approach:

Non =57 Noff = 85 a =0.5

All these values should follow a
chi-squared distribution ' 2 |? 2? 2? ?
assuming a given signal to be
true.

For example, if the true signal E 4- 3 84
was 20, we would have observed g
a value smaller than 2.45 88% of o 3
the time. . 245
5.
We can therefore claim that a -y

value of 20 is excluded with a 1- 0.37
88% confidence level.

0.00
15 20 25 30 35 40 45 50 55
signal
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On/0Off measurement Signal estimation in the frequentist approach:

Non =57 Noff = 85 a =0.5

Conventionally 3 confidence
levels are reported:

- 0% CL : which is by definition
when the chi-squared is zero

- 68% CL : which is when the chi-
squared is 1

- 95% CL : which is when the chi-
squared is 3.84

3.84
47 3.84

log likelihood

15 20 25 30 35 40 45 50 55
signal
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On/0Off measurement Signal estimation in the frequentist approach:

Non =57 Noff = 85 a =0.5

Conventionally 3 confidence
levels are reported: °"
0% CL : which is by definition
when the chi-squared is zero
68% CL : which is when the chi- T 4- 3.84 3 a4
Squared S 1 _g 68% uncertainty |
9
95% CL : which is when the chi- o 3 \
squared is 3.84 = I I
95% Upper limit
1 - 1 1
0
o | | | | | | ! |
15 20 25 30 35 40 45 50 55

signal
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On/0Off measurement Signal estimation in the frequentist approach:

Non =57 Noff = 85 a =0.5

So do we need each time to
compute the likelihood ratio 6-
and find where it is equal to
Zero, one, and 3.847

3.84

4..
68% uncertainty 3.84
;- \
95% Upper limit

—

log likelihood

1 best estimated 1

0
15 20 25 30 35 40 45 50 55
signal
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On/0Off measurement Signal estimation in the frequentist approach:

Non =57 Noff = 85 a =0.5

So do we need each time to
compute the likelihood ratio 6-
and find where it is equal to
Zero, one, and 3.847

o
|

3.84

B e
]

3.84

Thankfully in most cases we
can get a good
approximation using the
following expression

log likelihood
W

30 35 40 45 50 55
signal
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On/0Off measurement Signal estimation in the frequentist approach:

Non =57 Noff = 85 a =0.5

Non - a Noff =32
sgrt( Non + a2 Noff) = 8.06

v

5 4 3.84
g 3.84
=
The signal estimation is: g
g7
32 + 8 =
with upper limit
48.1
. 0
and lower limit 0 . . . . . . . .
15 20 25 30 35 40 45 50 55

15.9 sgnal
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On/0Off measurement Signal estimation in the frequentist approach:

Non =57 Noff = 85 a =0.5

Non - a Noff =32
sgrt( Non + a2 Noff)

v

Check that these are indeed

good approximations

5 -

T 4 - 3.84
2 3.84
The signal estimation is: E
—_— 3_
32 + 8 <
with upper limit
48.1
and lower limit 0 °

15 20 25 30 35 40 45 50 55
signal
15.9 g
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On/0Off measurement Signal estimation in the frequentist approach:
Non =57  Noff =85 a =0.5

Among all the possible
hypotheses, there is a 20.0- 19.5
‘'special’ one we are oy
interested in excluding...

... the one in which there Is

no signal, i.e. s=0

log likelihood

signal
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On/0Off measurement Signal estimation in the frequentist approach:

Non =57 Noff = 85 a =0.5

Among all the possible
hypotheses, there is a 20.0 - 19.5
‘'special’ one we are 17.5
interested in excluding...
... the one in which there Is
no signal, i.e. s=0

= b
N w
&) o

log likelihood
'.—l
o
o

A chi-squared variable can
take values bigger than 19.5
only 1/100°000 of the time! >0

2.5 A

sgrt(19.5) = 4.4, which
means that ... (?)

0.0

signal
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On/0Off measurement Signal estimation in the frequentist approach:

If you take the log-likeltihood expression

) N, N, ~ ]
—2log A\(s) = 2 N(mlog< A>+Nofflog( Aff> + s+ (1 4+ a)b— Nop — Noyy
I s+ ab b _

put s=0 and take the square root (in order to get a normal variable from a chi-
squared one), you get the famous “Li&Ma” Significance

' 1 (a+1)N (a+1)N,pp\ 1"
::\/5 N,, lo ( (m) + N, ¢+ lo ( 2
_ . @ Nop + Nogy F7705 Non + Nogy )

where the sign + or - is arbitrary chosen to be positive when the excess is positive
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On/0Off measurement Signal estimation in the frequentist approach:

IBYeLRELCRUTRLIRIL  Perform a simulation of On/Off counts
with fixed ’s’=0 and ‘b’ and get each time
the Li&Ma significance.

Which distribution do you get from it?
What happens if ’s’ is not fixed to zero?

put s=0 and take the square root (in order to get a normal variable from a chi-
squared one), you get the famous “Li&Ma” Significance

' 1 (a+1)N (a+1)N,pp\ 1"
::\/5 N,, lo ( e ) + N, ¢+ lo ( 2
_ . 125\ N + Nogr /)

—2log A(s) =2 | N, log (

where the sign + or - is arbitrary chosen to be positive when the excess is positive
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On/0Off measurement Signal estimation in the frequentist approach:

VP

4

14 +

’ CAUTION

4

12 -

4
4

=
o
|

f

i} PV

log likelihood
Q0

4-
2 - \
0 . 7

-10 -5 0
signal

10

For small or negative excess
Wilks’ theorem cannot be
applied anymore.

This means that the value of
3.84 should not be used for
putting 95% upper limit on
the signal

What can we do then?

In these cases ‘ad-hoc’ adjustments are required, the most famous one being

the Rolke et al. method
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n/Off measurement Signal estimation in the frequentist approach:

Table 1
90% CI for Poisson signal x4 with 7 = 1°

y
NUCLEAR x 0 1 2 3 4
INSTRUMENTS 0 02.21 0,1.71 0,0.86 O,NA 0,NA
& METHODS 1 0,3.65 0,3.62 0271 0,1.98 0,1.3
2 0.03,5.3 0,4.52 0,4.19 0,3.41 0,2.74
IN PHYSICS 3 0.73,6.81 0,6.02 0,5.22 0,4.81 04.17
RESSEtARACH 4 142,825 0,7.44 0,6.63 0,5.82 0,5.57
- - __ SectionA 5 2.11,9.63 0.16,8.81 0,7.99 0,7.17 0,6.35
ELSEVIER Nuclear Instruments and Methods in Physics Research A 458 (2001) 745-758 i 2811098 0931015 09.32 0.8.49 0.7.66
www.elsevier.nl/locate/nima 7 35,123 1.7,11.46 0.22,10.63 0,9.79 0,8.96
8 42,1359 2.49,12.76 1.02,11.92 0,11.07 0,10.23
9 492,14.87 3.27,14.03 1.82,13.19 0.45,12.34 0,11.49
10 5.66,16.14 4.06,15.29 2.63,14.44 1.27,13.59 0,12.74
11 6.41,17.39 4.85,16.54 3.44,15.69 2.09,14.83 0.78,13.97
. . 12 7.17,18.63 5.65,17.78 4.26,16.92 2.92,16.06 1.61,15.2
Confidence intervals and upper bounds for small signals i
14 8.71,21.09 7.26,20.23 5.9,19.36 4.58,18.5 3.29,17.63
. . ¢ 15 95223 8.07,21.44 6.72,20.57 541,19.7 4.13,18.83
1n the presence Of baCk grOund Nnoi1SEc 16 10.29,23.51 8.89,22.64 7.5521.77 6.25,209 497,20.03
17 11.09,24.71 9.71,23.84 8.38,22.97 7.09,22.1 5.82,21.22
18 11.89,25.91 10.53,25.03 9.21,24.16 7.93,23.29 6.67,22.41
, 19 12.7,27.1 11.35,26.22 10.05,25.35 8.77,24.47 7.52,23.59
Wolfgang A ROlkCa’*, Angel M Lopezb 20 13.52,28.28 12.18,27.41 10.89,26.53 9.62,25.65 8.37,24.77
y
*Department of Mathematics, University of Puerto Rico-Mayagiiez, Mayagiiez, P.O. Box 5959, PR 00681, USA Z p , . ;
X
®Department of Physics, University of Puerto Rico-Mayagiiez, Mayagiiez, PR 00681, USA
0 0,NA 0,NA 0,NA 0,NA 0,NA
Received 6 April 2000; received in revised form 17 July 2000; accepted 22 July 2000 1 0,0.59 0,NA 0,NA 0,NA 0,NA
2 02.12 0,1.36 0,0.41 O,NA 0,NA
3 03.52 0,2.66 0,1.9 0,1.05 0,0.16
4 0,4.86 0,4.02 0,3.26 0,2.39 0,1.5
Abstract 5 0,6.32 0,5.39 0,4.67 03.72 0,2.86
6 0,6.83 0,6.8 0,6.02 0,4.97 04.17
7 08.12 0,7.27 0,7.27 0,6.32 0,5.54
_ ) o ) ) ) ) 8 09.39 0,8.54 0,7.69 0,7.68 0,6.83
We discuss a new method for setting limits on small signals in the presence of background noise. The method is based 9 0,10.64 0,9.79 0,8.94 0,8.08 0,8.05
binati fa two-di . 1 fid . d thel 1 imation to the likelihood ratio test 10 0,11.88 0,11.03 0,10.17 09.31 0,8.45
Oon a comboination oI a tiwo-dimensional coninndeénce réegion an € large sampi€ approximation to tn€ €l1nooa ratio tes 11 0,13.12 0,12.26 0,11.4 0,10.53 0.9.67
statistic. It automatically quotes upper limits for small signals and two-sided confidence intervals for larger samples. We g ?i‘gi‘;g‘; giizg ggg; g} ;gg giggg
show that this method gives the correct coverage and also has good power. © 2001 Elsevier Science B.V. All rights 14 2.02,16.76 0.76,15.89 0,15.02 0,14.15 0,13.28
reserved 15 2.86,17.96 1.62,17.09 0.38,16.22 0,15.35 0,14.47
. 16 3.71,19.16 2.47,18.28 1.24,17.41 0.02,16.53 0,15.66
17 4.57,20.35 3.33,19.47 2.1,18.59 0.88,17.72 0,16.84
_ o o . o 18 542,21.53 4.18,20.65 2.96,19.77 1.75,18.9 0.54,18.01
Keywords: Maximum likelihood; Profile likelihood; Confidence regions; Coverage; Monte Carlo; Sensitivity 19 6.27,22.71 5.04,21.83 3.83,20.95 2.62,20.07 1.41,19.19
20 7.13,23.89 5.91,23.0 4.69,22.12 348,21.24 2.28,20.35
y is the number of events observed in the background region and x is the number of events observed in the signal region. In this case,
— th esimated background rate would be b=

In these cases ‘ad-hoc’ adjustments are required,
the Rolke et al. method

€ MOsSt 1almous one delng
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On/0Off measurement Signal estimation in the bayesian approach:

(S + ab)Non o~ (s+ab) bors —b

Likelihood: P(Non, Nogy | 8,b5a) = p(Nop | 8,ab) - p(Noysy | b) = e
Ny, Nyt ¢!
Bayes theorem J @b p(Non, Nogy | s,b; a)p(b) p(s)
: : - . Non,NO ] — ’ - db NonaNo 7b;
with uniform priors: p(s | £f30) [ds db p(Non, Nost, s, b; ) > / P 1 15, 6;0)
PDF of the signal rate PMS of the number of signal event
Al Non"'Noff_N)' SNS — (Non‘|‘Noff_Ns)!
Non7N0 9 ) ° Ns NonaNo ;
p(s | Fre) oc ) (1+1/a)N+(N,, — N.)| N.J° p(Ns | ffi)

s=0 (1+1/a)=Ne(Non — Ny)!
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On/0Off measurement Signal estimation in the bayesian approach:

® Non=80, Norr=160

0.10 1 Dots e ® Non=80, Nosr=120
f ' | . ® Non=80, Norr=10
N,, + N ¢ — N,)! i
p(Ns | NonvNoff;a) X ( = NOff S) a=0.5
(1+1/a)"N:(N,, — N,)!
°
0.08 - _ ®
Lines
N °
— (Non+Noff_Ns)! glVs _
S Nons Nogy; . 5
8 p(s | Fro) o Y Tx1/a) N (N = N N°
= Ns=0 L
E 0.06 -
© L ]
E
5 %%
,g L
% '....'o o‘ .. ¢ °
> @
% 0.04 o. @ o
g ¢
°
°
0.02 1
°
o
o °
°
° °
K1)
0.00 - o0 2 . 0000080028000 00000 ~
0 20 40 60 80 100

signal
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On/0Off measurement Signal estimation in the bayesian approach:

Contrary to the frequentist approach, where one has to maximize the likelihood and apply the Wilks’
theorem, in the Bayesian approach all the information on ’s’ (the signal rate) is included in its PDF.

The best estimate of 's' will be given by the most probable value, while the 68% credible interval [s1, s2]
IS such that

/ p(s | NonyNoff;Oé) ds = 0.68

S1

The upper limit is given straightforwardly by the value suL such that

/ p(s | NonaNoff;Oé) ds = 0.05.

SUL
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On/0Off measurement Signal estimation in the bayesian approach:

Contrary to the frequentist approach, where one has to maximize the likelihood and apply the Wilks’
theorem, in the Bayesian approach all the information on ’s’ (the signal rate) is included in its PDF.

The best estimate of 's' will be given by the most probable value, while the 68% credible interval [s1, s2]

IS such that
Try to get the best estimate ’s’, with
52 credible intervals and upper limits from
/Sl P(5 | Non, Nogsi ) ds = 0.68 the 3 examples shown in the previous

slide

The upper limit is given straightforwardly by the value suL such that

/ p(s | NonyNoff;Oé) ds = 0.05.

SUL
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Fig.2|Spectrumabove 0.2 TeV averaged over the periodbetweenT,+62s
and T, + 2,454 sfor GRB190114C. Spectral-energy distributions for the
spectrumobserved by MAGIC (grey opencircles) and theintrinsic spectrum
corrected for EBL attenuation® (bluefilled circles). The errors on the flux
correspond to one standard deviation. The upper limits at 95% confidence level
are shown for thefirst non-significant bin at high energies. Alsoshownisthe
best-fit modelfor theintrinsic spectrum (black curve) when assuming a power-
law function. The grey solid curve for the observed spectrumis obtained by
convolving this curve with the effect of EBL attenuation. The grey dashed curve
is the forward-folding fit to the observed spectrum with a power-law function
(Methods).

Nevents

Extended DataFig. 2| Significance of the y-ray signal between T, + 62sand
T,+1,227sfor GRB190114C. Distribution of the squared angular distance, 67,
for the MAGIC data (points) and background events (grey shaded area). 6%is
defined as the squared angular distance between the nominal position of the
source andthereconstructed arrival directionofthe events. The dashed
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23°00°

This arrow here
iIndicates an upper
limit, and now you

know what it
means!

22°30°

ml

Declination

Time =0.32 h
Non =895 N __=17.6£1.9
Nex = 877.4 £ 30.0

Significance (Li&Ma) = 51.4c

Now you know what

these values refer to!

0.3

0.2 0.4

0% [ deg” ]
vertical line represents the value of the cut on 6. This defines the signal region,
where the number of events coming from the source (N,,) and from the
background (N,) are computed. The errors for ‘on’ events are derived from

Poissonianstatistics. From N,,and N,¢, the number of excess events (N.,) is
computed. The significanceis calculated using the Li & Ma method*.
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Recap:

1. We have defined an On/Off measurement, which is the most common type of
measurement in gamma-ray astronomy when dealing with an unknown background

2. We have seen how to estimate the excess from an On and Off measurement in both
the frequentist and bayesian approaches and how to put confidence/credible
Intervals on such estimates

3. The frequentist approach allows us to exclude the null hypothesis with given
confidence via the usage of the Li&Ma expression

4. The bayesian gives us a probability distribution for the excess of gamma-ray
We will apply this knowledge in the hands-on sessions on the spectra and light curve

analysis!
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