⁷Be production at the ATOMKI Cyclotron for ⁷Be(p, γ)⁸B measurement with the recoil separator ERNA

Antonino Di Leva Università di Napoli Federico II and INFN Sezione di Napoli

ChETEC-INFRA General Assembly, Padova 1 June 2022

⁷Be(p, γ)⁸B and the solar neutrino

Adelberger et al. Rev. Mod. Phys. (2011)

⁷Be beam production

⁷Be production at ATOMKI cyclotron with 7Li(p,n)7Be

Transport to CIRCE of activated Li targets

Extraction of ⁷Be from Li bulk with hot chemistry procedure

⁷Be (and Li) deposited into source cathodes, typically 1.5 GBq each

Cathodes are loaded in RIB dedicated SNICS S2

ion beam production

⁷Be beam

Buompane et al., Physics Letters B 824/2022)136819

The ⁷Be(p, γ)⁸B in the sun: S₁₇

Next steps

- section measurements
- help understanding whether differences are due to statistics or unaccounted systematic effects
- Thanks to a newly installed tandem solid stripper an extension of the previous campaign with ERNA has been planned up to about $E_{c.m.} \sim 1.2 MeV$ (maximum) achievable for ⁷Be³⁺ and 3MV at terminal)
- The H₂ gas target has been replaced with a ⁴He jet gas target. As a solution for $(C_{10}H_8O_4 \text{ or } C_3H_6) \text{ can be used}$
- (we're anyhow in the few events/h range)

• Further insight into this reaction needs precise and accurate absolute scale cross

• New measurements above the resonance, even at a limited number of energies, can

⁷Be(p, γ)⁸B measurements, owing to larger energies involved, solid polymer foils

• Actual measurement performed a few weeks ago, more to be done in the near future Time is required to accumulate enough counts to reach good statistical precision

ChETEC-INFRA TNA

- in August 2021
- $E_{cm} \approx 800 \text{ keV}$

Application at ChETEC-INFRA TNA for production of ⁷Be at cyclotron ATOMKI

• Two weeks beam time allocated, production of about 6GBq in late April 2022 • Experimental activities are running for setup finalisation and first data taking at

Conclusions

- at the CIRCE laboratory;
- of the ⁷Be(p, γ)⁸B reaction, between E_{c.m.}=366.9 and 812.3 keV, has been performed;
- only with a subset of previous determinations;

- Debrecen to start the high energy measurement campaign

• A very intense ⁷Be beam, up to 10⁹ pps, is routinely produced and characterized

• A total cross section measurement in inverse kinematic using a recoil separator

• A fit to ERNA data alone yields $S^{17}(0) = 16.5 \pm 2.0 \text{ eV}$ b, this value is compatible

• A global fit including all data sets and considering the inflation of the systematic uncertainties provides an estimate $S17(0) = 19.6 \pm 0.8 \text{ eV}$ b that we suggest here.

• Further measurements to assess the absolute scale, also at energies above the resonance, are in our view important to get to amore accurate $S_{17}(0)$ estimate

Support of the ChETEC-INFRA TNA action provided further access to ATOMKI

