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cavity haloscope searches of QCD axions are hopeless

unless . . .

we change the cavity readout paradigm



HALOSCOPE - resonant search for axion DM in the Galactic halo

− original proposal by P. Sikivie (1983)

− search for axions as cold dark matter constituent: SHM from ΛCDM, local DM density ρ
→ signal is a line with 10−6 relative width in the energy(→ frequency) spectrum

− an axion may interact with a strong ~B field to produce a photon of a specific frequency (→ ma)



HALOSCOPE - resonant search for axion DM in the Galactic halo

1. microwave cavity for resonant amplification
-think of an HO driven by an external force-

2. with tuneable frequency to match the axion mass

3. the cavity is within the bore of a SC magnet

4. cavity signal is readout with a low noise receiver

5. cavity and receiver preamplifier are kept at base temperature
of a dilution refrigerator (10− 50) mK
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cavity coupled to a JPA and immersed in a static mag-
netic field of 8.1 T, all cooled down with a dilution re-
frigerator at a working temperature T ⇠ 150 mK. These
features improve the precedent work of Ref. [16], allow-
ing us to exclude values of ga�� > 0.639 · 10�13 GeV�1

at 90% C.L.
In Sec. II we describe the experimental setup along

with its calibration, while in Sec. III we present the re-
sults and data analysis, and prospects for QUAX–a� in
Sec. IV.

II. EXPERIMENTAL SETUP

FIG. 1. View of the QUAX�a� dilution refrigerator insert,
instrumented with resonant cavity (at the bottom) and ampli-
fication chain. Behind, the 8.1 T magnet with its countercoil
is visible.

The haloscope, assembled at Laboratori Nazionali di
Legnaro (LNL), is composed by a cylindrical OFHC-Cu
cavity (Fig. 1), with inner radius of 11.05 mm and length
210 mm, inserted inside the 150 mm diameter bore of an
8.1 T superconducting (SC) magnet of length 500 mm.
The total volume of the cavity is V = 80.56 cm3. The
whole system is hosted in a dilution refrigerator with
base temperature of 90 mK. Each cavity endplate hosts
a dipole antenna in the holes drilled on the cavity axis.
The cavity was treated with electrochemical polishing

to minimize surface losses. We measured the resonant
peak of the TM010 mode at 150 mK and magnet on
with a Vector Network Analyzer obtaining the frequency
⌫c= 10.4018 GHz and an unloaded quality-factor Q0=
76,000 in agreement with expectations from simulation
performed with the ANSYS HFSS suite [31]. During
data-taking runs, the cavity was critically coupled to the
output radiofrequency (RF) line and the loaded quality-
factor was measured to be about QL= 36,000.

FIG. 2. Schematics of the experimental apparatus. The mi-
crowave cavity (orange) is immersed in the uniform magnetic
field (blue shaded region) generated by the magnet (crossed
boxes). A1 and A2 are the cryogenic and room-temperature
amplifiers, respectively. The JPA amplifier has three ports:
signal (s), idler (i), and pump (p). Superconducting cables
(red) are used as transmission lines for RF signals from 4 K
stage to 150 mK stage. Thermometers (red circled T) are
in thermal contact with the resonant cavity and the signal
port on the JPA. Attenuators are shown with their reduc-
tion factor in decibels. The horizontal lines (blue) identify
the boundaries of the cryogenic stages of the apparatus, with
the cavity enclosed within the 150 mK radiation shield. The
magnet is immersed in liquid helium.

The RF setup is the same as our previous measure-
ment [15] and is shown in Fig. 2. It consists of four RF
lines used to characterize and measure the cavity sig-



SCAN RATE

For a target sensitivity gaγγ , the parameter space scan rate is given by:

df
dt
∝ B4 V2

eff QL

Tsys

A haloscope optimized at best goes at:(
df
dt

)
KSVZ

∼ GHz/year

(
df
dt

)
DFSZ

∼ 20 MHz/year ��

Take-home: to probe the mass range (1-10) GHz at DFSZ sensitivity would require
& 100 years with 4-5 complementary haloscopes



it’s a hopeless search even though we use our best cavities df/dt ∝ QL

Transition from copper cavities (Qc � Qa = 106) to new solutions that satisfy Qc � Qa
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Engineering of Form Factor in Rotationally Symmetric Photonic Cavities for Faster Axion Searches 2 

On the other hand, a major hurdle for photonic cavities is 
maintaining their performance in terms of form and quality 
factors while achieving a significant tuning range. Tuning a 
photonic cavity is rather more difficult than a standard pillbox 
copper cavity as a metallic rod cannot generally be employed 
in the high field regime. In this case, the RF losses on the 
metallic rod itself will degrade the cavity's quality factor. 
Some work on photonic cavities for axions addressed the 
tunability challenge by integrating the tunning mechanism in 
the dielectric loading itself. Two methods were used either by 
utilizing supermodes [14] or through dielectric wedges and 
working with an azimuthally varying transverse magnetic 
mode [16]. However, both the supermodes method and the 
wedge implementation ended up so far with cavities limited in 
quality factor by the wall losses as the field distribution is 
relatively high near the cavity walls. On the other hand, the 
QUAX collaboration suggested a conceptual mechanism for 
tuning rotationally symmetric cavities by dividing the inner 
shell longitudinally into two halves and moving them against 
each other in the transverse plan [17].   

In this letter, we discuss a potential technique to engineer 
rotationally symmetric photonic cavities such that they exhibit 
a high form factor >0.1 while maintaining a high-quality 
factor >5e5, beyond state of the art in photonic cavities for 
axion searches. The superior performance of the proposed 
cavities immediately reflects on the scan rate as it is 
quadratically proportional to the form factor and is linearly 
proportional to the quality factor [9].  

II. FORM FACTOR ENGINEERING 
Conventionally, the form factor of a resonant mode inside the 
RF cavity is defined as [9] 

 
Where B0 is the dc magnetic field in the interaction region of 
the magnet and the cavity, Emnp is the electric field of an 
electromagnetic mode number mnp in the cavity, V is the 
cavity volume, and ε(x) is the dielectric constant as a function 
of volume. Both integrals in the form factor definition are 
carried over the cavity volume.  
 The most common magnet type in axion searches is a 
solenoid, where the magnetic field is vertical. The form factor, 
in this case, can then be reduced to  

 
where Ez is the electric field in the vertical direction. The 
solenoid magnet case narrows down the useful resonant modes 
to TM modes.  

Moreover, the highest in form factor among the TM modes 
will be the one with the full field in the z-direction; TM0n0 
(assuming a mode convention of a cylindrical cavity). There 
are no longitudinal variations to the field for such modes, and 
the electromagnetic problem can then be simplified to 2D to 
study only the cavity's cross-section.  

 
Let's consider a photonic bandgap cavity loaded with two 

layers of nested sapphire tubes as shown in Fig. 1(a), similar 
to the work presented before by QUAX in [17]. Figure1(b)-(g) 
show the simulated longitudinal electric field for the first six 
TM0n0 modes. Comsol Multiphysics was used in these 
electromagnetic simulations [29]. We have intentionally 
chosen the dimensions of Rc=29 mm, Rs1=10.7 mm, ts1=1.9 
mm, Rs2=19.8 mm, and ts2=1.6 mm, that are identical to the 
cavity in [17] to use it as a reference for comparison purposes. 
Dielectric constant of 11.2 and loss tangent of 2e-6 was 
assumed for the sapphire.  

Meanwhile, Table 1 lists the resonance frequencies, form, 
and quality factors for these six TM0n0 modes. The table also 
lists C2Q0, which is a direct measure of the scan rate. TM030 
is the mode that was used in [17], where the simulated form 
factor in 2D is 0.041, and the quality is 2.33e6. The work in 
[17] focused on increasing the cavity's quality factor to the 
maximum extent. In that sense, TM030 is the highest Q mode, 
as shown in Table 1. We noticed, however, while studying the 
higher-order modes of this structure that some modes in the 
same cavity exhibit superior form factors, specifically, TM050 
and TM060. TM060, in particular, also exhibits a relatively 
high-quality factor resulting in the highest C2Q0, as listed in 
Table 1.  

The superior performance of TM060 warranted further 
investigation to come up with a physical explanation as to why 

 
(a) 

  
(b)                                      (c)                                     (d) 

 
(e)                                      (f)                                     (g) 

     
Fig. 1.  Electromagnetic resonance modes in photonic cavity with two 
dielectric shells. (a) 2D cross-section of the cavity. (b) TM010. (c) TM020. 
(d) TM030. (e) TM040. (f) TM050. (g) TM060. 

Phys. Rev. D 99, 101101 (2019) arXiv:2201.10733 Phys. Rev. Appl. 17, 054013 (2022)

Phys. Rev. Appl. 17, 054013 (2022)

� broad-tuning mechanism demonstrated
QUAX cavity

type-II superconductor (ReBCO)

PATRAS Workshop 2022

results from CAPP (Korea)

Q & 107 for any B field value we can afford



it’s a hopeless search even though we use our best magnets df/dt ∝ B4Magnet
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it’s a hopeless search even when we use our best low noise amplifiers

and operate at lowest temperatures in the Universe (∼ 10 mK) df/dt ∝ T−2

Josephson Parametric Amplifiers (JPAs) introduce the lowest level of noise, set by the laws of quantum
mechanics (Standard Quantum Limit noise)

Tsys = Tc + TA
Tc cavity physical temperature
TA effective noise temperature of the amplifier

kBTsys = hν
(

1
ehν/kBT − 1

+
1
2

+ Na

)

ADMX: Axion Dark Matter eXperiment

at 10 GHz frequency



it’s a hopeless search even when we use our best low noise amplifiers
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Josephson Parametric Amplifiers (JPAs) introduce the lowest level of noise, set by the laws of quantum
mechanics (Standard Quantum Limit noise)
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STANDARD QUANTUM LIMIT IN LINEAR AMPLIFICATION

Any narrow bandwidth signal ∆νc � νc can be written as:

V(t) = V0[X1 cos(2πνct) + X2 sin(2πνct)]

= V0/2[a(t) exp(−2πiνct) + a∗(t) exp(+2πiνct)]

X1 and X2 signal quadratures
a, a∗ → to operators a, a† with [a, a†] = 1 and N = aa†
Hamiltonian of the cavity mode is that of the HO:

H = hνc

(
N +

1
2

)

Alternatively, with [X1,X2] = i
2 :

H =
hνc

2
(X2

1 + X2
2)

kTsys = hνcNsys =
(

1
ehν/kT−1

+ 1
2 + NA

)
Caves’ Theorem: NA > 1/2

The quantum noise is a consequence of the base
that we want to use to measure the content of the
cavity.
A linear amplifier measures the amplitudes in
phase and in quadrature, while a photon counter
measures N.



BEYOND SQL: SQUEEZING AND PHOTON COUNTING

νc GHz Q β B T V cm3 Cnml Paγγ × 10−24 W Γsig Hz
QUAXaγ 10.48 1×106 1 14 T 1150 0.47 439 (KSWZ) 63

60 (DFSZ) 8.7

− Photon counting is a game changer at high frequency and
low temperatures: in the energy eigenbasis there is no
intrinsic limit (SQL)

− unlimited (exponential) gain in the haloscope scan rate
compared to linear amplification at SQL:

Rcounter

RSQL
≈ QL

Qa
e

hν
kBT

plot example at 10 GHz, where TSQL = hν/kB → 0.5 K

at 7 GHz, 40 mK =⇒ 103 faster than SQL linear amplifier readout!



INTRODUCTION axion-photon [a�] axion-electron quantum sensing LNL and LNF haloscopes

back to the origins of the QUAX FMR haloscope

ELECTRON COUPLING – QUAX NEW CONCEPT! the FMR haloscope

the axion DM cloud acts as an effective RF magnetic field on the
electron spin exciting magnetic transitions in a magnetized sample
(YIG) ! RF photons

sostituire con disegno modificato: ⌧min = min(⌧a, ⌧c, tau2) under the condition of strong coupling, sotto ns metti
YIG (Yttrium Iron Garnet) e tuning con campo B sotto a massa (ESR, where the RF field is actually the axion
effective field)

Eur. Phys. J. C   (2018) 78:703 Page 3 of 9  703 

Fig. 1 Transmission spectrum of the hybrid system as a function of
the external field B0, showing the anticrossing curve of the cavity mode
(red dashed line) and Kittel mode (blue dashed line). The coupling g is
defined by Eq. (5)

Fig. 2 Power spectrum of the cavity (blue line), and hybrid modes
calculated for a critically coupled antenna and a sample volume Vs
(orange line) and 5Vs (green line). The used parameters are close to the
experimental values of our apparatus

g = γ

2π

√
µ0h fa
Vm

nsVs = f+ − f−, (5)

where µ0 is vacuum magnetic permeability and Vm = ξVc is
the product of the cavity volume Vc and a mode-dependent
form factor ξ . The linewidths of the hybrid modes k+,− are an
average of the linewidth of the cavity kc and of the material
km , i. e. k+,− = 1

2 (kc + km) ≡ kh . The calculated power
spectral density of an empty cavity and of a cavity with the
volume Vs and 5Vs of material are shown in Fig. 2. The two
hybrid modes are more sensitive to the power deposited by the
axion field since they are not affected by radiation damping,
the minimum relaxation time is τmin = min(τh, τ∇a), where
τh = 1/kh . With an antenna critically coupled to one of the
hybrid resonant modes, the extracted power is Pout = Pin/2.

The scalar product σ̂ · ∇a of Eq. (2) shows that the effect is
directional. Due to earth rotation, an earth-based experiment
experiences a full daily modulation of the signal, due to the
variation of the axion wind direction.

3 The QUAX prototype

To implement the scheme presented in Sect. 2 we use a cylin-
drical copper cavity TM110 mode with resonance frequency
fc $ 13.98 GHz and linewidth kc/2π $ 400 kHz at liq-
uid helium temperature, measured with a critically coupled
antenna. The shape of the cavity is not a regular cylinder, two
symmetric sockets are carved into the cylinder to remove the
angular degeneration of the normal mode, the maximum and
minimum diameters are 26.7 mm and 26.1 mm, and the length
is 50.0 mm. The shape of the cavity and of the mode magnetic
field are shown in Fig. 3. The choice of the TM110 mode has
the advantage of having a uniform maximum magnetic rf field
along the cavity axis. Its volume can be increased just using
a longer cavity without changing the mode resonance fre-
quency. For this mode we calculate a form factor ξ = 0.52
[61]. The cavity mode is coupled to a magnetic material,
thus we studied the properties of several paramagnetic sam-
ples and some ferrites. Highest values of ns together with
long relaxation times have been found for YIG (Yttrium Iron
Garnet) and GaYIG (Gallium doped YIG). To avoid inho-
mogeneous broadening of the linewidth due to geometrical
demagnetization, these garnets are shaped as highly polished
spheres. Five GaYIG spheres of 1 mm diameter have been
placed in the maximum magnetic field of the mode, which
lies on the axis of the cavity. The spheres are housed inside
a PTFE support large enough to let them rotate in all pos-
sible directions, in order to automatically align the GaYIG
magnetization easy axis with the external magnetic field.

The amplitude of an external magnetic field B0 determines
the Larmor frequency of the electrons. The uniformity of
B0 on all the spheres must be enough to avoid inhomoge-
neous broadening of the ferromagnetic resonance. To achieve
a magnetic field uniformity ≤ 1/Qh , where Qh ∼ 104 is the
quality factor of the hybrid mode, we make use of a supercon-
ducting NbTi cylindrical magnet equipped with a concentric
cylindrical NbTi correction magnet. With B0 = 0.5 T we
have fL $ fc and thus the hybridization of the cavity and
Kittel modes, as discussed in Sect. 2. The power supply of the
main magnet is a high-precision, high-stability current gen-
erator, injecting 15.416 A into the magnet with a precision
better than 1 mA, while a stable current generator provides
26.0 A for the correction magnet. A simplified scheme of the
cavity, material and magnet setup is represented in the left
part of Fig. 4.

In the strong coupling regime, the hybrid mode frequen-
cies are f+ = 14.061 GHz and f− = 13.903 GHz, yielding

123

under the condition of strong coupling

YIG (Yttrium Iron Garnet)

ESR (Electron Spin Resonance)
 the RF field is actually the axion effective field

—> > axion mass tuning with B field!
1.7 T —>  48 GHz

corresponding signal photon rate
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To implement the scheme presented in Sect. 2 we use a cylin-
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symmetric sockets are carved into the cylinder to remove the
angular degeneration of the normal mode, the maximum and
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Crescini et al Phys Rev Lett 124, 171801 (2020)
Barbieri et al Phys Dark Univ 15, 135-141 (2017)



REAL SMPDS HAVE FINITE EFFICIENCY η AND DARK COUNTS Γdc > Γsig

δNdc =
√

Γdcτ uncertainty in the number of dark counts collected in an integration time τ

Σ =
ηΓsigτ√

Γdcτ
= ηΓsig

√
τ

Γdc
the dark count contribution to the fluctuations dominates

Rcounter =
∆νc

τ
=

∆νcη2P2
aγγ

h2ν2Σ2Γdc
Rlin =

Qa

Qc

(
Paγγ

kBTσ

)2
scan rates lin. amp. and counter

Rcounter

Rlin
=

(
kBTsys

hν

)2 η2∆νa

Γdc

quantum advantage can be demonstrated even with high dark count rates Γdc
η ≈ 0.4, Γdc ≈ 100 Hz =⇒ potential improvement of a factor 11 compared to SQL scan rate



SMPDS FOR ITINERANT PHOTONS

A Single Photon Microwave Counter (SMPD) architecture is significantly different whether it is meant for cavity
photons or itinerant (traveling) photons.
We are interested in the itinerant version due to the intense magnetic fields involved in axion search.

SMPD
− detection of individual microwave photons is a challenging

task because of their low energy ∼ 10−5 eV

− a solution: use “artificial atoms” introduced in circuit QED,
their transition frequencies lie in the ∼GHz range

− or: rely on a single current-biased Josephson junction (L.
Kuzmin device)



ARTIFICIAL ATOMS: the TRANSMON QUBIT

In Sec. IV, we provide a review of how single- and two-qubit
operations are typically implemented in superconducing circuits, by
using a combination of local magnetic flux control and microwave
drives. In particular, we discuss the family of two-qubit gates arising
from a capacitive coupling between qubits, and introduce several
recent advances that have been demonstrated to achieve high-fidelity
gates, as well as applications in quantum information processing that
use these gates. The continued development of high-fidelity two-qubit
gates in superconducting qubits is a highly active research area. For
this reason, we include sufficient technical details that a reader may
use this review as a starting point to critically assess the pros and cons
of the various gates, as well as develop an appreciation for the types of
gate-engineering already implemented in-state-of-the-art supercon-
ducting quantum processors.

Finally, in Sec. V, we discuss the physics and engineering associ-
ated with the dispersive readout technique, typically used to measure
the individual qubit states in modern quantum processors. After a
discussion of the theory behind dispersive coupling, we give an intro-
duction to design of Purcell filters and the development of quantum-
limited parametric amplifiers (PAs).

II. ENGINEERING QUANTUM CIRCUITS
In this section, we will demonstrate how quantum systems based

on superconducting circuits can be engineered to achieve certain
desired properties. Using the most common qubit modalities, we dis-
cuss how properties such as the qubit transition frequency, anharmo-
nicity, and noise susceptibility can be tailored by the choice of circuit
topology and element parameter values. We also discuss how to engi-
neer the interactions between different quantum systems, in particular,
the cases of qubit-qubit and qubit-resonator couplings.

A. From quantum harmonic oscillator to the transmon
qubit

A quantum mechanical system is governed by the time-
dependent Schr€odinger equation

Ĥ jwðtÞi ¼ i"h
@

@t
jwðtÞi; (1)

where jwðtÞi is the state of the quantum system at time t, "h is the
reduced Planck’s constant h/2p, and Ĥ is the “Hamiltonian” that
describes the total energy of the system. The “hat” is used to indicate
that Ĥ is a quantum operator. As the Schr€odinger equation is a first-
order linear differential equation, the temporal dynamics of the quan-
tum system may be viewed as a straightforward example of a linear
dynamical system with a formal solution

jwðtÞi ¼ e$iĤ t="hjwð0Þi: (2)

The time-independent Hamiltonian Ĥ governs the time evolution of
the system through the operator e$iĤ t="h. Thus, just as with classical
systems, determining the Hamiltonian of a system—whether the clas-
sical Hamiltonian H or its quantum counterpart Ĥ—is the first step to
deriving its dynamical behavior. In Sec. IV, we consider the case when
the Hamiltonian is time-dependent in the context of qubit control.

To understand the dynamics of a superconducting qubit circuit,
it is natural to start with the classical description of a linear LC reso-
nant circuit [Fig. 1(a)]. In this system, energy oscillates between

electrical energy in the capacitor C and magnetic energy in the induc-
tor L. In the following, we will arbitrarily associate the electrical energy
with the “kinetic energy” and the magnetic energy with the “potential
energy” of the oscillator. The instantaneous, time-dependent energy in
each element is derived from its current and voltage

EðtÞ ¼
ðt

$1
Vðt0ÞIðt0Þdt0; (3)

where Vðt0Þ and Iðt0Þ denote the voltage and current of the capacitor
or inductor.

To derive the classical Hamiltonian, we follow the standard
approach used in classical mechanics: the Lagrange-Hamilton formu-
lation. Here, we represent the circuit elements in terms of one of its
generalized circuit coordinates, charge or flux. In the following, we
pick flux, defined as the time integral of the voltage

UðtÞ ¼
ðt

$1
Vðt0Þdt0: (4)

In this example, the voltage at the node is also the branch voltage across
the element. In this section, we will simply refer to these as node vol-
tages and fluxes for convenience. For a more detailed discussion of
nodes and branches in this context, we refer the reader to Ref. 44.

Note that in the following, we could have exchanged our associa-
tions with kinetic energy (momentum coordinate) and potential
energy (position coordinate), and instead start with the charge variable
Q(t), which is the time integral of the current I(t).

By combining Eqs. (3) and (4), using the relations V ¼ L dI=dt
and I ¼ C dV=dt, and applying the integration by parts formula, we

FIG. 1. (a) Circuit for a parallel LC-oscillator (quantum harmonic oscillator, QHO),
with inductance L in parallel with capacitance, C. The superconducting phase on
the island is denoted as /, referencing the ground as zero. (b) Energy potential for
the QHO, where energy levels are equidistantly spaced "hxr apart. (c) Josephson
qubit circuit, where the nonlinear inductance LJ (represented by the Josephson-
subcircuit in the dashed orange box) is shunted by a capacitance, Cs. (d) The
Josephson inductance reshapes the quadratic energy potential (dashed red) into
sinusoidal (solid blue), which yields nonequidistant energy levels. This allows us to
isolate the two lowest energy levels j0i and j1i, forming a computational subspace
with an energy separation "hx01, which is different than "hx12.
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E01 = E1 − E0 = ~ω01 6= E02 = E2 − E1 = ~ω21
→ good two-level atom approximation

control internal state by shining laser tuned at the
transition frequency:
H = −~d · ~E(t), with E(t) = E0 cosω01t

toolkit: capacitor, inductor, wire (all SC)
ω01 = 1/

√
LC ∼ 10 GHz∼ 0.5 K

→ simple LC circuit is not a good two-level atom
approximation
IJ = Ic sinφ V = φ0

2π
∂φ
∂t

V = φ0
2π

1
Ic cosφ

∂IJ
∂t = LJ

∂IJ
∂t

LJ = φ0
2π

1
Ic cosφ NL Josephson inductance



quantum engineers and particle physicists joining efforts

A practical transmon-based counter has been recently developed (Quantronics group CEA, Saclay) that we will
apply to haloscope signal readout.

R. Lescanne et al, Phys. Rev. X 10, 021038 (2020)
E. Albertinale et al, Nature 600, 434 (2021)



transmon-based SMPD

R. Lescanne et al, Phys. Rev. X 10, 021038 (2020)
E. Albertinale , Nature 600, 434 (2021)

− a three-step process repeated several times

− qubit reset (R) performed by turning on the pump pulse
+ a weak resonant coherent pulse to the waste port

− detection (D) step with the pump pulse on

− measurement (M) step probes the dispersive shift of the
buffer resonator to infer the qubit state



QUANTUM SENSING

“Quantum sensing” describes the use of a quantum system, quantum properties or quantum phenomena to perform a
measurement of a physical quantity
Rev. Mod. Phys. 89, 035002 (2017)

1. Use of a quantum object to measure a physical quantity
(classical or quantum). The quantum object is characterized
by quantized energy levels, i.e. electronic, magnetic or
vibrational states of superconducting or spin qubits, neutral
atoms, or trapped ions.

2. Use of quantum coherence (i.e., wave-like spatial or
temporal superposition states) to measure a physical quantity

3. Use of quantum entanglement to improve the sensitivity or
precision of a measurement, beyond what is possible
classically.

12

are

V||(t) = Vz(t) ,

V?(t) = Vx(t) + iVy(t), (7)

where the z direction is defined by the qubit’s quantiza-
tion axis. The corresponding signal Hamiltonian is

ĤV (t) = �Re[V?(t)]�̂x + �Im[V?(t)]�̂y + �V||(t)�̂z . (8)

3. Control Hamiltonian

For most quantum sensing protocols it is required to
manipulate the qubit either before, during, or after the
sensing process. This is achieved via a control Hamilto-
nian Ĥcontrol(t) that allows implementing a standard set
of quantum gates (Nielsen and Chuang, 2000). The most
common gates in quantum sensing include the Hadamard
gate and the Pauli-X and Y gates, or equivalently, a set of
⇡/2 and ⇡ rotations (pulses) around di↵erent axes. Ad-
vanced sensing schemes employing more than one sensor
qubit may further require conditional gates, especially
controlled-NOT gates to generate entanglement, Swap
gates to exploit memory qubits, and controlled phase
shifts in quantum phase estimation. Finally, the control
Hamiltonian can include control fields for systematically
tuning the transition frequency !0. This capability is
frequently exploited in noise spectroscopy experiments.

B. The sensing protocol

Quantum sensing experiments typically follow a
generic sequence of sensor initialization, interaction with
the signal, sensor readout and signal estimation. This
sequence can be summarized in the following basic pro-
tocol, which is also sketched in Fig. 2:

1. The quantum sensor is initialized into a known ba-
sis state, for example |0i.

2. The quantum sensor is transformed into the desired
initial sensing state | 0i = Ûa|0i. The transforma-
tion can be carried out using a set of control pulses
represented by the propagator Ûa. In many cases,
| 0i is a superposition state.

3. The quantum sensor evolves under the Hamiltonian
Ĥ [Eq. (2)] for a time t. At the end of the sensing
period, the sensor is in the final sensing state

| (t)i = ÛH(0, t)| 0i = c0| 0i + c1| 1i , (9)

where ÛH(0, t) is the propagator of Ĥ, | 1i is the
state orthogonal to | 0i and c0, c1 are complex co-
e�cients.

1. Initialize

5. Project, Readout

3. Evolve for time 

4. Transform

2. Transform

6. Repeat and average

“0” with probability 
“1” with probability

7. Estimate signal

FIG. 2 Basic steps of the quantum sensing process.

4. The quantum sensor is transformed into a superpo-
sition of observable readout states |↵i = Ûb| (t)i =
c00|00i + c01|10i. For simplicity we assume that the
initialization basis {|0i, |1i} and the readout basis
{|00i, |10i} are the same and that Ûb = Û†

a , but this
is not required. Under these assumptions, the co-
e�cients c00 ⌘ c0 and c01 ⌘ c1 represent the overlap
between the initial and final sensing states.

5. The final state of the quantum sensor is read
out. We assume that the readout is projective,
although more general positive-operator-valued-
measure (POVM) measurements may be possi-
ble (Nielsen and Chuang, 2000). The projective
readout is a Bernoulli process that yields an answer
“0” with probability 1� p0 and an answer “1” with
probability p0, where p0 = |c01|2 / p is proportional
to the measurable transition probability,

p = 1 � |c0|2 = |c1|2 (10)

that the qubit changed its state during t. The bi-
nary answer is detected by the measurement appa-
ratus as a physical quantity x, for example, as a
voltage, current, photon count or polarization.

Steps 1-5 represent a single measurement cycle. Because
step 5 gives a binary answer, the measurement cycle



BASIC PROTOCOL

quantum sensing experiments typically follow a generic sequence of processes known as:

1. sensor initialization into a known basis state

2. interaction with the signal

3. sensor readout

4. signal estimation
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voltage, current, photon count or polarization.
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PILOT SMPD-HALOSCOPE EXPERIMENT

� copper cavity sputtered with NbTi
magnetron sputtering in INFN-LNL

� right cylinder resonator, TM010 mode
νc ∼ 7.3 GHz to match the new generation SMPD bandwidth
(7.280 - 7.380) GHz

� system of sapphire triplets to tune the cavity frequency
∼ 10 MHz tuning without impacting Q

� Attocube nanopositioner to change the sapphire rods
position



the dark count is a inhomogeneous Poisson process

8 Darkcount and preliminary tests analysis

8.1 Dark counts rate

When no signal is applied, the SMPD has a residual detection rate referred to as dark count rate �dc.

In previous measurements, it has been observed that this rate depends on the system temperature and

the data reported in the following refers to an operation in the optimal case in which the system is

thermalized at the dilution refrigerator base temperature of 10mK. Figure 42 shows a typical sequence

of dark count clicks and the dark count rate measured in an 8-hour-long acquisition. �dc is about 100 Hz

and clearly not stationary.

Figure 42: (a) Time series of the dark count rate �dc measured in 10 s-duration intervals in an almost
8-hour-long acquisition. (b) A typical sequence of clicks collected in 0.5 s. (c) dark counts rate computed
on 1 s-duration intervals for the 300 s time window highlighted in (a).

As shown in Figure 39 (c),when the pump frequency is detuned from the frequency matching condition

(Equation 7.2) the dark count rate decreases. This shows that the counts are related to the presence of

photons in the bu↵er resonator. These photons come from noise coupled to the bu↵er line and from the

thermal excitation of the cavity, of the transmission line and of the bu↵er resonator.

To define an equivalent noise temperature of the bu↵er line we can consider the scheme in Figure 43.

A load at the equivalent temperature Tsys emits itinerant photons on the bu↵er line. The cavity is

represented as a lossless cavity coupled to a load at the cavity temperature. In this model we assume a

dark count free SMPD.

The noise spectrum can be written as

SN (⌫) = h⌫ [T (⌫)n(Tcav) + R(⌫)n(Tsys)] (8.1)

with T = |S21|2, R = |S22|2 the cavity transmission and reflection coe�cients, and n is the average

occupation number at a given temperature.

n(T ) =
1

eh⌫/kBT � 1
⇠

kBT⌧h⌫
e
� h⌫

kBT (8.2)
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Not that practical to use . . . but that’s it!
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CONCLUSIONS

− QCD Axions are theoretically well motivated but experimentally challenging
weak coupling and unknown mass

− Tremendous, definitely not a hopeless search effort
Different technologies targeting at different mass ranges, quantum sensing

− Next decade must be critical/exciting
covering a substantial portion of the parameter space... uncovering the nature of dark matter?


