Slaying the Hydra of Dark Radiation

Arthur Hebecker (Heidelberg)

based on work with Michele Cicoli, Joerg Jaeckel and Manueal Wittner '22 (to appear in JHEP)

<u>Outline</u>

- Realizing a phenomenologically/cosmologically favourable QCD axion in the string-theoretic 'Large Volume Scenario'.
- Naturally avoiding the Dark Radiation problem due to a strong coupling of volume modulus and Higgs.
- Need for an explicit inflation model: Kahler inflation & reheating → Dark Radiation abundance.
- Key result: Small but potentially observable amount of Dark Radiation from reheating after Kahler inflation.

$\mathcal{L} \supset \theta F_{QCD} \tilde{F}_{QCD} + \frac{1}{2} f^2 (\partial \theta)^2 + \Lambda^4_{QCD} \cos(\theta).$

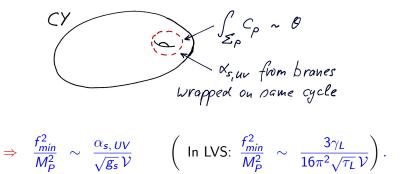
(QCD-induced potential dominates θ -dynamics, driving it to zero.) Axion origins:

(1) Field-theoretic: $\varphi = \langle \varphi \rangle e^{i\theta}$

Needs model building; in general faces 'quality problem'.

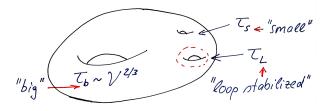
(2) Fundamental (stringy or *p*-form) axion: $\theta \sim \int C_p/B_2$ Axion arises as *p*-form gauge field in 10d, integrated over cycle of Calabi-Yau. \Rightarrow Perturbatively flat potential by gauge symmetry. \Rightarrow Excellent quality for free.

Finally, the SUSY structure $\mathcal{L} \supset TW_{\alpha}W^{\alpha}|_{F-term}$; $T = \tau + i\theta$ automatically leads to the desired coupling $\mathcal{L} \supset \theta F \tilde{F}$.


Personal conclusion:

Option (2) of a *p*-form axion is much preferred.

Known problem / challenge in this context:


Conlon, Svrcek/Witten '06

Non-trivial to realize the preferred value $f \ll M_P$. Leading approach: Large compactification volume.

Large Volume Scenario (LVS) with loop-stabilized cycle

- The only (more or less...) controlled way of getting the required large volume \mathcal{V} above is the 'LVS'.
- It is based on CYs with a big and a small 4-cycle. (In our case with a further cycle ' τ_L ' stabilized by loop effects.)

- Supergravity description:

Key cosmological bounds

$$\underline{\text{DM:}}$$
 $\Omega_{DM} \gtrsim 0.2 \left(\frac{f}{10^{12} \text{GeV}} \right)^{7/6} \theta_i^2$ (with '*i*' for initial)

Isocurvature perturbations: $H_l \lesssim 1.4 \cdot 10^5 f \theta_i$

$$f \sim rac{1}{\sqrt{\mathcal{V}}}$$

$$heta_i \lesssim \left(rac{10^{12} {
m GeV}}{f}
ight)^{7/12}$$

$$H_I \lesssim rac{10^9 {
m GeV}}{{\cal V}^{5/24}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Combining $H_I \lesssim (10^9 \text{GeV}/\mathcal{V}^{5/24})$ with the general expectation $H_I^2 \sim V_{LVS}/M_P^2 \sim (W_0^2/\mathcal{V}^3)M_P^2$, one finally has:

$$\Rightarrow$$
 $\mathcal{V}\gtrsim 10^7$,

i.e. we are deeply in the 'LVS regime'. Must face

Dark radiation problem of LVS

Cicoli/Conlon/Quevedo, Higaki/Takashi '12 AH/Mangat/Rompineve/Witkowski '14

- 'Volume modulus' τ_b is lightest field
- It oscillates late and decays to its own axion θ_b

- the (MS)SM Higgs particles.

The coupling to the Higgs originates in the Kahler potential

$$\mathcal{K} \supset -3\ln\left(T_b + \overline{T}_b + \frac{1}{3}(H_u\overline{H}_u + H_d\overline{H}_d + zH_uH_d + h.c.)\right)$$
$$\Rightarrow \mathcal{L} \supset zH_uH_d\partial^2(\ln\tau_b).$$

This is comparable to the standard, Kahler-potential-based coupling of τ_b to its own axion θ_b , such that:

$$\Rightarrow \quad \Gamma_{\tau_b \to \text{SM or } \theta_b \theta_b} \sim \frac{m_{\tau_b}^3}{M_P^2} \quad \Rightarrow \quad \Delta N_{eff} \gtrsim \mathcal{O}(1) \,.$$
(Recall: observationally, $\Delta N_{eff} \lesssim 0.2 \cdots 0.4$.)

Crucial new point: This will change for high-scale SUSY.

Volume modulus decay for high-scale SUSY

• Dominant effect now due to mass term: $\mathcal{L} \supset -m_h^2(\mathcal{V}) h^2$.

$$m_h^2(\mathcal{V}) \sim m_{3/2}^2 \left[c_0 + c_{loop} \ln \left(\frac{m_{KK}}{m_{3/2}} \right) \right]$$

- This is the famously fine-tuned small eigenvalue of the MSSM Higgs mass matrix.
- The running of its loop correction is governed by:

$$m_{KK} \equiv m_{KK,\tau_s} \sim M_P / \sqrt{\mathcal{V}}$$
; $m_{3/2} \sim M_P \cdot W_0 / \mathcal{V}$.

• Using
$${\cal V}\,\sim\, au_b^{3/2}$$
 this gives

$$\mathcal{L} \supset m_{3/2}^2 \, c_{loop} \, h^2 \, \delta(\ln \tau_b) \, .$$

Volume modulus decay for high-scale SUSY (continued)

• The resulting rate is governed by the pre-fine-tuning scale $m_{3/2}^2$ of the Higgs mass term:

$$\Gamma_{\tau_b \to hh} \sim \frac{m_{3/2}^4 c_{loop}^2}{m_{\tau_b} M_P^2} \sim (c_{loop} \mathcal{V})^2 \frac{m_{\tau_b}^3}{M_P^2} \gg \Gamma_{\tau_b \to \theta_b \theta_b} .$$

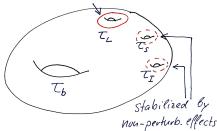
(Head one of the Hydra is gone.)

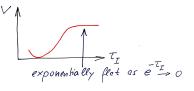
- Does this solve the DR problem? Not necessarily since
 - $-\tau_b$ now decays too fast.
 - It loses its role of the particle reheating the universe.
 - Instead, one expects this task to fall to the inflaton, potentially re-introducing a DR issue.

(This is head two, to be dealt with montarily....)

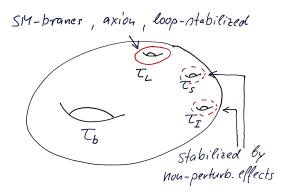
 \Rightarrow We need the details of

String inflation in the LVS


• The leading candidates are Blowup and Fibre inflaton.

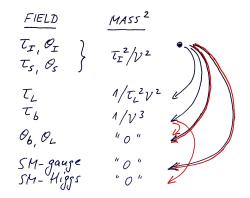

Conlon/Quevedo/Burgess/Cicoli '05/08'

- Blowup is preferred due to its low value of H_I .
- At the technical level, one introduces a 4th blowup-cycle 'τ_l':


$$K = -2 \ln \mathcal{V} = -2 \ln (\tau_b^{3/2} - \tau_s^{3/2} - \tau_l^{3/2} - \tau_L^{3/2})$$

SIM-branes, axion, loop-stabilized

String inflation in the LVS and reheating



- The hierarchy of cycles is $\tau_b \gg \tau_L \gg \tau_s, \tau_I$
- for the loop-stabilization of τ_L we use the ansatz

Cicoli/Goodsell/Ringwald

$$V_{loop} = \left(\frac{\mu_1}{\sqrt{\tau_L}} - \frac{\mu_2}{\sqrt{\tau_L} - \mu_3}\right) \frac{W_0^2 M_P^4}{\mathcal{V}^3}$$

- The detailed analysis of decay rates in this setting shows that kinetic-term-induced decays dominate. (cf. our 20-page Appendix following Cicoli/Mazumdar '10)
 - Mass hierarchy: MASS² FIELD $\frac{\tau_{L}^{2}}{\tau_{L}^{2}/\nu^{2}} \qquad \bullet.$ $\frac{1/\tau_{L}^{2}}{\nu^{2}}$ $\frac{1}{\nu^{3}}$ $\begin{bmatrix} \mathcal{T}_{I}, \mathcal{O}_{I} \\ \mathcal{T}_{S}, \mathcal{O}_{S} \end{bmatrix}$ T_{L} τ_b Ob, OL " 0 " SM-gause "0" SM-Higgs "0"
- Key point made before: The decay of τ_b to the SM Higgs is fast and dominates over the decay to its axion.

- The decay rates of τ_I shown above are all parametrically of the order of $\Gamma_1 \sim \frac{(\ln V)^{9/2}}{V^4} M_P$.
- The crucial numerical ratios are specified by

$$\frac{\Gamma_{\tau_{l} \to \tau_{b} \tau_{b} / \theta_{b} \theta_{b}}}{\Gamma_{1}} = 1 , \quad \frac{\Gamma_{\tau_{l} \to \tau_{L} \tau_{L} / \theta_{L} \theta_{L}}}{\Gamma_{1}} = 4 , \quad \frac{\Gamma_{\tau_{l} \to SM \text{ gauge}}}{\Gamma_{1}} = 8N_{g} .$$

- The crucial large rate to gauge bosons arises because τ_l mixes with τ_L, and the latter directly governs the SM gauge coupling.
- Eventually, DR branching ratio and abundance are:

$$BR(au_I o {\sf DR}) \simeq rac{5}{8N_g} = rac{5}{8 \cdot 12} \simeq 0.05$$
.

$$\Delta N_{
m eff} \simeq 6.1 \left(rac{11}{g_*}
ight)^{1/3} BR(au_I
ightarrow {
m DR}) \simeq 2.8 \, BR \simeq 0.14 \, .$$

- This is a rather specific prediction and an interesting target for future CMB observations.
- The relative smallness originates in $N_g = 12 \gg 1$.

Sweet-spot cosmology (high-temperature regime)

- The lowest allowed volume (without excessive tuning) is $\mathcal{V}\sim 10^7. \label{eq:V}$
- This implies

 $f \sim 10^{14}\,{
m GeV}\,, \qquad m_{3/2} \sim 10^{11}\,{
m GeV}\,, \qquad m_{ au_b} \sim 10^7\,{
m GeV}.$

• Resulting inflation scale and reheating temperature (based on the decay rates above):

 $H_I \sim 10^7 \, {
m GeV} \,, \qquad T_R \sim 10^6 \, {
m GeV}.$

In summary, this is a fairly standard cosmology, with some tension concerning the (potentially low) CMB-normalization.
 ⇒ More work on blowup-inflation pheno needed.

Cosmology: low-temperature regime

- It would be interesting to explore larger volumes (up to $\mathcal{V} \sim 10^{10}$ and hence $T_R \sim 100 \text{ GeV.}$)
- Then $m_{\tau_b} \sim m_h$, possibly leading to interesting effects in the $\tau_b SM$ transition.
- <u>But:</u> The relevant *H*₁ becomes very low, strongly clashing with normalization of CMB perturbations.

Summary/Conclusions

- Due to its *p*-form fields, string models have very natural high-quality axion candidates – let us take them seriously!
- Cosmological bounds on f_a enforce large \mathcal{V} and hence LVS.
- Since SM must be on D7-brane, we have $m_{3/2} \gg \text{TeV}$.
- The fine-tuned Higgs mass operator induces strong coupling $\tau_b hh$ and solves 'conventional' DR problem.
- But now the inflaton (of blowup-inflation) becomes the longest-lived particle and again creates (too much?) DR.
- But, fortunately, the mixing $\tau_{inf} \tau_L$ is large enough to produce so many SM gauge bosons that we land at a non-excluded but discoverable amount of DR! ($\Delta N_{eff} \simeq 0.14$)