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Neutron stars can be destroyed by black holes at their center accreting material and eventually
swallowing the entire star. Here we note that the accretion model adopted in the literature, based
on Bondi accretion or variations thereof, is inadequate for small black holes — black holes whose
Schwarzschild radius is comparable to, or smaller than, the neutron’s de Broglie wavelength. In
this case, quantum mechanical aspects of the accretion process cannot be neglected, and give rise
to a completely different accretion rate. We show that for the case of black holes seeded by the
collapse of bosonic dark matter, this is the case for electroweak-scale dark matter particles. In the
case of fermionic dark matter, typically the black holes that would form at the center of a neutron
star are more massive, unless the dark matter particle mass is very large, larger than about 10'°
GeV. We calculate the lifetime of neutron stars harboring a “small” black hole, and find that black
holes lighter than ~ 10'! kg quickly evaporate, leaving no trace. More massive black holes destroy
neutron stars via quantum accretion on time-scales much shorter than the age of observed neutron

stars.

I. INTRODUCTION

The very existence of long-lived neutron stars (NS)
imposes significant constraints on dark matter: as was
recognized long ago [I} 2], dark matter can be captured
and accumulated in NS (if pair-annihilation is sufficiently
slow or absent, see e.g. [3]), thermalize, and collapse into
a “small” black hole that could eventually swallow and
destroy the NS [4HIO]. If dark matter consists of pri-
mordial black holes (PBH) [II], NS may capture PBHs,
potentially leading to the disruption of the NS [12] — the
capture rate is however too small to set any meaningful
constraints on PBH as dark matter [13].

Thus far, the treatment of NS material accretion onto
a BH at the core of a NS has followed the assumption
that accretion proceeds through a spherical Bondi-Hoyle
process, possibly including caveats from the NS rotation
[14] or from Pauli blocking [I5] (see also Ref. [16], [I7] for
numerical studies of the full general relativistic problem
of black hole evolution, but also assuming Bondi accre-
tion). The Bondi-Hoyle accretion picture presupposes
spherically symmetric, steady state accretion of a non-
self-gravitating gas [18], which is treated as a fluid with
a polytropic equation of state. Here we critically note
that this treatment breaks down when the individual par-
ticle quantum size — its de Broglie wavelength — exceeds
the size of the black hole, i.e. its Schwarzschild radius.
In that case, wavelike effects become important, and the
absorption cross section is given by the expression in the
classic work by Unruh, Ref. [19]. A key assumption in the
Bondi picture — the absence of outflows — breaks down
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when particles effectively scatter off, and are not always
absorbed by, the hole.

Let us estimate the range of black hole masses when
Unruh’s treatment is necessary. For simplicity, we treat
the NS as consisting of a neutron population modeled
as a degenerate Fermi gas with density n, ~ 0.3fm™>,
leading to a Fermi momentum

1/3

pr=~h (3772nn) ~ 0.2 GeV,

and a corresponding Fermi velocity

vp = \/pr/my, ~ 0.22¢.

The NS temperature Tns ~ O(108)K ~ O(100) eV is
much lower than the Fermi energy, so we model the en-
ergy distribution as f(E) o E'Y? from the density of
state for a 3D free electron gas, and the velocity distri-
bution, correspondingly, as fr(v) o v2, and limited to
v < vp, thus

3v?

fF(v):T7 USUF;
Up

fr(v) =0, v>vp.

The average velocity of these Fermi-degenerate neutrons
is (v)p = [vfr(v)/ [ fr(v) = 0.165¢, which we will use
as a typical velocity below.

The key assumption of the Unruh treatment of “quan-
tum” accretion onto a Schwarzschild black hole [19]
is that the Schwarzschild radius of the hole Rgehw =
2GMpy be smaller than the de Broglie wavelength of
the particles being absorbed, and that said particle be
described as a free plane wave asymptotically far away
from the hole. In the context of a neutron star, we have
neutrons with at most vp velocity and ppg < pr. Wave-
like effects therefore become non-negligible for Mpy be-
low a critical value

7TM123
br

Mpu < Mynrun =

=41x10%kg. (1)
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Because these neutrons are being absorbed, they are be-
ing removed from the Fermi sea, so there is no Pauli
blocking to consider when calculating this absorption
rate.

Note that there is some evidence that NS cores might
consist of quark matter [20]; if that is the case, the Fermi
momentum of the constituent quarks will be of the same
order (up to a factor of O(3'/3)) as that of neutrons, and
the corresponding de Broglie wavelength also comparable
(in fact, slightly smaller).

We note that current limits to PBH masses from evap-
oration [2I] constrain the PBH masses, for 100% of the
DM in PBH, to be larger than 10'* kg; the PBH mass
falls in the range where Unruh’s treatment is necessary
only if fpgr < 107° [21,22], in which case capture is very
unlikely; however, one should treat this issue with care
when discussing possible disruption of NS by accreting
PBH (see e.g. [12], and the ensuing debate in e.g. [13]).

The remainder of this note is as follows: in the next sec-
tion [T we discuss, and compare, the absorption cross sec-
tions in the Bondi-Hoyle and Unruh’s pictures; in sec. [[T]]
we compare evaporation and absorption rates and discuss
the NS lifetimes; sec. [[V]discusses the expected black hole
size for given dark matter candidates; sec. [V] summarizes
and concludes.

II. ABSORPTION RATES

The Bondi-Hoyle absorption cross section generalizes
the classical Hoyle-Lyttleton result [23] for the accretion
of massless point particles of density p by a star of mass
M moving at a steady asymptotic speed v,

dM 9 4G M?p
(dt)HL = T vp = 3 (2)

where (p1, is the Hoyle-Lyttleton radius, corresponding
to the maximal impact parameter yielding capture. Aug-
menting the Hoyle-Lyttleton treatment with fluid effects,
but maintaining the assumption that the accreted par-
ticles be massless and point-like, and indicating with
cs = v/7 — 1 the sound speed of the fluid being accreted,
gives the classic Bondi-Hoyle result [18] [24],

M 4 s (7)G2M?p
(dt>BH N (2 + v2)3/2 ' ®)
S

Given an equation of state P = Kp" the appropriate
accretion constant A\s(y) can be calculated using a poly-
tropic equation of state [25]. It is equal to A\s(5/3) = 0.25
in the case of degenerate matter, in which case ¢2 = 2/3.

In the limit where the particles being accreted are nei-
ther massless (rather, they have mass m) nor point-like
and possess a quantum wavelength (de Broglie wave-
length) larger than the Schwarzschild radius of the ac-
creting mass M, the absorption cross section was com-
puted in Ref. [19]. It reads, for the case of a Dirac parti-

cle,
dM
() = 0w (M, m, v)po, (1)
dt )
with
2rG2M? ¢
O'U(Mamvv): v 1_675

and ¢ defined as

& =2rGMm 1+0* = L+ 0 Rsow
v

1—02 7T112\/171)2 ADB
with Rgenw = 2GM the Schwarzschild radius (in natural
units) and Apg = 1/(mwv). Ref. [T9] assumes Rs/App <
1. Note that £ - co asv — 0 and v — 1.
The mass accretion rate for neutron absorption via the
Unruh absorption cross section as a function of the BH
mass is (re-inserting appropriate factors of ¢, k)

(dM>U (M) = mpny, /01 dv fr()oy (M, my, v)e(he)?,

dt

()
where m,, is the neutron mass. Dark matter accretion
is generally negligible in the growth of the black hole [§]
(however, it can be important in the Earth or the Sun
[26], in white dwarfs [27], and even in the case of NS,
in some corners of parameter space [9]. Numerically, we
find

3
(dM> (M) 7 x 10738 (k%) k3 >1010kg
BT — 2 )
dt )y 51072 (M) ke A 5100k

(6)
which reveals that the Unruh and Bondi-Hoyle rates scale
similarly at low black hole mass but not at large black
hole mass.

The key assumption of Eq. is that the particles be-
ing absorbed are falling into the black hole undisturbed.
The black hole mass at which we expect the breakdown
of the assumption that there exists an “infinite reser-
voir” of neutrons inflowing and scattering off the black
hole corresponds to the mass for which accretion rates
are comparable with the neutron-neutron scattering rate,
My ~ mynp{opnv). This, in turn, corresponds to a black
hole mass Myprun ~ 4 x 10''kg, assuming o,, = 1 b.
For larger black hole masses, effectively one must im-
pose momentum and mass conservation, as in the Bondi-
Hoyle picture; correspondingly, the hole’s radius is then
large enough that wave effects can be neglected. For
M 2 Myprn we therefore conclude that the Bondi pic-
ture is warranted and qualitatively correct. Accounting
for all of these effects, the mass accretion rate is

Maee = max MBHamin(MU7mnnn<Jnnv>)} - (7

This follows the Unruh rate until that rate saturates
at mynp(onnv), and then follows the Bondi-Hoyle rate



when Mgy exceeds mpn, (0pnv), which is true at a black
hole mass Mponai ~ 6 x 10'? kg. We note that the clas-
sical limit of the Unruh rate is not the Bondi-Hoyle rate,
as the two pictures make qualitatively different assump-
tions.

III. NEUTRON STAR LIFETIME

In addition to accretion, the black hole mass changes
because of Hawking evaporation, at a rate given by [28]

(dé‘f)H (M) =~ —5 x 10' £(M) (ﬁ)Q £

where f(M) is a function of the degrees of freedom kine-
matically available for evaporation: only those particles
for which the Hawking temperature Ty = m, where m is
the particle that the black hole evaporates into, can be
produced by the black hole. For M ~ 10 kg, Ty ~ 10
GeV and f(M) =~ 15, while for M ~ 10'3 kg, Ty ~ 1
MeV and f(M) =~ 2. We use the full form for f(M) as
given in [22] 28§].

The black hole mass as a function of time is given in
general by

vo- [o(F). ()] @

where (dM/dt), . connotes the appropriate accretion
rate, as in Eq. . Clearly, because of the different signs
of the rates in Eq. @D, there is a critical rate below which
the black hole mass inexorably falls. We find that black
hole evaporation dominates over matter accretion for hole
masses less than

My ~ 1.6 x 101 kg; (10)

for smaller masses, the black hole evaporates rather
quickly. For instance, for an initial mass of 10" kg, thus
barely below M, the hole evaporates in 4 x 10'3 sec,
which is only a thousandth the age of observed nearby
NS such as PSR J0437-4715 and PSR J2124-3358, both
on the order of 100 years [29]. We find that a good
approximate fit for small masses is

Mo\
Tevap(M) = 8 x 10 sec (1010kg> . (M < Mgi)-

Note that unlike the case of evaporation of a black hole
inside the Earth or the Sun [26], evaporation inside a NS
is not expected to yield any observable signature: com-
paring the rest-mass energy of the largest hole that would
evaporate quicker than accrete, M ~ Mg ~ 8 x 103*
ergs, with the lower limit to the specific heat of a NS,
cns 2 2 x 10%%ergs/K [30] makes it clear that the de-
posited heat would never yield a detectable temperature
change to the NS. Nevertheless, it is possible that this
sudden deposition of energy in the NS core will have a
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Figure 1. Accretion and evaporation rates. We show
the accretion and evaporation rates, in units of kg/sec, for
the evaporation rate (Eq. , blue line); the Unruh quantum
accretion process (orange dotted line); and the Bondi-Hoyle
accretion rate (Eq. , green dot-dashed line). The thin hor-
izontal gray line shows the effective rate of neutron scattering
for opn = 1b and ny = O.?)fnffg’7 which serves as an upper
limit to the Unruh accretion rate.

transient effect such as a glitch. We also estimate that
the neutrino mean free path inside a NS is too short for
neutrinos to escape

1 1

Ay ~
2
n,G%.E?2

GeV?
:2><10_8cm< © )

NpOny E
so that the predicted flux would be too small to be
detectable above the atmospheric neutrino background
(e.g., [20], Fig. 6).

For initial black hole masses larger than M., we can
determine the neutron star lifetime via

M dM
o= [ m W)

where M, is the initial BH mass and Mys =~ 1.5Mg is
the neutron star mass. The resulting NS lifetime 7(M),
using the full numerical solution, is

2
T(M) ~ 0.2 (%) Mcrit <M< MUnruh

, (12)
TNS 6 x 10%g/M M > Muypnrun

where we have taken the typical NS age to be mng ~ 10

Gyr. Because M, given in Eq. is of order 10! kg,

the neutron star destruction rate is shorter than myg if the

black hole mass is sufficiently large to avoid evaporating.

IV. BLACK HOLES FROM DARK MATTER
COLLAPSE IN NEUTRON STARS

The mass of the black hole formed from dark matter
collapse is the maximum between the largest mass sup-



ported by quantum pressure and the largest self gravi-
tating mass, [26]

3 3/2 3/2
T e () (B)
mGRm3p 10° K m

(13)
The critical particle number N that leads to exceeding
quantum pressure support against gravitational collapse
depends on the spin of the dark matter.

In the case of fermions, the onset of the gravitational
collapse occurs when the potential energy of the dark
matter exceeds the Fermi energy, and therefore Pauli
blocking cannot prevent the collapse anymore:

Mgy =

GNmaxmft‘ 37T2N 1/3 971' 1/3 N1/3
" Ep= — [ = 2 max .
r F ( 1% > ( 4 ) r

(14)
The radius of the self-gravitating sphere drops out of this
expression, and thus the BH mass is

f GeV\?
Ml = N, my~9x10° kg (;) . (1)

This expression holds for self-gravitating, non-interacting
fermions. Corrections due to self-interactions are impor-
tant for the case of neutrons, and the maximum neutron
star mass is not precisely known for this reason [25].
In the case of bosons, the energy for a single particle
is
GNm? 1 AN
R 2mpR?  32mrmiR3’

E ~ (16)

where the second term stems from the particle kinetic
energy due to the uncertainty principle and the final term
is due to the particle self-interactions. As we discuss in

more detail in the Appendix, the maximum number of
bosons that are stable against gravitational collapse are

Mp\? |1 3AM2
N = (et} 10 3B g
mp 20 34mmy
The black hole mass that is obtained if the number of
particles exceeds this value is

M. ~25x10M kgGeV\/l — 4 % 1036\ (

max mb

GeV\”
myg ) ’
(18)
Clearly, the sign and the magnitude of A matter very
much for the mass of the black hole. If X\ is positive,
corresponding to an attractive self-interaction, only ex-
tremely small values of this coupling are possible in a sta-
ble system. Here, we will focus on a few representative
cases: A = 0, which is possible if ¢ is exactly protected by
a large symmetry group; A = —(m/f)?, which is the first
term in the expansion of some non-analytic potentials
motivated by quantum gravity [31], where f is a “decay
constant” corresponding to massive modes for which we

4

take f = 10'°© GeV and 10'? GeV; and constant values
A=-10"2 and A = —0.12(1/1672)? ~ — x 1077, which
is of the correct size for a loop-induced self coupling aris-
ing from integrating out a perturbatively coupled scalar
[10]. Other realistic models with small repulsive cou-
plings were obtained in [32] [33].

Finally, we note that accumulated bosonic dark mat-
ter can form a Bose-Einstein condensate (BEC) [8]. This
can trigger black hole formation from the condensate sub-
component of the dark matter rather than the entire ther-
mal population. The fraction of dark matter particles
in the BEC if the star is below the critical temperature
is formally Npgc/N® = O(Teris — T2)[1 — (To/Teris)*/?],
where T, is the core temperature of the star. We empha-
size here that the dependence on temperature is dom-
inated by the step function: if the temperature in the
core of the star is below T, the majority of the par-
ticles are in the BEC, unless the temperature is ex-
tremely close to the phase transition. Thus, we approx-
imate the mass of the BEC as zero if T, > T and
as mx N if T, < Tui. The critical temperature of a
non-interacting bosonic system in a square-well poten-

3
tial i Terit = %’f [m} / . The radius inside
of which the thermalized DM particles are distributed
scales like r, o« \/T./mx and the total number of parti-
cles scales like N « pyoxnt[max(GeV,mx)]~!, where
px is the DM in the vicinity of the NS, oxy is the
nucleon-X scattering cross section, and t is the age of

the star [§]. For convenience, we define a scaling func-
i — PX IXN t : 3
tion gggc = GV om? T0-35emZ T0Gyr Ceap which accounts

for the age of the neutron star, the conditions of the DM
in its vicinity, and the efficiency of capture ec,p, which
can be small when mpy becomes too large [8, [, 26].
Combining all of these ingredients and plugging in num-
bers from [§], we find that the mass of the BEC is

Mo ~ 2 x 10" min (&, 1) gsrc ke (19)

3
if max (2. 1) < (£) (g38=)"" gmec,

where we have defined Ty = T/10° K. Because we are
primarily interested in this work with the behavior of
the black hole, rather than the constraints on the dark
matter parameter space, we will set gggc = 1, since this
will be true after a sufficiently long time regardless of the
environment.

Since neutron star temperatures fall to around 10 K
after approximately a Myr and stay stable at that order
of magnitude for roughly a Gyr [36], Eq. indicates
that a reasonable expectation is that BEC formation will

I The presence of self interactions and the harmonic (rather than
square-well) nature of the potential after onset of self-gravitation
can in fact increase the critical temperature and thus make the
condensation of the ground state moderately more favorable [34]
35], but these changes are at or below the order of magnitude
level, and we omit them here for simplicity.
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Figure 2. Black hole masses for various dark matter
models. We show the predicted mass of black holes formed
by accreting a critical number of dark matter particles in-
side a NS. The fermion line (black) from Eq. is model-
independent. The boson lines from Eq. show the sensi-
tivity to the self-interaction coupling and the presence of a
BEC. For a constant repulsive self interaction, which we il-
lustrate with A = —1077 (red), the black hole mass at large
mpm is similar to the fermion case, but smaller by a factor
vV=X. At lower masses, the A = —1077 line diverges from the
fermion line by virtue of BEC formation, where we have as-
sumed T, = 1(0.5)[0.1] x 10° K for the thick (medium) [thin]
weight lines. The lines A = 0 (blue), A = —(mpm/10'°GeV)?
(green), and A = +(mpm/mp1)? (orange), where we define
the reduced Planck constant mp; = MP]/ \/g7 are parallel
to one another. The dotted lines extending above each solid
bosonic line show the black hole mass if BEC formation is
neglected. In the shaded green region, the accretion rate ex-
ceeds the Bondi-Hoyle rate by an order 1 factor. In the shaded
yellow region, the Unruh rate applies. In the shaded purple
region, the black hole evaporates before it can consume the
neutron star.

be important for bosonic dark matter masses of order
a TeV. However, the entire thermal distribution of cap-
tured particles may exceed M?, given in Eq. before
condensation is triggered. Thus, the black hole mass that
we expect from accumulation of bosonic particles is
My = min(Mipe, M2

max)' (20)
This is a function of time through the dependence of
Eq. on gpgc, which we are setting to 1 for illustrative
purposes.

Figure [2| shows the mass of the BH as a function of the
dark matter mass. The fermion line, given by Eq. ,
is appropriate given the minimal assumptions that the
dark matter is able to self-gravitate and is not strongly
self-interacting. The boson lines are more sensitive to the
model parameters. We attempt to demonstrate the sen-
sitivity of the final black hole mass on the self-interaction
coupling and the presence of a BEC. When bosonic dark
matter has a constant repulsive self interaction, which

we illustrate with A = —1077, the black hole mass at
large mpy is similar to the fermion case, though smaller
by a factor v/—\. At lower masses, even this case di-
verges from the fermion line by virtue of BEC forma-
tion, however. The value of mpy at which BEC for-
mation becomes important depends on the core temper-
ature of the NS. For illustration purposes, we assume
T. = 10(5)[1] x 10° K as representative values, with di-
vergences due to the BEC phase transition from roughly
2 TeV, to 20 TeV, to no divergence, respectively. The
other noticeable feature in the red line occurs at mpy = 1
GeV, because the efficiency of capture of lower-mass dark
matter particles falls due to Pauli blocking. Finally,
we show lines A = 0 (blue), A = —(mpyn/10%GeV)?
(green), and A\ = +(mpm/mp1)? (orange), where we
define the reduced Planck constant mp, = Mp)/\/87.
These are motivated by axion models; they are parallel.
We note that there are no self-gravitating solutions at
all for A > +40mmi,,/3M3,. The dotted lines extending
above each solid bosonic line show the black hole mass if
BEC formation is neglected.

V. SUMMARY & CONCLUSIONS

When the quantum size of neutrons exceeds the
Schwarzschild radius of a black hole at the center of
a neutron star, accretion cannot be described with the
Bondi-Hoyle picture; rather, it should be described by
an appropriate cross section that accounts for both the
space-time geometry of the black hole, and the quantum
nature of the particles being accreted.

Here, we corrected the predictions for neutron star de-
struction by black holes formed by non-annihilating dark
matter accumulating at the neutron star interior using
the correct capture cross section for light black holes.
While the key results in the existing literature are not
dramatically affected, we find a significant change in the
minimal mass necessary to prevent black hole evapora-
tion, and in the predicted neutron star lifetime.

Future work will tackle the complex problem of fermion
accretion onto Schwarzschild black holes at finite temper-
ature and chemical potential [37].

ACKNOWLEDGMENTS

We gratefully acknowledge conversations with Joseph
Bramante, Joachim Kopp, and Haibo Yu. SP is partly
supported by the U.S. Department of Energy grant num-
ber de-sc0010107. SDM appreciates conversations with
Djuna Croon and would like to thank the GGI for hos-
pitality and Ken van Tilburg for pertinent discussions
there. SDM is supported by the Fermi Research Alliance,
LLC under Contract No. De-AC02-07CH11359 with the
United States Department of Energy, Office of High En-
ergy Physics.



[1] I. Goldman and S. Nussinov, Phys. Rev. D 40, 3221
(1989).

[2] A. Gould, B. T. Draine, R. W. Romani, and S. Nussinov,
Phys. Lett. B 238, 337 (1990).

[3] K. M. Zurek, [Phys. Rept. 537, 91 (2014),
arXiv:1308.0338 [hep-ph].
[4] C. Kouvaris, Phys. Rev. D 77, 023006 (2008),

arXiv:0708.2362 [astro-phl.

[5] G. Bertone and M. Fairbairn, [Phys. Rev. D 77, 043515
(2008), |arXiv:0709.1485 [astro-ph].

[6] C. Kouvaris and P. Tinyakov, Phys. Rev. D 82, 063531
(2010), |arXiv:1004.0586 [astro-ph.GA].

[7] C. Kouvaris and P. Tinyakov, Phys. Rev. Lett. 107,
091301 (2011)} arXiv:1104.0382 [astro-ph.CO.

[8] S. D. McDermott, H.-B. Yu, and K. M. Zurek, Phys.
Rev. D 85, 023519 (2012), arXiv:1103.5472 [hep-ph].

[9] J. Bramante, K. Fukushima, and J. Kumar, Phys. Rev.
D 87, 055012 (2013), larXiv:1301.0036 |[hep-ph].

[10] N. F. Bell, A. Melatos, and K. Petraki, Phys. Rev. D
87, 123507 (2013)} larXiv:1301.6811 [hep-ph]!

[11] B. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama,
Phys. Rev. D 81, 104019 (2010)} jarXiv:0912.5297 [astro-
ph.COJ.

[12] P. Pani and A. Loeb, JCAP 06, 026
arXiv:1401.3025 [astro-ph.CO].

[13] P. Montero-Camacho, X. Fang, G. Vasquez, M. Silva,
and C. M. Hirata, Journal of Cosmology and Astropar-
ticle Physics 2019, 031-031 (2019).

[14] C. Kouvaris and P. Tinyakov, Phys. Rev. D 90, 043512
(2014), larXiv:1312.3764 [astro-ph.SR].

[15] M. Autzen and C. Kouvaris, Phys. Rev. D 89, 123519
(2014), |arXiv:1403.1072 [astro-ph.SR].

[16] W. E. East and L. Lehner, Phys. Rev. D 100, 124026
(2019), [arXiv:1909.07968 [gr-qc].

[17] C. B. Richards, T. W. Baumgarte, and S. L. Shapiro,
Phys. Rev. D 103, 104009 (2021), larXiv:2102.09574
[astro-ph.HE].

[18] H. Bondi, Mon. Not. Roy. Astron. Soc. 112, 195 (1952).

[19] W. G. Unruh, Phys. Rev. D 14, 3251 (1976).

(2014),

[20] E. Annala, T. Gorda, A. Kurkela, J. Nattila,
and A. Vuorinen, Nature Phys. 16, 907 (2020),
arXiv:1903.09121 [astro-ph.HEJ.

[21] A. Coogan, L. Morrison, and S. Profumo, (2020),

arXiv:2010.04797 [astro-ph.CO].

[22] B. Carr, K. Kohri, Y. Sendouda, and J. Yokoyama,
(2020), |arXiv:2002.12778 [astro-ph.CO].

[23] F. Hoyle and R. A. Lyttleton, [Proceedings of the Cam-
bridge Philosophical Society 35, 405 (1939).

[24] H. Bondi and F. Hoyle, MNRAS 104, 273 (1944).

[25] S. L. Shapiro and S. A. Teukolsky, Black holes, white
dwarfs, and neutron stars: The physics of compact ob-
jects (1983).

[26] J. F. Acevedo, J. Bramante, A. Goodman, J. Kopp, and
T. Opferkuch, (2020), |arXiv:2012.09176 [hep-ph].

[27] J. F. Acevedo and J. Bramante, Phys. Rev. D 100,
043020 (2019)} larXiv:1904.11993 [hep-ph].

[28] J. H. MacGibbon, Phys. Rev. D 44, 376 (1991)!

[29] R. N. Manchester, G. B. Hobbs, A. Teoh, and M. Hobbs,
Astron. J. 129, 1993 (2005), arXiv:astro-ph/0412641.

[30] A. Cumming, E. F. Brown, F. J. Fattoyev, C. J.
Horowitz, D. Page, and S. Reddy, Phys. Rev. C 95,

025806 (2017)}, arXiv:1608.07532 [astro-ph.HE].

[31] G. Choi, H.-J. He, and E. D. Schiappacasse, |JCAP 10,
043 (2019), larXiv:1906.02094 [astro-ph.CO\

[32] J. Fan, Phys. Dark Univ. 14, 84 (2016), jarXiv:1603.06580
[hep-ph].

[33] D. Croon, J. Fan, and C. Sun, JCAP 04, 008 (2019),
arXiv:1810.01420 [hep-ph].

[34] K. Huang, Phys. Rev. Lett. 83, 3770 (1999), jarXiv:cond-
mat /9904027,

[35] A. O. Jamison, [Phys. Rev. D 88, 035004 (2013),
arXiv:1304.3773 [hep-ph].

[36] K. Hamaguchi, N. Nagata, and K. Yanagi, Phys. Lett.
B 795, 484 (2019), arXiv:1905.02991 [hep-ph].

[37] P. Giffin and S. Profumo, |in prep..

[38] M. Colpi, S. L. Shapiro, and I. Wasserman, Phys. Rev.
Lett. 57, 2485 (1986).

[39] J. Ho, S.-j. Kim, and B.-H. Lee,
qc /9902040

[40] P-H. Chavanis, Phys. Rev. D 84, 043531 (2011),
arXiv:1103.2050 [astro-ph.CO].

[41] M. P. Hertzberg, F. Rompineve, and J. Yang, Phys. Rev.
D 103, 023536 (2021), larXiv:2010.07927 [hep-ph].

[42] E. D. Schiappacasse and M. P. Hertzberg, JCAP
01, 037 (2018), [Erratum: JCAP 03, EO01 (2018)],
arXiv:1710.04729 [hep-ph].

(1999), JarXiv:gr-

Appendix A: Stability of Self-Interacting Bosons

We briefly recapitulate and hopefully explicate some
results which commonly appear in the literature (see,
e.g., [38H41]). The total energy of a self-gravitating ho-
mogeneous sphere of N bosons of mass m; with self-
interaction £ > —3A[@|? is [42]

E(NR) o N _ 5ml2,N2 _ )\]\72
ot 2m,R?2 16ME R 32mmiR3’

(A1)

where our convention for the gravitational constant is
G = Mglz. The sign is such that A > 0 represents
an attractive interaction. Now we want to solve for
dEit/dR = 0 for N: for a given number of particles,
this tells us the radius of the self-gravitating particles
that can be stable against gravitational collapse, Ry (V).
We find

3N
327TmbR

dESNY N . BNmiR
dR  myR3 16ME,

) . (A2)

This derivative is zero at two radii

SM?2 15 AN2m2
RL(N) = PL 14, j1——22_b ) (A3
+(N) 5Nm§( \/ 1287 M2, (43)

We find that d2EN™ /dR? is positive (negative) at R
(R-), so Ry (R_) is a minimum (maximum) of the en-
ergy; we will be interested in R, henceforth. We also see
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that we require A\ < 1287 M3, /15N?m? for R, to be real
valued, which limits the attractiveness of the potential.

The scenario of interest for us is one in which asym-
metric dark scalars continue to accrete onto this self-
gravitating mass in the center of the neutron star. As
they do so, the self-gravitating mass adjusts, and the ra-
dius R changes according to

dR, 8M2, 1

= - 1+
3
dN 5mbN2 \/1 _ 15 N2)‘m2/MP2>1

 (A4)

128w b

Evidently R, decreases as N increases. Therefore, as
we add particles, the self-gravitating mass shrinks. (We
also find that dEt(})\iR) JdN|r=gr, is negative in the en-
tire allowed range of values, meaning that adding more
particles is energetically favorable, but the expression is
cumbersome so we don’t write it.) The radius shrinks
linearly in N at first, but if A\ is negative this reduction
saturates at a relatively small value of IV; for negative A,
the radius therefore asymptotes to a constant value. For
vanishing self-interaction, there is no asymptote, and for

small positive positive self-interaction there is a critical
number beyond which R, is no longer real valued.

This continues until R reaches its own Schwarzschild
radius, Ry = 2GM, which grows with N, since M =
mpN. If more particles are added, the self-gravitating
mass vanishes behind a horizon and becomes a black
hole. If we solve for M in the equation Ry (Mmax/mp) =

M2 8 3M32 A\
2G Moy, we find M. = mil 2 o

. This is very

407ng

close the classic result [38]. Incorporating the correction
to the ADM mass identified by [33] and conducting the
same analysis as above, we find instead

LMy [T s
max myp \/ 20 407rmg'

(A5)

In the large negative A limit with or without the ADM
correction we have M. ~ 0.15\/—7)\M§’,1/m§; the scal-
ing is the same as [38], but the prefactor there is
0.22/\/5 ~ (0.062. Our result also demonstrates that
an attractive potential is unstable beyond some critical
value, A > O(10)m3 /M3,
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