Looking for multi-electronvolt ALP dark matter on the sky

José Luis Bernal Johns Hopkins University with

Andrea Caputo, Gabriela Sato-Polito, Marc Kamionkowski, and Jordan Mirocha

Padua 13/09/2022

Extragalactic Background Light

- Aggregate of *all* emitted radiation
- Census of all emitters
- Hard to measure directly Zodiacal light
- Other approaches (blazars, inference from galaxy counts, theoretical estimates, ...)

Saldana-Lopez+(2021)

COB excess

- New direct observations from New Horizons (> 50 AU) at 0.61 microns
- 1st high significance detection (> 8σ)
- $\sigma > 4\sigma$ excess wrt estimation from IGL
- Explanations?
 - Lots of faint galaxies Conselice+(2016)
 - IHL Cooray+(2012), Zemcov+(2014), Matsumoto+(2019)
 - Direct collapse black holes Yue+(2013)

COB excess

- New direct observations from New Horizons (> 50 AU) at 0.61 microns
- 1st high significance detection (> 8σ)
- $> 4\sigma$ excess wrt estimation from IGL
- Explanations?
 - Lots of faint galaxies Conselice+(2016)
 - IHL Cooray+(2012), Zemcov+(2014), Matsumoto+(2019)
 - Direct collapse black holes Yue+(2013)
 - ALP decays? Bernal+(2022a)

 $a \rightarrow \gamma + \gamma$; emission line

Axion and ALPs

Axion and ALPs

ALPs contributing to COB excess

$$I_{\lambda} \propto \frac{\Gamma_a}{\lambda_{obs}(1+z_*)H(z_*)}$$

 $z_*\equiv z$ of axion decay $\Gamma_a \propto m_a^3 g_{a\gamma}^2$

- Parameter region allowed by current observations
- Overlaps with hint from γ-ray extinction Korochkin+(2019)
- Will be probed by LIM (strongest sensitivity in this range, SPHEREx + HETDEX) Bernal+(2021)

 γ -ray attenuation

- Flux of high-energy γ -rays attenuated by IR-NUV EBL photons: $\gamma + \gamma \rightarrow e^- + e^+$
- $\epsilon_{\min} = \frac{2m_e^2 c^4}{E_{\gamma}(1+z)(1-\mu)}$
- $\sigma_{\gamma\gamma}$ peaks at ~ ϵ_{\min}

Biteau & Meyer (2022)

γ -ray attenuation

- Flux of high-energy γ -rays attenuated by IR-NUV EBL photons: $\gamma + \gamma \rightarrow e^- + e^+$
- Energy threshold: $\epsilon_{\min} = \frac{2m_e^2 c^4}{E_{\gamma}(1+z)(1-\mu)}$
- Integrated effect: measurements of $\tau(E_{\gamma}, z_s)$ as tomographic and chromatic EBL probe*

$$\tau(E_{\gamma}, z_{S}) = c \int_{0}^{z_{S}} \frac{dz}{H(z)(1+z)} \int_{\epsilon_{\min}}^{\infty} \frac{dn}{d\epsilon} \int_{-1}^{1} d\mu \sigma_{\gamma\gamma}(E_{\gamma}, \epsilon, z, \mu)$$

$$\frac{1}{Mean free path}$$

- ~800 blazars (Fermi-LAT+Cherenkov telescopes)
- Science cases:

Assuming EBL

- EBL probe Finke & Razzaque(2009), Abdollahi+(2018), Acciari+(2019), Desai+(2019)
- Expansion rate of the Universe Dominguez+(2019)
- Axion-photon oscillations Hooper & Serpico (2007), Mirizzi+(2007), Hochmuth & Sigl (2007), de Angelis+(2007); Abramowski+(2013) Ajello+(2016), Li+ (2021), Jacobsen+(2022)
- Pop III stars Gilmore (2012)
- Axion decays Kalashev+(2018), Korochkin+(2020 a, b)

Budget the EBL

- Measured binned $\tau(E_{\gamma}, z_s)$ from Fermi-LAT and Cherenkov telescopes •
- Standard contributions to the EBL:

ullet

- galaxies at z < 6: Observational, from HST/CANDELS (most dominant part) Saldana-Lopez+(2021)
- galaxies at z > 6: Theoretical (ARES), calibrated to UVLF, + PopIII stars ٠

Mirocha(2014), Mirocha+(2017), Mirocha+(2018) IHL: Theoretical, calibrated to NIR-optical background fluctuations

Coorav+(2012). Mitchell-Wvnne+(2015)

- Objective: Is there something else beyond standard?
 - Compute τ_i from each contribution to the EBL •
 - Consider extreme cases to account for uncertainties •
 - Add uncertainties in quadrature •
 - Work with τ_{res} as the residual after subtraction from standard sources •

$$\tau_{\rm res} = \tau_{\rm meas} - \Sigma \tau_i$$
; $\sigma^2(\tau_{\rm res}) = \sigma^2(\tau_{\rm meas}) + \Sigma \sigma^2(\tau_i)$

Budget the EBL

- $\tau_{res} > 0$: additional EBL required to explain the optical depth slightly higher than inferred
- Axion decays? Misestimation of standard sources?
- Science case: Explore axion parameter space (m_a, Γ_a) (assuming all DM)
- Null cases:

A) frequency-independent re-scaling F_{eEBL} of the EBL from galaxies at z < 6: EBL γ # density: $\left(\frac{dn}{d\epsilon}\right)_{gal,z<6}^{new} = (1 + F_{eEBL}) \left(\frac{dn}{d\epsilon}\right)_{gal,z<6}^{old}$

B) Boost errors for EBL from galaxies at z < 6 until τ_{res} consistent with 0 and fit for (m_a, Γ_a)

$$\Delta \chi^2_{a-\text{eEBL}} = 0.7$$

Signif. over null

ALPs = 2.1σ

 $F_{\rm eEBL} =$ 2.7 σ

Best fit

 $\Gamma_a = 2.5 \times 10^{-24} \text{ s}^{-1}$

 $m_a = 9.1 \, {\rm eV}/c^2$

 $F_{\rm eEBL} = 0.22 \pm 0.08$

Bernal+(2022b)

Bernal+(2022b)

Caution: log-log plot

Bernal+(2022b)

Understanding the axion hint

- Unconstrained best-fit
- 2σ significance
- Overlap with explanation for COB excess
- Strongest constraints at 3σ for $m_ac^2 \in [8, 25]~{
 m eV}$
- Bimodal distribution

95% CL

- Poor fit to local blazars
- Also preference for F_{eEBL}

$$\Gamma_a = 2.5 \times 10^{-24} \text{ s}^{-1}$$

2.1 σ
 $m_a = 9.1 \text{ eV}/c^2$

 $\Gamma_a \propto m_a^3 g_{a\gamma}^2$

Understanding the axion hint

Removing 1st redshift bin $\Delta \chi^2_{a-\rm eEBL} = -3.2$

- Much stronger evidence, but ruled out
- F_{eEBL} similar significance

4.0*σ*

$$\Gamma_{a,{
m bf}} = 1.0 imes 10^{-23}~{
m s}^{-1}$$
 $m_{a,{
m bf}} = 5.7~{
m eV}/c^2$

 $\Gamma_a \propto m_a^3 g_{av}^2$

Null case B

 3σ limits after boosting uncertainties until all $au_{
m res}$ are upper limits

Still the strongest limits

 $\Gamma_a \propto m_a^3 g_{a\gamma}^2$

Conclusions

- Multi-electronvolt ALP decays may contribute to the COB excess
- γ -ray absorption needs more EBL than observed/inferred from standard astro sources
- Can be explained with a frequency independent increase of 14-30% in the contribution from galaxies at z < 6 (with 2.7 σ significance)
- Multielectronvolt-scale axion dark matter may also work (with 2.1σ significance)
- Strongest constraints to date on axion-photon coupling for masses between 8-25 eV
- Promising future, with more observations by existing and forthcoming γ -ray and Cherenkov telescopes, as well as improved EBL determinations with experiments like SPHEREx and JWST
- LIM prospects: huge improvement in sensitivity

Back up slides

Explanations for the excess?

- Misestimation of the abundance of faint galaxies (extrapolated to estimate IGL) conselice+(2016)
- Intra halo light Cooray+(2012), Zemcov+(2014), Matsumoto+(2019)
- Radiation from very bright early emitters, like direct-collapse black holes Yue+(2013)

Budget the EBL

- $\tau_{res} > 0$: additional EBL required to explain the optical depth slightly higher than inferred
- Axion decays? Misestimation of standard sources?

Desai+ (2019); Fermi-LAT (Ajello+, 2018)

What is Line-Intensity Mapping?

- LIM: use the integrated signal without requiring a detection threshold
- Information from all incoming photons, from all galaxies and IGM along the LoS
- Target a identifiable spectral line \rightarrow know redshift \rightarrow 3D maps

What is Line-Intensity Mapping?

- LIM: use the integrated signal without requiring a detection threshold
- Information from all incoming photons, from all galaxies and IGM along the LoS
- Target a identifiable spectral line \rightarrow know redshift \rightarrow 3D maps

~ 1.5k hours of COMAP mapping CO intensity fluctuations

P. Breysse

What is Line-Intensity Mapping?

- LIM: use the integrated signal without requiring a detection threshold
- Infor Galaxy surveys: detailed distribution of brightest galaxies LoS
 Targ Intensity maps: noisy distribution of all galaxies and IGM

~ 1.5k hours of COMAP mapping CO intensity fluctuations

Using LIM for cosmology

• Intensity traces density: cosmological information degenerate with astrophysics

$$\delta T \sim \langle T \rangle b \delta_m \Longrightarrow P_{TT} \sim \langle T \rangle^2 b^2 P_m + \langle T^2 \rangle$$

- Limitations:
 - Intensity maps are highly non-Gaussian: lots of information beyond P(k)
 - P(k) only depends on 1st and 2nd moments of the luminosity functions
 - P(k) mostly relevant for cosmology, but degenerate with some astro

Using LIM for cosmology

• Intensity traces density: cosmological information degenerate with astrophysics

$$\delta T \sim \langle T \rangle b \delta_m \Longrightarrow P_{TT} \sim \langle T \rangle^2 b^2 P_m + \langle T^2 \rangle$$

- Limitations:
 - Intensity maps are highly non-Gaussian: lots of information beyond P(k)
 - P(k) only depends on 1st and 2nd moments of the luminosity functions
 - P(k) mostly relevant for cosmology, but degenerate with some astro
- VID: one-point distribution of intensities, encodes full luminosity function (proxy for $\mathcal{P}(I)$)

Using LIM for cosmology

• Intensity traces density: cosmological information degenerate with astrophysics

$$\delta T \sim \langle T \rangle b \delta_m \Longrightarrow P_{TT} \sim \langle T \rangle^2 b^2 P_m + \langle T^2 \rangle$$

- Limitations:
 - Intensity maps are highly non-Gaussian: lots of information beyond P(k)
 - P(k) only depends on 1st and 2nd moments of the luminosity functions
 - P(k) mostly relevant for cosmology, but degenerate with some astro
- VID: one-point distribution of intensities, encodes full luminosity function (proxy for $\mathcal{P}(I)$)

P(k): best for cosmo, integrals of luminosity functions

Working on their combination & covariance

VID: best for astro, integrals of clustering

Sato-Polito & JLB (2022)

Contamination of intensity maps

- Continuous foregrounds: problem for HI surveys, less severe at higher frequencies
- Line interlopers: Main problem for higher freq. LIM surveys
 - $v_{obs} = v/(1+z) = v'/(1+z') \rightarrow$ other lines redshifted to same v_{obs}

Contamination of intensity maps

- Continuous foregrounds: problem for HI surveys, less severe at higher frequencies
- Line interlopers: Main problem for higher freq. LIM surveys
 - $v_{obs} = v/(1+z) = v'/(1+z') \rightarrow$ other lines redshifted to same v_{obs}
 - Two approaches:
 - Masking: targeted (external data) and blind (contaminated voxels are Breysse, Kovetz, Kamionkowski (2015) Sun, Moncelsi, Viero, Silva (2018)
 - Model the effect of known interlopers in the likelihood and analyses

Lidz & Taylor (2016) Sun, Moncelsi, Viero, Silva (2018) Gong, Chen, Cooray (2020) Cheng, Chang, Bock (2020)

Exotic radiative decays would be inadvertently detected as a line interloper!!

Effect in power spectrum

• Confusion in redshift → projection effects → **extra anisotropy**

• Model it similar to AP effect: $k_i^{true} \equiv k_i^{infer}/q_i$

$$q_{\parallel} = \frac{(1+z_X)/H(z_X)}{(1+z_l)/H(z_l)} \qquad \qquad q_{\perp} = \frac{D_M(z_X)}{D_M(z_l)}$$

Effect in power spectrum

•
$$P_{tot} = P_l + P_X;$$
 $k_i^{true} \equiv k_i^{infer}/q_i$

JLB, Caputo, Kamionkowski (2021)

Effect in VID

- Each voxel receives contributions from both emissions:
- $T_{tot} = T_l + T_{noise} \qquad \mathcal{P}_{tot+X}(T) = \left((\mathcal{P}_l * \mathcal{P}_X) * \mathcal{P}_{noise} \right)(T); \qquad \mathcal{P}_X = \mathcal{P}_{\widetilde{\rho}} / \langle T_X \rangle$
- $\mathcal{P}_{\tilde{\rho}}$: PDF of normalized densities. Obtained from simulations

No noise contribution included here!

JLB, Caputo, Kamionkowski (2021)

Sensitivity in axion context

Bernal+ (2022a)

Exotic radiative decays

• Decaying dark matter: $\chi \rightarrow \gamma + \gamma$

$$\nu_{\gamma} = m_{\chi}c^{2}/2h_{P} \qquad \rho_{L}^{\chi}(\boldsymbol{x}, \boldsymbol{z}) = \rho_{\chi}(\boldsymbol{x}, \boldsymbol{z})c^{2}\Gamma_{\chi}f_{\chi}f_{\gamma\gamma}f_{esc}(1+2\mathcal{F}_{\gamma})$$

Traces directly the DM density field

 $\Theta_{\mathbf{v}}$

Challenges & improvements (LIM)

- Challenges:
 - Astrophysical uncertainties: marginalization, break degeneracies
 - Other contaminants: loss of information, potential biases
 - Line broadening (currently testing BAO robustness against this)
- Reasons to be optimistic:
 - Many pathfinders and experiments in the pipeline (and theory efforts too!)
 - Other summary statistics
 - Exotic decays:
 - Extensible to other interloper-treatement, summary statistics, etc
 - Multiprobe with galaxy clustering and weak lensing
 - New info and checks through cross correlations, new strategies