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Abstract: We show how the array of convolutional adaptive interconnections needed for deep learn-
ing can be physically implemented and learned in an all-optical multistage dynamic holographically-
interconnected architecture using thick Fourier-plane dynamic holographic photorefractive crystals. This
optical architecture is self-aligned, phase-calibrated, and aberration compensated by using photorefractive
phase-conjugate mirrors to record the dynamic-holographic Fourier-plane interconnections in each layer.

Van Heerden introduced the metaphorical connection between neural computation and volume
holography nearly 60 years ago. [1] A variety of holographic interconnection approaches to building
optical neural networks were investigated in the 80s and 90s. [2–4] Since these planar technologies have
the same component density scaling as 2-D electronic neural networks numerous optical researchers
instead investigated the use of 3-D photorefractive (PR) crystals for neural-network weighted inter-
connections. PR crystals were used both as nonlinear dynamical systems with emergent neural com-
putational capabilities [5–7] as well as the weighted adaptive holographic interconnections in optical
neural networks. [8, 9] These 3-D volume-holographic interconnections have a potential for a dramat-
ically larger interconnection weights storage capacity (1011/cm3) than planar integrated-electronic or
integrated-optical approaches. These adaptive holographic systems can be made to self align by using
phase-conjugate mirrors. [10–12] Multi-layer optical networks using cascaded holograms and trained
by back propagation were also investigated. [13–17] The critical missing ingredient in developing an
all-optical multi-layer adaptive neural network is a practical nonlinear neuron. Recent quantum op-
tic and integrated-photonic programmable activation function demonstrations have shown capability
for a variety of flexible nonlinearities and indicated capability for digitally controlled or simulated
learning. [18–21] But none of these approaches have addressed the critical requirement for appropriate
bidirectional gradient operation through the nonlinearity needed for backwards error propagation, so
we introduce in Fig. 1 a novel bidirectional optical ReLU (Rectifying Linear Unit), [22] the modern
nonlinear neuron activation function that enables deep learning by avoiding the sigmoidb derivative
blocking of back propagation errors from penetrating deep into the trainable multi-layer network.

Various approaches to a front-end convolutional layer and optical convolutional neural networks
(CNNs) have been proposed and demonstrated as single layers or in simulations, [21, 23, 24] but
have not addressed the key components of modern deep learning CNNs including multiple feature
planes, variable template sizes, pooling and resolution decrease, and back propagation learning of
the shared weights that we incorporate. [22] Adjoint method training using concepts of numerical
phase conjugation has been developed for neural network and integrated optics optimization but
without an appropriate differentiable nonlinearity multiple layers and convolutional operation has not
been achieved. [25] An integrated-photonic approach utilizing a thin-film photorefractive adaptive
holographically-interconnected vector-matrix-multiplier is being developed [26], but so far only single
layers without back propagation, with a limit of about a million weights, and without the capability
for multiple convolutional feature planes. We instead exploit the massive parallelism of bulk pho-
torefractive holographic optical systems with the potential for billions of adaptive weights per layer
(corresponding to 1011 convolutional multiply-and-adds per layer with scores of input and output
feature planes). This approach is based on deep learning in a multi-layer architecture consisting of
spatially-multiplexed arrays of optical rectifying neurons convolutionally interconnected by arrays of
adaptive Fourier-holographic weights as in Figs. 2 and 3. By using photorefractive phase-conjugate
mirrors for the adaptive holographic recording, this system avoids problems with alignment, aberra-
tions, and device imperfections. The optical ReLU device enables practical, low-power, multi-layer
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Figure 1: Bidirection optical ReLUs using polarization
interferometry in an LCoS smart-pixel array geometry.
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Figure 2: Multiple feature plane convolutions using
lenslets and self-aligning Fourier volume hologram.
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Figure 3: Multiple layers of self-aligning, angular-
multiplexed, convolutional Fourier holograms using op-
tical ReLU neuron layers and PR crystal interconnects.

neural-network cascades while enabling fully-reciprocal bidirectional operation for back propagation
based adaptive holographic learning. When built, this system will be capable of achieving a competi-
tive computational throughput to special purpose deep learning supercomputers with only moderate
speed neurons and slowly evolving photorefractive interconnection convolutional feature plane weights.
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