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CERN openlab

Evaluate and test state-of-
the-art technologies,
improve them in 
collaboration with industry, 
co-develop new solutions.

Communicate
results, demostrate
impact, and reach 
new audiences.

Collaborate and 
exchange ideas 
with other 
communities to 
generate impact.

Train the next generation of 
engineers/researchers, 
promote education and 
cultural exchanges.
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Four Main Areas of Activity

eXascale
Technologies

HPC and Cloud 
infrastructures, 

frameworks, tools 
to support key 

scientific 
workloads and 

applications

Artificial 
Intelligence
for Science

Algorithms and 
optimisation,

interpretability,
synergies between 
Physics and other 

sciences

Quantum 
Computing

Quantum computing 
in HEP and other 

sciences, i quantum 
machine learning 

algorithms and  
potential advantage.

Collaborative 
quantum computing 
(simulation) platform

Multi-Science 
Collaborations

Expertise and 
knowledge sharing 

across sciences. 
Collaborations and 

contribute to 
common solutions
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Artificial Intelligence in openlab

Our contributions:

• Generative models for detector simulation

• Optimised inference and training: computing resources

• Raw data processing for neutrino experiments

• Recurrent Neural Networks for infrastructure characterization

• Quantum Machine Learning

• Computer vision projects (UNOSAT )

*https://github.com/iml-wg/HEPML-LivingReview

The number of ML/DL applications in HEP is increasing rapidly

>1400 publications listed on the HEPML Living Review*
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Calorimeter simulation: 3DGAN
Rehm, Florian, et al. 
arXiv:2105.08960 (2021).
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Systematics: image similarity

GAN can exhibit mode-collapse or mode-drop
How much diversity in the generated sample? 
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• Use the Structural Similarity Index

SSIM 𝒙, 𝒚 =
(2𝜇!𝜇" + 𝐶#)(2𝜎!" + 𝐶$)

(𝜇!$ + 𝜇"$ + 𝐶#)(𝜎!$ + 𝜎"$ + 𝐶$)

where 𝒙, 𝒚 are two samples to be compared

• Calculated on sliding windows, then averaged.
• Ours is a 3D problem: SSIM computed in xy plane, 3rd dimension is channel
• Adjust C1-C2 to the pixel dynamic range

SSIM 𝒙, 𝒚 = 1 ⇔ 𝒙 = 𝒚
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Systematics: rare events

It is important to reproduce correctly the topology 
and occurrence of rare events

  1

“Standard”
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Ensemble GAN

Complex task can improve by ensembling
Building ensembles for GM is tricky
Build ensemble 3DGAN (inspired by AdaGAN model, 

arxiv:1701.02386) 

K. Jaruskova, ACAT2021

Build a mixture to improve coverage by 
reweighting training data: each 
iteration learns a weak generator.
A meta-algorithm similar to AdaBoost

WORK in PROGRESS
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Faster then Monte Carlo?

Reduced inference time but also phsyics performance
Need ad-hoc optimisation strategy 

Eliminated in 
INT8

Added for 
Quantization

2X Reduction in 
Latency

FP32: 3DGAN is 38000x faster than Monte Carlo
INT8: quantized 3DGAN is 68000x faster than Monte Carlo

F. Rehm,  ICPRAM2021
in collaboration with Intel

Post training quantization (INT 8) using Intel DLBoost and iLoT tool



10

Training time
Training 3DGAN (3M parameters) takes ~7 days on a 

GPU
Distributed training is essential 
Need to keep physics under control

Different data parallel approaches on different hardware 
on HPC and Cloud

Total training time:
1 hour on 128 v3 TPU cores 

Total training time: 3 hours on 256 Intel Xeons 

Total training time:
1 hour on 128 V100 GPUs 

Energy pattern along 
transver detector axis
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Network traffic prediction

LHCOPN (Large Hadron Collider Optical 
Private Network) topology

Network traffic on CERN – TRIUMF link

Predict saturation (can occur in both 
directions)
Optimise transfer: automatically modify
network devices configuration (SDNC)

(Add extra path/link to balance traffic).
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Performance
Compare CNN, LSTM and hybrid architectures

Joanna Waczynska, vCHEP2021, Grid21
arxiv: 2107.02496
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MonALISA and Alice Grid data

Agent-based, dynamic service to 
monitor, control and optimize 
distributed systems

Analises network state and 
directs jobs I/O

http://alimonitor.cern.ch/

Legrand I., et al.,  Computer Physics 
Communications 180 (2009) 2472–2498

• Large fluctuations in network utilization
• Monitoring data logged every  2 minutes 
• Use time stamp to associate throughput to 

input queries
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Seq2Seq for throughput prediction

Input information: I/O queries 
to MonALISA 
• Quantified by total Read Size:

• Xn= {RSi,t, throughputt}

• Predict throughput
• Yn= throughputt+n

• 2 hyperparameters: input & 
output sequence lengths Hwang, S et al., Procedia Computer 

Science 155 (2019) 19–26
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Results

Hyper-parameters search
Best results with low in/out 
dimensions

Predict next step (2min) with 5% 
accuracy

Next step prediction is stable

Preformance degrades when 
forecasting over longer time spans

8 min forecast à ~15%

Increasing input size deteriorates the 
accuracy > 20%
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t+2min prediction
(in,out)=(10,10)

Time steps

Time steps
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Extended forecasting
(in,out)=(10,10)
t + 4min

(in,out)=(30,30), t + 20min
(in,out)=(10,10), t + 8min Time steps

Time steps

Time steps
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Graph Neural Networks

High Granularity Calorimeter 
https://arxiv.org/abs/2003.11603

Dune LArTPC
https://indico.cern.ch/event/852553/contributions/4059542/

Next generation detectors will present 
challenges to image-based methods 
Graphs can capture inherent sparsity
and relational structure

Approximate geometry of the physics 
problem
Generalize other ML techniques
E.g. Message passing convolution 
generalizes CNN from flat to arbitrary 
geometry

Murnane, Xiangyang, https://indico.cern.ch/event/852553/contributions/4062229/
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Raw data denoising with hybrid models
GConV: https://arxiv.org/abs/1907.08448

USCG Net https://arxiv.org/pdf/2009.01599.pdf

M. Rossi, vCHEP2021
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Transformers for building 
damage detection
Inspired by the SegFormer architecture
Two tasks: localization and per-pixel damage classification

UN Server

Public dataset

Deploying

Training

arxiv:2201.10953
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Performance

Transfer learning Pre-damage

Natural & Man-made damages

Post-damage

T1 (Pre-
damage)

T2 (Post-
damage)

Prediction Reference

Use modified F1 score combining localization, damage assessment scores*
*suggested in the “CV for Building damage assessment challenge” (https://www.xview2.org/)

xBD dataset (https://xview2.org/dataset) from Maxar Open Data Program

https://xview2.org/dataset
https://www.digitalglobe.com/ecosystem/open-data
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Quantum Machine Learning 
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CERN QTI and its Roadmap

CERN established the QTI in 2020

T1 - Scientific and 
Technical Development 
and Capacity Building T2 - Co-development

T3 - Community Building
T4 - Integration with 

national and 
international initiatives 

and programmes

https://doi.org/10.5281/zenodo.5553774

• Roadmap in 2021
• Publicly available in Zenodo: accessed 

more than 5,200 times
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• Assess potential 
quantum advantage
in HEP

• Develop common 
libraries, methods, 
tools; benchmark as 
technology evolves

• Collaborate to the 
development of 
shared, hybrid 
classic-quantum 
infrastructures

Scientific Objectives

Computing & Algorithms

• Develop techniques 
for quantum 
simulation in collider 
physics, QCD, 
cosmology within and 
beyond the SM

• Co-develop quantum 
computing and 
sensing approaches 
by providing 
theoretical 
foundations

Simulation & Theory

• Develop and promote 
expertise in 
quantum sensing

• Develop quantum 
sensing approaches 
for low-energy 
particle physics 
measurements

• Assess novel 
technologies and 
materials for HEP 
applications

Sensing, Metrology & 
Materials

• Co-develop CERN 
technologies 
relevant to quantum 
infrastructures

• Contribute to the 
deployment and 
validation of 
quantum 
infrastructures

• Assess impact of 
quantum 
communication on 
computing 
applications

Communications & 
Networks
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Quantum Machine Learning

• ML/DL to help discover new quantum algorithms/improve quantum circuits
• Quantum Computing to accelerate ML/DL training or inference

Quantum circuits are differentiable and can be trained minimizing a cost function
that depends on the training data

Classical ML/DL are flexible
algorithms

but rely on large data sets

Image credits: https://www.physik.uzh.ch/~psaha/teach/Qbit/

5,2,9,4,…
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QML in practice…

• How to represent classical data in quantum 
states?

• How to introduce non-linearities in quantum 
circuits?

• SGD-based optimisation?
• Back-propagation and automatic differentiation

K. Zhang et a. arXiv.org:2011.06258 Mitarai et al. (2018)
Schuld et al. (2018)Images from pennylane.ai tutorial

M. Schuld et al., arXiv: 2001.03622v2

https://arxiv.org/abs/1803.00745
https://arxiv.org/abs/1811.11184
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QML implementations

Parametric ansatz
Can use  gradient-free methods or SGD 
Data Embedding can be learned

Input 
data

〈Out〉

Loss
Updates

Variational algorithms

Kernel methods
Feature maps as quantum kernels
Use classical kernel-based training
• Convex losses, global minimum
• Compute pair-wise distances in Ndata

M. Schuld, QML seminar, 03/02/21 CERN
https://indico.cern.ch/event/893116/



28

Quantum Advantage for QML?

Advantage definition
Practical implementation vs asymptotic complexity
Performance metrics

A change of paradigm in the study of QML algorithms brign interesting insights in 
classical models as well  
see recent work by M. Schuld and N. Killoran (arxiv:2203.01340)

28

A. Abbas et al.,  arxiv:2011.00027
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Model Convergence

Classical gradients vanish exponentially with the 
number of layers (J. McClean et al., arXiv:1803.11173)

Convergence still possible if gradients consistent 
between batches.

Quantum gradient decay exponentially in the number 
of qubits

Random circuit initialization
Loss function locality in shallow circuits (M. Cerezo et al., 

arXiv:2001.00550)
Ansatz choice: TTN, CNN (Zhang et al., arXiv:2011.06258, A Pesah, et al., 

Physical Review X 11.4 (2021): 041011. )

Noise induced barren plateau (Wang, S et al., Nat Commun 12, 6961 

(2021))

QCNN: A Pesah, et al., Physical Review X 11.4 (2021): 041011

TTN for MNIST classification (8 qubits), 
Zhang et al., arXiv:2011.06258 

J. McClean et al., arXiv:1803.11173
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Example QML projects

Quantum Classifiers for Higgs boson identification
arXiv:2104.07692

Quantum Tree Tensor Networks for particle trajectory reconstruction
arXiv:2007.06868, arXiv:2012.01379, arXiv:2109.12636 

Hybrid quantum-classical tracking hits embedding
EPJ Web of Conferences (Vol. 251, p. 03065)

Quantum Generative Adversarial Networks for detector simulation
arXiv:2103.15470, arXiv:2101.11132, arXiv:2203.01007

Quantum Born Machines for event generation
ACAT2021

Quantum Boltzmann Machines for beam optimization in accelerators
BQiT 2021

Quantum algorithms for anomaly detection
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Simplify simulation problem
1D & 2D energy profiles from detector 

Two-steps quantum generator to sample images
PQC1 – Reproduce distribution over images

PQC2 – Reproduce amplitudes over pixels on one image 

Su Yeon Chang

Calorimeter Depth

Mean Image

Quantum generation of energy profiles
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Benchmarks on hardware
Train models using noisy simulator and  test 

the inference of the model on the  
superconducting (IBMQ) and trapped-ion 
(IONQ) quantum hardware

For IBMQ machines, choose the qubits with the 
lowest CNOT gate error

Chang S.Y. et al., Running the Dual-PQC GAN on Noisy Simulators and Real 
Quantum Hardware, QTML2021, ACAT21
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ACAT2021 (arxiv:2203.01007)
Collaboration with DESY, RWTH AACHEN 
UNIVERSITY
(see K. Borras’ talk on wednesday) 
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qGAN as a data loader
Distribu�on 

prepara�on 

(sampling and 

discre�sa�on)

Exact 

distribu�on 

loading

Applica�on of 

the domain 

�lter through 

quantum gates

Integra�on 

through QAE

Classical 

preprocessing

Core quantum 

algorithm

Classical 

postprocessing

Distribu�on 

loading 

through qGAN

Applica�on of 

the domain 

�lter through 

quantum gates

Integra�on 

through QAE

Core quantum 

algorithm

Classical 

postprocessing

Distribu�on 

prepara�on 

(sampling and 

discre�sa�on)

qGAN training

Classical 

preprocessing

Quantum data 

prepara�on 

Use Quantum Amplitude Estimation to accelerate Monte Carlo Integration
Data encoding into quantum states affects the quality of the integration
Test different approaches including QGAN

Loading of 1 + 𝑥! distribution:
• 10k events
• 3 qubits
• best entanglement is the circular 

M. Grossi, arxiv:2201.01547
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A purely quantum model

• Sample from a variational wavefunction | ⟩𝜓(𝜃) with 
probability given by the Born rule: 𝑝! 𝑥 =
|⟨𝑥|𝜓(𝜃 ⟩) |"

• Only able to generate discrete PDFs (continuous in 
the limit #qubits  → ∞)

• Typically trained using Maximum Mean 
Discrepancy: 

MMD(P,Q) =  𝔼!~#
$~#

𝐾 𝑋, 𝑌 + 𝔼!~%
$~%

𝐾 𝑋, 𝑌 − 2𝔼!~#
$~%

[𝐾 𝑋, 𝑌 ]

with K a gaussian kernel 

Quntum Circuit Born Machine

Do not have classical equivalent!

O. Kiss, ACAT2021

Galon, I, Kajamovitz, E et al. "Searching for muonic forces with the ATLAS detector". In: Phys. Rev. D 101, 011701 (2020)

Muon Force Carriers 
events 
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Quantum Reinforcement Learning

Return is estimated by value function Q(s, a)
• Use greedy policy (maximize Q(s,a))
• Q-learning – learn Q(s, a) using function approximator

• DQN: Deep Q-learning (feed-forward neural network)
• QBM-RL (Quantum Boltzmann Machine)

RL book: Sutton & Barto

M. Shenk, V. Kain
BQiT 2021
2021 CERN openlab Tech 
Workshop

https://indico.cern.ch/event/1009424

Free Energy RL: clamped QBM
• Network of coupled, stochastic, binary units (spin up / down)
• -𝑸 𝒔, 𝒂 ≈ negative free energy of classical spin configurations 𝑐
• Sampling 𝑐 using (simulated) quantum annealing
• Clamped: visible nodes not part of QBM; accounted for as biases
• Using 16 qubits of D-Wave Chimera graph
• Discrete, binary-encoded state and action spaces

%𝑄 𝑠, 𝑎 ≈ −𝐹 𝒗 = − 𝐻𝒗"## −
1
𝛽
2
$

ℙ 𝑐 𝒗 logℙ 𝑐 𝒗

⋮
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𝑤"#
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ℎ
𝑤##!

ℎ$

Clamped QBM

https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
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Beam optimisation in linear accelerator

• Action: deflection angle 
• State: BPM position 
• Reward: integrated beam intensity on target
• Optimality: what fraction of possible states does 

agent take the right decision

State
Reward

Action

xDipole 
magnet

Beam Position 
Monitor (BPM)

Target
±
3!Particle 

beam

Training efficiency Training efficiency vs. # Q-net / QBM weights

70k

340

8

52

M. Schenk
2022 CERN openlab technical workshop

• Training efficiency: FERL 
massively outperforms classical 
Q-learning (8±2 vs. 320±40 
steps)

• Descriptive power: QBM can 
reach high performance with 
much fewer weights than DQN 
(52 vs. ~70k)
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Hybrid actor-critic
• FERL for continous state-action spaces to tackle real-world problems:

inspired by classical actor-critic methods

• Why use FERL in combination with classical policy network? 
Ø QBM has ideal structure to replace classical critic
Ø Can we benefit from high training efficiency of QBM (?!)

Intuitively: if critic learns faster, should be beneficial for actor training

QBM

Main challenge
• Calculating derivative of critic wrt. 

action ∇'Q(s, a|𝜃()
• Numerical (finite difference) or 

semi-analytical derivative options

QA
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Q-learning on 10D AWAKE beam line
• Trained and tested quantum actor-critic agent on simulated

10D AWAKE beam line
• Deployment on real beam line => agent works 

successfully J !
Even with 1 broken beam position monitor (BPM) …

• Will redo with optimized agent and fixed BPM

Evaluation on simulated beam line
Evaluation on real beam line

M. Schenk, openlab technical workshop, 2022
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Thanks!
Sofia.Vallecorsa@cern.ch

https://openlab.cern/
https://home.cern/

https://openlab.cern/
https://home.cern/
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Physics validation 

Triforce* DNN has 
been developed to 
distinguish different 
kind of particles and 
measure their energy 
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Muon Force Carriers predicted by several theoretical models:
• Could be detected by muon fixed-target experiments (FASER) or muon 

interactions in calorimeters (ATLAS). 

Quantum Circuit Born Machine for event 
generation

Galon, I, Kajamovitz, E et al. "Searching for muonic forces with the ATLAS detector". In: Phys. Rev. D 101, 011701 (2020)
Coyle, B., Mills, D. et al, "The Born supremacy". In: npj Quantum Inf 6, 60 (2020)

Generate E, pt, η of outgoing muon and MFC

Sample from variational wavefunction |𝜓(𝜃)⟩
with  𝑝θ(𝑥) =|⟨𝑥|𝜓(𝜃)⟩|” given by the Born rule

Generate discrete PDFs (continuous in the 
limit #qubits → ∞)

Maximum Mean Discrepancy loss function 
and gaussian kernel with 𝜎 ∈ [0.1,1,10,100]

Kiss O. et al., ACAT21
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Encode Eμ,i condition using 
parametrized rotations
Interpolation: train on 150 and 200 
GeV muons and predict 175 GeV 
signal

Conditional Born Machine

Data re-uploading makes the quantum circuit more expressive as function of the data
Noise model according to IBM Q Casablanca

150 GeV 200 GeV 175 GeV
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• AWAKE electron beam line
https://gitlab.cern.ch/be-op-ml-
optimization/envs/awake

• OpenAI gym template
• Action: deflection angles at 10 correctors

(continous)

• State: beam positions at 10 BPMs
(continuous)

• Reward: negative rms from 10 BPMs

Credits: A. Scheinker

Use case II: Q-learning on 10D AWAKE beam line
Environment

https://gitlab.cern.ch/be-op-ml-optimization/envs/awake
https://cds.cern.ch/record/2715451/plots
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Quantum generation of energy profiles

IBM qGAN can load probability distributions in quantum 
states
Simplify simulation problem

1D & 2D energy profiles from detector 

Train a hybrid classical-quantum GAN to generate average 
image

https://doi.org/10.1038/s41534-019-0223-2
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Calorimeter Depth
Quantum Generator: 3 Ry layers

Need a way to sample single images

qGAN image

Calorimeter Depth

Real image

Calorimeter Depth

3 qubits

6 qubits

S.Y. Chang

https://doi.org/10.1038/s41534-019-0223-2

