W mass measurement at LHC Lorenzo Sestini - INFN Padova

Misura della massa della W a CDF - Dipartimento di Fisica G. Galilei e INFN - Padova - 9/5/2022

Istituto Nazionale di Fisica Nucleare

W mass measurement with pp collisions

- The environment of proton-proton colliders is probably the **most challenging** for the W boson mass measurement
- Experimental conditions are not as clean as at lepton colliders •
- The W boson production modeling is more under control at proton-anti-proton colliders
- Nevertheless LHC experiments are collecting an incredible • amount of collision data
- Millions of W bosons can be analyzed to extract the W boson ulletmass measurements
- ATLAS, CMS and LHCb have already accepted the challenge!

Proton-anti-proton vs proton-proton

- At Tevatron W boson is mainly produced via valence quark interactions
- At LHC mainly through valence-sea quarks interaction

Knowledge of Parton Distribution Functions is fundamental for modeling the W boson production

Parton distribution functions

- At LHC 20% of W bosons are produced by heavy quarks from the sea (just 5% at CDF)
- At LHC W bosons are mainly produced with negative helicity
- PDFs uncertainties propagate in the model through the helicity-dependent cross-sections

spin 1/2

Lorenzo Sestini

Larger uncertainties for sea quarks PDFs

https://www.roma1.infn.it/exp/cms/tesiPHD/tesi_phd_completate/cipriani.pdf

W boson cross section

Lorenzo Sestini

A_i = angular coefficients: ratio between helicity dependent and unpolarized cross-sections

Angularintegrated cross-section

$$(1 + \cos^2 \theta) + A_0 \frac{1}{2}(1 - 3\cos^2 \theta)$$

+ $A_1 \sin 2\theta \cos \phi + A_2 \frac{1}{2} \sin^2 \theta \cos 2\phi + A_3 \sin \theta \cos \phi + A_4 \cos \theta$ + $A_5 \sin^2 \theta \sin 2\phi + A_6 \sin 2\theta \sin \phi + A_7 \sin \theta \sin \phi$].

ATLAS

CMS

9/5/2022

-5

Experiments

LHCb

$$\eta \equiv -\ln igg[an igg(rac{ heta}{2} igg) igg]$$

GPD = General Purpose Detector = ATLAS/CMS

9/5/2022

Complementarity

- PDFs uncertainties in the W mass measurement are anti-correlated between the central and forward region
- Combining ATLAS/CMS+LHCb can reduce the PDFs uncertainty
- All the three experiments can significantly contribute in a LHC-wide average
- The overall average is ultimately the quantity that matters

- Fit to distributions sensitive to W mass ullet
- **Templates**: histograms obtained from ulletsimulation with different W mass hypotheses

proton

proton

W+

Analysis techniques

l+

 $\vec{p}_{\mathrm{T}}^{\ell}$

$$\vec{p}_{\rm T}^{\rm miss} = -\left(\vec{p}_{\rm T}^{\ell} + \vec{u}_{\rm T}\right)$$

 $m_{\rm T} = \sqrt{2p_{\rm T}^{\ell} p_{\rm T}^{\rm miss} (1 - \cos \Delta \phi)}$

- The recoil is the most difficult lacksquareobservable to model at LHC
- The recoil measurement is affected by • multiple pp interactions (pile-up), underlying event
- At ATLAS/CMS in Run 1-2 the pile-up • was ~25-50, at CDF ~1
- At LHCb in Run 1-2 the pile-up was ~1 • but recoil not available

- Large samples of $Z^0 \rightarrow \ell^+ \ell^-$ for tuning and validation
- Z^o fully reconstructed
- energy scale and resolution can be determined by comparing Z⁰ data and simulation
- Tag & Probe technique to measure lepton efficiencies in data
- differences

ATLAS W mass measurement Eur. Phys. J. C 78 (2018) 110

Collisions at 7 TeV, integrated luminosity 4.6 fb⁻¹

$ \eta_\ell $ range	0–0.8	0.8–1.4	1.4–2.0	2.0–2.4	In
$W^+ ightarrow \mu^+ u$ $W^- ightarrow \mu^- ar{ u}$	1 283 332 1 001 592	1 063 131 769 876	1 377 773 916 163	885 582 547 329	46 32
$ \eta_\ell $ range	0–0.6	0.6–1.2		1.8–2.4	In
$W^+ \to e^+ \nu$ $W^- \to e^- \bar{\nu}$	1 233 960	1 207 136		956 620 610 028	33
$vv \rightarrow e v$	909170	900 321		010028	Ζ4

Fit to $p_T(\ell)$ and m_T distributions

Baseline simulation: Powheg+Pythia

But corrections are applied

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_{1}\,\mathrm{d}p_{2}} = \left[\frac{\mathrm{d}\sigma(m)}{\mathrm{d}m}\right] \left[\frac{\mathrm{d}\sigma(y)}{\mathrm{d}y}\right] \left[\frac{\mathrm{d}\sigma(p_{\mathrm{T}},y)}{\mathrm{d}p_{\mathrm{T}}\,\mathrm{d}y}\right]$$

- At a given rapidity $p_T(W)$ model depends from Pythia 8
- Most W bosons have pt<30 GeV, notulletperturbative effects should be included
- Pythia 8 QCD parameters are fitted to match data/MC distributions in $p_T(Z^0)$

DT(W) model

- ulletwith DYNNLO
- Angular part reweighted for A'_i evaluated at $O(\alpha_s^2)$:

9/5/2022

Model uncertainties

W-boson charge		7+	<i>W</i> ⁻		
Kinematic distribution	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	
$\delta m_W [\text{MeV}]$					
Fixed-order PDF uncertainty	13.1	14.9	12.0	14.2	
AZ tune	3.0	3.4	3.0	3.4	
Charm-quark mass	1.2	1.5	1.2	1.5	
Parton shower $\mu_{\rm F}$ with heavy-flavour decorrelation	5.0	6.9	5.0	6.9	
Parton shower PDF uncertainty	3.6	4.0	2.6	2.4	
Angular coefficients	5.8	5.3	5.8	5.3	
Total	15.9	18.1	14.8	17.2	1

ATLAS: muon reconstruction

- Muon momentum scale and resolution obtained by comparing the invariant mass distribution in $Z^{0} \rightarrow$ $\mu^+\mu^-$ data/simulation
- Efficiencies with tag & probe $Z^0 \rightarrow \mu^+\mu^-$
- Uncertainties on m_w mainly due to the scaling from Z^{0} to W (different p_{T} distributions)

Momentum scale:	ratio	btw r	econ	struc	eted n	nome	ntum	in data	9 8
$ \eta_{\ell} $ range	[0.0	0, 0.8]	[0.8	8, 1.4]	[1.4	4, 2.0]	[2	.0, 2.4]	C
Kinematic distribution	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	ł
δm_W [MeV]									
Momentum scale	8.9	9.3	14.2	15.6	27.4	29.2	111.0	115.4	8
Momentum resolution	1.8	2.0	1.9	1.7	1.5	2.2	3.4	3.8	1
Sagitta bias	0.7	0.8	1.7	1.7	3.1	3.1	4.5	4.3	0
Reconstruction and									
isolation efficiencies	4.0	3.6	5.1	3.7	4.7	3.5	6.4	5.5	2
Trigger efficiency	5.6	5.0	7.1	5.0	11.8	9.1	12.1	9.9	4
Total	11.4	11.4	16.9	17.0	30.4	31.0	112.0	116.1	9

ATLAS: electron reconstruction

- Electron energy scale and resolution correction • from $Z^0 \rightarrow e^+e^-$
- Efficiencies with $Z^{0} \rightarrow e^{+}e^{-}$ tag & probe ullet

$ \eta_{\ell} $ range	[0.0, 0.6]		[0.6, 1.2]		[1.82	2, 2.4]
Kinematic distribution	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}
δm_W [MeV]						
Energy scale	10.4	10.3	10.8	10.1	16.1	17.1
Energy resolution	5.0	6.0	7.3	6.7	10.4	15.5
Energy linearity	2.2	4.2	5.8	8.9	8.6	10.6
Energy tails	2.3	3.3	2.3	3.3	2.3	3.3
Reconstruction efficiency	10.5	8.8	9.9	7.8	14.5	11.0
Identification efficiency	10.4	7.7	11.7	8.8	16.7	12.1
Trigger and isolation efficiencies	0.2	0.5	0.3	0.5	2.0	2.2
Charge mismeasurement	0.2	0.2	0.2	0.2	1.5	1.5
Total	19.0	17.5	21.1	19.4	30.7	30.5

ATLAS: recoil calibration

- Corrections obtained with $Z^{0} \rightarrow \mu^{+}\mu^{-}$
- Event activity correction
- Transfer from Z⁰ to W: assuming the same p_Tdependence of data/MC differences

W-boson charge	V	V^+	V	V^{-}	Cor
Kinematic distribution	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^ℓ
δm_W [MeV]					
$\langle \mu \rangle$ scale factor	0.2	1.0	0.2	1.0	0.2
$\Sigma E_{\rm T}^*$ correction	0.9	12.2	1.1	10.2	1.0
Residual corrections (statistics)	2.0	2.7	2.0	2.7	2.0
Residual corrections (interpolation)	1.4	3.1	1.4	3.1	1.4
Residual corrections ($Z \rightarrow W$ extrapolation)	0.2	5.8	0.2	4.3	0.2
Total	2.6	14.2	2.7	11.8	2.6

ATLAS: W mass results

9/5/2022

Compatibility between different categories

The pseudo-W measurement of Z^o boson mass is also performed as cross-check

 $80369.5 \pm 6.8 \text{ MeV(stat.)} \pm 10.6 \text{ MeV(exp. syst.)} \pm 13.6 \text{ MeV(mod. syst.)}$ 80369.5 ± 18.5 MeV,

W mass measurement at LHCb JHEP 01 (2022) 036

- •
- Simultaneous fit to W boson q/p_T and $Z^0 \rightarrow \mu^+\mu^-$ boson ϕ^*
- 28 < $p_T(\mu)$ < 52 GeV is the optimal range for the fit: **2.4M W candidates**

9/5/2022

Measurement with muon final state, just a part of the Run 2 dataset has been used (1.7 fb⁻¹)

$$\phi^* = rac{ an((\pi - \Delta \phi)/2)}{\cosh(\Delta \eta/2)} \sim$$

- As for ATLAS, Powheg+Pythia is used as baseline simulation
- QCD parameters of parton shower are fitted to match the $p_T(Z^0 \rightarrow \mu^+\mu^-)$ distribution
- Templates reweighted also to match DYTurbo
- Pythia, Photos, Herwig for QED description
- Three different PDFs sets: NNPDF3.1, CT18, MSHT20

LHCb: modeling

order pQCD

- ATLAS determined the curvature bias (δ) in E/p calibration for electrons: usable only if muon and electron reconstruction has a comparable performance
- Due to saturation effects in ECAL, at LHCb ulletelectrons are not usable for this purpose
- **Pseudo-mass method applied to Z⁰** \rightarrow $\mu^+\mu^-$: ulletdoes not depend from the magnitude of the momentum

$$\mathcal{M}^{\pm} = \sqrt{2p^{\pm}p_{\mathrm{T}}^{\pm}\frac{p^{\mp}}{p_{\mathrm{T}}^{\mp}}(1-\cos\theta)} \qquad \delta \approx A \frac{\langle \frac{1}{p^{+}} \rangle + \langle \frac{1}{p^{\pm}} \rangle + \langle \frac{1}{p^{\pm$$

LHCb: muon momentum

- ulletseveral dimuon resonances samples

extracted from the m_W template fit

9/5/2022

LHCb: W mass fit result

LHCb: systematics and cross-checks

Source	Size [M
Parton distribution functions	9
Theory (excl. PDFs) total	17
Transverse momentum model	11
Angular coefficients	10
QED FSR model	7
Additional electroweak corrections	5
Experimental total	10
Experimental total Momentum scale and resolution modelling	10 7
Experimental total Momentum scale and resolution modelling Muon ID, trigger and tracking efficiency	10 7 6
Experimental total Momentum scale and resolution modelling Muon ID, trigger and tracking efficiency Isolation efficiency	10 7 6 4
Experimental total Momentum scale and resolution modelling Muon ID, trigger and tracking efficiency Isolation efficiency QCD background	$10 \\ 7 \\ 6 \\ 4 \\ 2$
Experimental total Momentum scale and resolution modelling Muon ID, trigger and tracking efficiency Isolation efficiency QCD background Statistical	10 7 6 4 2 23

Statistical uncertainty still large: with the full Run 2 dataset a total uncertainty < 20 MeV is already possible

Cross checks: [IeV]

- W-like measurement of Z^o boson mass
- Consistency of orthogonal subsets: muon charge, magnet polarities, ϕ , η
- Fit p_T range
- Fit model freedom •
- NNLO vs NLO PDFs ullet

NNPDF3.1 $m_W = 80362 \pm 23_{\text{stat}} \pm 10_{\text{exp}} \pm 17_{\text{theory}} \pm 9_{\text{PDF}} \text{ MeV},$ $m_W = 80350 \pm 23_{\text{stat}} \pm 10_{\text{exp}} \pm 17_{\text{theory}} \pm 12_{\text{PDF}} \text{ MeV},$ CT18 $m_W = 80351 \pm 23_{\text{stat}} \pm 10_{\text{exp}} \pm 17_{\text{theory}} \pm 7_{\text{PDF}} \text{ MeV}, \text{ MSHT20}$

Final result:

 $m_W = 80354 \pm 23_{\text{stat}} \pm 10_{\text{exp}} \pm 17_{\text{theory}} \pm 9_{\text{PDF}} \text{ MeV}$

CMS: W-like measurement of Z^o mass CMS-PAS-SMP-14-007

- pp collisions at 7 TeV, 4.7 fb⁻¹ of integrated luminosity
- Muon dataset is used ullet
- Experimental technique similar to ATLAS analysis: template fit of $p_T(\mu)$, m_T and E_T^{miss} ullet

CMS: results and systematics

- Proof-of-principles and validation of experimental techniques ullet
- ullet(discussed later)

W mass measurement at CMS currently on-going, new ideas to reduce model systematics

	1	$M_Z^{W_{like}}$	+	Ν	$M_{\rm Z}^{\rm W_{\rm like}}$	_
Sources of uncertainty	p _T	m _T	₽ _T	p _T	m _T	₽ _T
Lepton efficiencies	1	1	1	1	1	1
Lepton calibration	14	13	14	12	15	14
Recoil calibration	0	9	13	0	9	14
Total experimental syst. uncertainties	14	17	19	12	18	19
Alternative data reweightings	5	4	5	14	11	11
PDF uncertainties	6	5	5	6	5	5
QED radiation	22	23	24	23	23	24
Simulated sample size	7	6	8	7	6	8
Total other syst. uncertainties	24	25	27	28	27	28
Total systematic uncertainties	28	30	32	30	32	34
Statistics of the data sample	40	36	46	39	35	45
Total stat.+syst.	49	47	56	50	48	57

Comparison with CDF

9/5/2022

Lorenzo Sestini

- Significant displacement between new CDF II measurement and other most precise measurements
- LHC measurements are closer to the Electroweak Fit prediction with respect to CDF II
- However precision of CDF II measurement is much better

80500 *m*_W [MeV]

Uncertainties (in MeV)

	CDF	ATLAS	LHCb
Statistical	6.4	6.8	23
Lepton energy/ momentum scale	2 (µ) + 6 (e)	7* (µ) + 7* (e)	7 (µ)
PDFs	4	7*	9
Model (excl. PDFs)	3.5	8*	17
Total	9.4	18.5	31.4

*given separately for p_T and m_T fits, combined assuming 50% correlation

Notice: CDF measurement took profit of the PDFs determination at LHC

Comparison with CDF

Modeling

	CDF	ATLAS	LHC
Baseline	RESBOS	Powheg+Pythia	Powheg+l
Reweight	_	DYNNLO	DYTUR
Parton shower	data-driven	data-driven	data-dr
QED	PHOTOS+HORACE	PHOTOS	Pythia+PHOTOS

- LHC measurements combination is not trivial, it depends on several correlations ullet
- A naive expectation on ATLAS+LHCb combination is given ullet

 $\delta m_{\rm W}$ [MeV]

LHC combination

Future prospects at LHC

- The W boson differential cross sections • contain information on the model
- In order to reduce the model • uncertainty (including PDFs) m_w should be simultaneously fitted with the W differential cross section $(p_T-\eta)$
- **Model-agnostic approach: the model** \bullet systematic uncertainty is traded for statistical uncertainty
- This technique has been already tested • for the measurement of W polarization: Phys. Rev. D 102 (2020) 092012

Future prospects at LHC

EPJC 75 (2015) 601

		$ \delta n$	n_W (Me	eV)	
Scenario	Experiments	Tot	Exp	PDF	
Default	$2 \times \text{GPD} + \text{LHCb}$	9.0	4.7	7.7	
Default	$1 \times \text{GPD} + \text{LHCb}$	10.1	6.5	7.7	
Default	$2 \times \text{GPD}$	12.0	5.8	10.5	
PDF4LHC(3-sets)	$2 \times \text{GPD} + \text{LHCb}$	13.6	4.8	12.7	
PDF4LHC(3-sets)	$1 \times \text{GPD} + \text{LHCb}$	14.6	7.3	12.7	
PDF4LHC(3-sets)	$2 \times \text{GPD}$	17.7	5.5	16.9	
$\delta_{\mathrm{exp}}^{\mathrm{LHCb}} = 0$	$2 \times \text{GPD} + \text{LHCb}$	8.7	4.0	7.7	
$\delta^{ m LHCb}_{ m exp}=0$	$1 \times \text{GPD} + \text{LHCb}$	9.8	5.9	7.9	
$\delta^{ m LHCb}_{ m exp}=0$	$2 \times \text{GPD}$	12.0	5.8	10.5	
$\delta^{ m GPD}_{ m exp}=0$	$2 \times \text{GPD} + \text{LHCb}$	7.9	1.9	7.7	
$\delta^{ m GPD}_{ m exp} = 0$	$1 \times \text{GPD} + \text{LHCb}$	7.9	1.9	7.7	
$\delta^{ m GPD}_{ m exp}=0$	$2 \times \text{GPD}$	10.5	0.1	10.5	
$\delta_{ m PDF}=0$	$2 \times \text{GPD} + \text{LHCb}$	4.6	4.6	0.0	
$\delta_{ m PDF}=0$	$1 \times \text{GPD} + \text{LHCb}$	5.8	5.8	0.0	
$\delta_{ m PDF}=0$	$2 \times \text{GPD}$	5.5	5.5	0.0	

GPD = General Purpose Detector = ATLAS/CMS

9/5/2022

- Not a precise extrapolation, just a way to visualize the contribution of the three .5experiments to the m_w combination
- Only the PDF uncertainty is considered for the .7 5.9model
 - Statistical uncertainty not included

Conc usions

- ATLAS and LHCb have already performed a W mass boson measurement, CMS is on its way
- The precision obtained is not yet at the level of CDF II measurement
- There are few ideas to improve the modeling systematic uncertainty
- The combination of the measurements from the three experiments is fundamental to obtain the final precision at LHC
- We have many years before the next lepton collider, LHC could be the the only way to confirm CDF result in the short period

Thanks for your attention!

ATLAS detector

44m

CMS detector

9/5/2022

9/5/2022

Experimental uncertainties

- <u>epton momentum calibration and scale</u>. ullet
- Recoil resolution and energy scale ullet
- Background processes ullet
- Differences between data and simulation for lacksquarelepton efficiencies

Uncertainties

Theoretical uncertainties

- Parton Distribution Functions
- Modeling of $p_T(W)$
- Modeling of angular coefficients A_i ullet
- Modeling of QED radiation

Experimental techniques

https://cds.cern.ch/record/2285935/files/CERN-THESIS-2017-157.pdf

ATLAS: pt model

ATLAS: muon reconstruction

$$p_{\rm T}^{\rm MC, \rm corr} = p_{\rm T}^{\rm MC} \times [1 + \alpha(\eta, \phi)] \times [1 + \beta_{\rm curv}(\eta) \cdot G(0, \eta)]$$
$$p_{\rm T}^{\rm data, \rm corr} = \frac{p_{\rm T}^{\rm data}}{1 + q \cdot \delta(\eta, \phi) \cdot p_{\rm T}^{\rm data}},$$

$ \eta_{\ell} $ range	[0.0	[0.0, 0.8]		[0.8, 1.4]		[1.4, 2.0]		[2.0,	
Kinematic distribution	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^ℓ		
δm_W [MeV]									
Momentum scale	8.9	9.3	14.2	15.6	27.4	29.2	111.0	1	
Momentum resolution	1.8	2.0	1.9	1.7	1.5	2.2	3.4		
Sagitta bias	0.7	0.8	1.7	1.7	3.1	3.1	4.5		
Reconstruction and									
isolation efficiencies	4.0	3.6	5.1	3.7	4.7	3.5	6.4		
Trigger efficiency	5.6	5.0	7.1	5.0	11.8	9.1	12.1		
Total	11.4	11.4	16.9	17.0	30.4	31.0	112.0	1	

LHCb: background

- Most of backgrounds are modeled with simulated samples: singletop, quark/anti-quark (t, b, c), Z/W decays, Drell-Yan
- QCD background (decays-inflight) has been obtained with a data-driven technique, by inverting the muon identification cuts (i.e. impact parameter)
- This model (Hagedorn distribution) accurately described the region of the Jacobian peak

Weighted candidates

Int. J. Mod. Phys. A 30, 1530022 (2015)

using J/ψ decays.

Lorenzo Sestini

LHCb performance

Figure 17: Relative momentum resolution versus momentum for long tracks in data obtained

https://www.desy.de/~garutti/LECTURES/ParticleDetectorSS12/L9_Tracking.pdf

